1
|
Kilmury SLN, Graham KJ, Lamers RP, MacNeil LT, Burrows LL. Hyperpiliation, not loss of pilus retraction, reduces Pseudomonas aeruginosa pathogenicity. Microbiol Spectr 2025; 13:e0255824. [PMID: 39998244 PMCID: PMC11960060 DOI: 10.1128/spectrum.02558-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
Type IVa pili (T4aP) are important virulence factors for many bacterial pathogens. Previous studies suggested that the retraction ATPase, PilT, modulates pathogenicity due to its critical role in pilus dynamics and twitching motility. Here we use a Caenorhabditis elegans slow-killing model to show that hyperpiliation, not loss of pilus retraction, reduces virulence of Pseudomonas aeruginosa strains PAK and PA14. Hyperactivating point mutations in the P. aeruginosa PilSR two-component system that controls transcription of the major pilin gene, pilA, increased levels of surface pili to the same extent as deleting pilT, without impairing twitching motility. These functionally hyperpiliated PilSR mutants had significant defects in pathogenicity that were rescued by deleting pilA or through disruption of hyperpiliation via deletion of the type III secretion system needle-length regulator, PscP. Hyperpiliated pilT deletion or pilO point mutants showed similar PilA-dependent impairments in virulence, validating the phenotype. Together, our data support a model where a surfeit of pili reduces virulence, potentially through the prevention of effective engagement of contact-dependent virulence factors. These findings suggest that the role of T4aP retraction in virulence should be revised.IMPORTANCEPseudomonas aeruginosa is a major contributor to hospital-acquired infections and particularly problematic due to its intrinsic resistance to many front-line antibiotics. Strategies to combat this and other important pathogens include the development of anti-virulence therapeutics. We show that the pathogenicity of P. aeruginosa is impaired when the amount of T4aP expressed on the cell surface increases, independent of the bacteria's ability to twitch. We propose that having excess T4aP on the cell surface may physically interfere with productive engagement of the contact-dependent type III secretion toxin delivery system. A better understanding of how T4aP modulate interaction of bacteria with target cells will improve the design of therapeutics targeting components involved in the regulation of T4aP expression and function to reduce the clinical burden of P. aeruginosa and other T4aP-expressing bacteria.
Collapse
Affiliation(s)
- Sara L. N. Kilmury
- Department of Biochemistry and Biomedical Sciences and the Michael G DGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Katherine J. Graham
- Department of Biochemistry and Biomedical Sciences and the Michael G DGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Ryan P. Lamers
- Department of Biochemistry and Biomedical Sciences and the Michael G DGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lesley T. MacNeil
- Department of Biochemistry and Biomedical Sciences and the Michael G DGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G DGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Caracciolo ME, Villela EV, Machado LDS, Barreto ML, Rosa ACDP, Lopes-Torres EJ. Nematode-bacteria interactions in bovine parasitic otitis. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e019024. [PMID: 39774744 PMCID: PMC11756828 DOI: 10.1590/s1984-29612024081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Bovine parasitic otitis poses challenges in diagnosis, treatment and involves various agents, such as bacteria, fungi, mites, and nematodes. This study focused on the nematodes and bacteria isolated from the auditory canals of dairy cattle. A total of twenty samples were collected from dairy cattle in two states of Brazil. The results showed that Metarhabditis freitasi and M. costai nematodes were identified in 75% of samples. Bacterial species from the ear, identified via mass spectrometry, revealed that different strains were present in 65% of the cattle. Mycoplasma spp. were identified in 45% of samples through molecular techniques. Gram-negative bacteria and Mycoplasma spp. were exclusively found in nematode-infected cattle. Furthermore, the bacteria exhibited resistance to multiple antimicrobial classes, and demonstrating multiresistance. Electron microscopy revealed biofilm aggregates on the cuticle of Metarhabditis spp., suggesting a potential role of these nematodes in bacterial migration and interaction with nervous tissue. Thirteen bacterial strains demonstrated biofilm formation ability, indicating their potential pathogenic role. This research highlights the persistent and complex nature of parasitic otitis, emphasizing the significant role of nematode-bacteria associations in its pathogenicity. The presence of resistant strains and biofilm formation underscores the challenges in managing the diagnosis and treatment of bovine parasitic otitis.
Collapse
Affiliation(s)
- Makoto Enoki Caracciolo
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas – UEA, Manaus, AM, Brasil
| | - Erika Verissimo Villela
- Departamento de Microbiologia, Imunologia e Parasitologia. Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
| | - Leandro dos Santos Machado
- Departamento de Saúde Coletiva Veterinária e Saúde Pública, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
| | - Maria Lúcia Barreto
- Núcleo de Animais de Laboratório, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil
| | - Ana Cláudia de Paula Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia. Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
| | - Eduardo José Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
- Laboratório Multiusuário de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Voogdt CGP, Tripathi S, Bassler SO, McKeithen-Mead SA, Guiberson ER, Koumoutsi A, Bravo AM, Buie C, Zimmermann M, Sonnenburg JL, Typas A, Deutschbauer AM, Shiver AL, Huang KC. Randomly barcoded transposon mutant libraries for gut commensals II: Applying libraries for functional genetics. Cell Rep 2024; 43:113519. [PMID: 38142398 DOI: 10.1016/j.celrep.2023.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
The critical role of the intestinal microbiota in human health and disease is well recognized. Nevertheless, there are still large gaps in our understanding of the functions and mechanisms encoded in the genomes of most members of the gut microbiota. Genome-scale libraries of transposon mutants are a powerful tool to help us address this gap. Recent advances in barcoded transposon mutagenesis have dramatically lowered the cost of mutant fitness determination in hundreds of in vitro and in vivo experimental conditions. In an accompanying review, we discuss recent advances and caveats for the construction of pooled and arrayed barcoded transposon mutant libraries in human gut commensals. In this review, we discuss how these libraries can be used across a wide range of applications, the technical aspects involved, and expectations for such screens.
Collapse
Affiliation(s)
- Carlos Geert Pieter Voogdt
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefan Oliver Bassler
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany
| | - Saria A McKeithen-Mead
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emma R Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra Koumoutsi
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Afonso Martins Bravo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Cullen Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Athanasios Typas
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL, Heidelberg, Germany.
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Escobar-Salom M, Barceló IM, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Bacterial virulence regulation through soluble peptidoglycan fragments sensing and response: knowledge gaps and therapeutic potential. FEMS Microbiol Rev 2023; 47:fuad010. [PMID: 36893807 PMCID: PMC10039701 DOI: 10.1093/femsre/fuad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Given the growing clinical-epidemiological threat posed by the phenomenon of antibiotic resistance, new therapeutic options are urgently needed, especially against top nosocomial pathogens such as those within the ESKAPE group. In this scenario, research is pushed to explore therapeutic alternatives and, among these, those oriented toward reducing bacterial pathogenic power could pose encouraging options. However, the first step in developing these antivirulence weapons is to find weak points in the bacterial biology to be attacked with the goal of dampening pathogenesis. In this regard, during the last decades some studies have directly/indirectly suggested that certain soluble peptidoglycan-derived fragments display virulence-regulatory capacities, likely through similar mechanisms to those followed to regulate the production of several β-lactamases: binding to specific transcriptional regulators and/or sensing/activation of two-component systems. These data suggest the existence of intra- and also intercellular peptidoglycan-derived signaling capable of impacting bacterial behavior, and hence likely exploitable from the therapeutic perspective. Using the well-known phenomenon of peptidoglycan metabolism-linked β-lactamase regulation as a starting point, we gather and integrate the studies connecting soluble peptidoglycan sensing with fitness/virulence regulation in Gram-negatives, dissecting the gaps in current knowledge that need filling to enable potential therapeutic strategy development, a topic which is also finally discussed.
Collapse
Affiliation(s)
- María Escobar-Salom
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Isabel María Barceló
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
| | - Gabriel Torrens
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University. Försörjningsvägen 2A, SE-901 87 Umeå, Sweden
| | - Antonio Oliver
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Carlos Juan
- Research Unit and Microbiology Department, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Crtra. Valldemossa 79, 07010 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC). Av. Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
5
|
de Vallière A, Lopes AC, Addorisio A, Gilliand N, Nenniger Tosato M, Wood D, Brechbühl J, Broillet MC. Food preference acquired by social transmission is altered by the absence of the olfactory marker protein in mice. Front Nutr 2022; 9:1026373. [PMID: 36438763 PMCID: PMC9682023 DOI: 10.3389/fnut.2022.1026373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Food preference is conserved from the most primitive organisms to social animals including humans. A continuous integration of olfactory cues present both in food and in the different environmental and physiological contexts favors the intake of a given source of food or its avoidance. Remarkably, in mice, food preference can also be acquired by olfactory communication in-between conspecifics, a behavior known as the social transmission of food preference (STFP). STFP occurs when a mouse sniffs the breath of a conspecific who has previously eaten a novel food emitting specific odorants and will then develop a preference for this never encountered food. The efficient discrimination of odorants is performed by olfactory sensory neurons (OSNs). It is essential and supports many of the decision-making processes. Here, we found that the olfactory marker protein (OMP), an enigmatic protein ubiquitously expressed in all mature olfactory neurons, is involved in the fine regulation of OSNs basal activity that directly impacts the odorant discrimination ability. Using a previously described Omp null mouse model, we noticed that although odorants and their hedonic-associated values were still perceived by these mice, compensatory behaviors such as a higher number of sniffing events were displayed both in the discrimination of complex odorant signatures and in social-related contexts. As a consequence, we found that the ability to differentiate the olfactory messages carried by individuals such as those implicated in the social transmission of food preference were significantly compromised in Omp null mice. Thus, our results not only give new insights into the role of OMP in the fine discrimination of odorants but also reinforce the fundamental implication of a functional olfactory system for food decision-making.
Collapse
|
6
|
Li S, Liu SY, Chan SY, Chua SL. Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection. THE ISME JOURNAL 2022; 16:1388-1396. [PMID: 35034106 PMCID: PMC9038794 DOI: 10.1038/s41396-022-01190-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
Microbes often secrete high levels of quorum sensing (QS) autoinducers into the environment to coordinate gene expression and biofilm formation, but risk detection and subsequent predation by bacterivorous predators. With such prominent signaling molecules acting as chemoattractants that diffuse into the environment at alarmingly high concentrations, it is unclear if bacterial cells can mask their chemical trails from predator detection. Here, we describe a microbial-based anti-detection adaptation, termed as "biofilm cloak", where the biofilm prey produced biofilm matrix exopolysaccharides that "locked" and reduced the leaching of autoinducers into the milieu, thereby concealing their trails to the detection by the bacterivorous Caenorhabditis elegans nematode. The exopolysaccharides act as common good for the non-producers to hide their autoinducers from predator detection. Deficiency in chemosensory gene odr-10 in mutant animals abrogated their ability to detect autoinducers and migrate toward their prey in a directed manner, which led to lower population growth rate of animals. Hence, restriction of bacterial communication activities to the confinements of biofilms is a novel approach for predator evasion, which plays a fundamental role in shaping ecological dynamics of microbial communities and predator-prey interactions.
Collapse
Affiliation(s)
- Shaoyang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
7
|
Chan SY, Liu SY, Seng Z, Chua SL. Biofilm matrix disrupts nematode motility and predatory behavior. ISME JOURNAL 2020; 15:260-269. [PMID: 32958848 DOI: 10.1038/s41396-020-00779-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
In nature, bacteria form biofilms by producing exopolymeric matrix that encases its entire community. While it is widely known that biofilm matrix can prevent bacterivore predation and contain virulence factors for killing predators, it is unclear if they can alter predator motility. Here, we report a novel "quagmire" phenotype, where Pseudomonas aeruginosa biofilms could retard the motility of bacterivorous nematode Caenorhabditis elegans via the production of a specific exopolysaccharide, Psl. Psl could reduce the roaming ability of C. elegans by impeding the slithering velocity of C. elegans. Furthermore, the presence of Psl in biofilms could entrap C. elegans within the matrix, with dire consequences to the nematode. After being trapped in biofilms, C. elegans could neither escape effectively from aversive stimuli (noxious blue light), nor leave easily to graze on susceptible biofilm areas. Hence, this reduced the ability of C. elegans to roam and predate on biofilms. Taken together, our work reveals a new function of motility interference by specific biofilm matrix components, and emphasizes its importance in predator-prey interactions.
Collapse
Affiliation(s)
- Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zijing Seng
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China. .,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
Proença DN, Heine T, Senges CHR, Bandow JE, Morais PV, Tischler D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front Microbiol 2019; 10:2166. [PMID: 31608025 PMCID: PMC6761702 DOI: 10.3389/fmicb.2019.02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pine Wilt Disease (PWD) is caused by Bursaphelenchus xylophilus, the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the Pinus pinaster trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: P. pinaster trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems. This work aimed to detect novel secondary metabolites like metallophores and related molecules produced under iron limitation by PWD-associated bacteria and to test their activity on nematodes. After screening 357 bacterial strains from Portugal and United States, two promising metallophore-producing strains Erwinia sp. A41C3 and Rouxiella sp. Arv20#4.1 were chosen and investigated in more detail. The genomes of these strains were sequenced, analyzed, and used to detect genetic potential for secondary metabolite production. A combinatorial approach of liquid chromatography-coupled tandem mass spectrometry (LC-MS) linked to molecular networking was used to describe these compounds. Two major metabolites were detected by HPLC analyses and described. One HPLC fraction of strain Arv20#4.1 showed to be a hydroxamate-type siderophore with higher affinity for chelation of Cu. The HPLC fraction of strain A41C3 with highest metal affinity showed to be a catecholate-type siderophore with higher affinity for chelation of Fe. LC-MS allowed the identification of several desferrioxamines from strain Arv20#4.1, in special desferrioxamine E, but no hit was obtained in case of strain A41C3 which might indicate that it is something new. Bacteria and their culture supernatants showed ability to attract C. elegans. HPLC fractions of those supernatant-extracts of Erwinia strain A41C3, enriched with secondary metabolites such as siderophores, were able to kill pinewood nematode. These results suggest that metabolites secreted under iron limitation have potential to biocontrol B. xylophilus and for management of Pine Wilt Disease.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paula V. Morais
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Xie G, Zeng M, You J, Xie Z. Pseudomonas donghuensis HYS virulence towards Caenorhabditis elegans is regulated by the Cbr/Crc system. Sci Rep 2019; 9:8772. [PMID: 31217473 PMCID: PMC6584532 DOI: 10.1038/s41598-019-45145-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas donghuensis HYS is the type strain of a recently identified species, P. donghuensis, which has pathogenic potential with an unclear virulence mechanism. In this study, we used Caenorhabditis elegans as a host to explore the virulence mechanism of P. donghuensis HYS. Based on a correlation between P. donghuensis HYS virulence and its repellence property, we identified 68 potential virulence-related genes, among them the Cbr/Crc system, which regulates the virulence of prokaryotic microorganisms. Slow-killing assays indicated that cbrA, cbrB, or specific sRNA-encoding genes all affected P. donghuensis virulence positively, whereas crc affected it negatively. Transcriptome analyses demonstrated that the Cbr/Crc system played an important role in the pathogenesis of P. donghuensis. In addition, experiments using the worm mutant KU25 pmk-1(km25) showed a correlation between P. donghuensis HYS virulence and the PMK-1/p38 MAPK pathway in C. elegans. In conclusion, our data show that Crc plays a novel role in the Cbr/Crc system, and the P. donghuensis virulence phenotype therefore differs from that of P. aeruginosa. This process also involves C. elegans innate immunity. These findings significantly increase the available information about Cbr/Crc-based virulence mechanisms in the genus Pseudomonas.
Collapse
Affiliation(s)
- Guanfang Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Man Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Jia You
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, 430072, P.R. China.
| |
Collapse
|
10
|
Zhou S, Zhang A, Chu W. Phillyrin is an effective inhibitor of quorum sensing with potential as an anti-Pseudomonas aeruginosa infection therapy. J Vet Med Sci 2019; 81:473-479. [PMID: 30686799 PMCID: PMC6451918 DOI: 10.1292/jvms.18-0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we evaluated the antibacterial and anti-quorum sensing qualities of phillyrin. The minimum inhibitory concentration (MIC) of phillyrin with regard to
Pseudomonas aeruginosa is 0.5 mg/ml. The production of virulence factors—such as rhamnolipid (>78.69%), pyocyanin (>85.94%), and elastase
(>89.95%)—that affect the pathogenicity of the P. aeruginosa strain PAO1 apparently declined in the presence of 0.25 mg/ml phillyrin. Biofilm formation
decreased by 84.48%. In a Caenorhabditis elegans–Pseudomonas aeruginosa infection model, diseased worms lived longer (63.33%) in a phillyrin-containing medium than in a
drug-free medium, and the drug did not directly kill the pathogen. Therefore, the present work suggests that phillyrin has potential as an antimicrobial agent for the control of infectious
pathogens.
Collapse
Affiliation(s)
- Shuxin Zhou
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - An Zhang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Nevalainen H, Kaur J, Han Z, Kautto L, Ramsperger M, Meyer W, Chen SCA. Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Pseudomonas aeruginosa type IV minor pilins and PilY1 regulate virulence by modulating FimS-AlgR activity. PLoS Pathog 2018; 14:e1007074. [PMID: 29775484 PMCID: PMC5979040 DOI: 10.1371/journal.ppat.1007074] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 05/04/2018] [Indexed: 11/19/2022] Open
Abstract
Type IV pili are expressed by a wide range of prokaryotes, including the opportunistic pathogen Pseudomonas aeruginosa. These flexible fibres mediate twitching motility, biofilm maturation, surface adhesion, and virulence. The pilus is composed mainly of major pilin subunits while the low abundance minor pilins FimU-PilVWXE and the putative adhesin PilY1 prime pilus assembly and are proposed to form the pilus tip. The minor pilins and PilY1 are encoded in an operon that is positively regulated by the FimS-AlgR two-component system. Independent of pilus assembly, PilY1 was proposed to be a mechanosensory component that—in conjunction with minor pilins—triggers up-regulation of acute virulence phenotypes upon surface attachment. Here, we investigated the link between the minor pilins/PilY1 and virulence. pilW, pilX, and pilY1 mutants had reduced virulence towards Caenorhabditis elegans relative to wild type or a major pilin mutant, implying a role in pathogenicity that is independent of pilus assembly. We hypothesized that loss of specific minor pilins relieves feedback inhibition on FimS-AlgR, increasing transcription of the AlgR regulon and delaying C. elegans killing. Reporter assays confirmed that FimS-AlgR were required for increased expression of the minor pilin operon upon loss of select minor pilins. Overexpression of AlgR or its hyperactivation via a phosphomimetic mutation reduced virulence, and the virulence defects of pilW, pilX, and pilY1 mutants required FimS-AlgR expression and activation. We propose that PilY1 and the minor pilins inhibit their own expression, and that loss of these proteins leads to FimS-mediated activation of AlgR that suppresses expression of acute-phase virulence factors and delays killing. This mechanism could contribute to adaptation of P. aeruginosa in chronic lung infections, as mutations in the minor pilin operon result in the loss of piliation and increased expression of AlgR-dependent virulence factors–such as alginate–that are characteristic of such infections. Pseudomonas aeruginosa causes dangerous infections, including chronic lung infections in cystic fibrosis patients. It uses many strategies to infect its hosts, including deployment of grappling hook-like fibres called type IV pili. Among the components involved in assembly and function of the pilus are five proteins called minor pilins that—along with a larger protein called PilY1—may help the pilus attach to surfaces. In a roundworm infection model, loss of PilY1 and specific minor pilins delayed killing, while loss of other pilus components did not. We traced this effect to increased activation of the FimS-AlgR regulatory system that inhibits the expression of virulence factors used early in infection, while positively regulating chronic infection traits such as alginate production, a phenotype called mucoidy. A disruption in the appropriate timing of FimS-AlgR-dependent virulence factor expression when select minor pilins or PilY1 are missing may explain why those pilus-deficient mutants have reduced virulence compared with others whose products are not under FimS-AlgR control. Increased FimS-AlgR activity upon loss of PilY1 and specific minor pilins could help to explain the frequent co-occurrence of the non-piliated and mucoid phenotypes that are hallmarks of chronic P. aeruginosa lung infections.
Collapse
|
13
|
Arteaga Blanco LA, Crispim JS, Fernandes KM, de Oliveira LL, Pereira MF, Bazzolli DMS, Martins GF. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae. Cell Tissue Res 2017; 370:153-168. [DOI: 10.1007/s00441-017-2653-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022]
|
14
|
Exopolysaccharide-Repressing Small Molecules with Antibiofilm and Antivirulence Activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:AAC.01997-16. [PMID: 28223377 DOI: 10.1128/aac.01997-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/11/2017] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is a universal virulence strategy in which bacteria grow in dense microbial communities enmeshed within a polymeric extracellular matrix that protects them from antibiotic exposure and the immune system. Pseudomonas aeruginosa is an archetypal biofilm-forming organism that utilizes a biofilm growth strategy to cause chronic lung infections in cystic fibrosis (CF) patients. The extracellular matrix of P. aeruginosa biofilms is comprised mainly of exopolysaccharides (EPS) and DNA. Both mucoid and nonmucoid isolates of P. aeruginosa produce the Pel and Psl EPS, each of which have important roles in antibiotic resistance, biofilm formation, and immune evasion. Given the central importance of the EPS for biofilms, they are attractive targets for novel anti-infective compounds. In this study, we used a high-throughput gene expression screen to identify compounds that repress expression of the pel genes. The pel repressors demonstrated antibiofilm activity against microplate and flow chamber biofilms formed by wild-type and hyperbiofilm-forming strains. To determine the potential role of EPS in virulence, pel/psl mutants were shown to have reduced virulence in feeding behavior and slow killing virulence assays in Caenorhabditis elegans The antibiofilm molecules also reduced P. aeruginosa PAO1 virulence in the nematode slow killing model. Importantly, the combination of antibiotics and antibiofilm compounds increased killing of P. aeruginosa biofilms. These small molecules represent a novel anti-infective strategy for the possible treatment of chronic P. aeruginosa infections.
Collapse
|
15
|
Kaur J, Pethani BP, Kumar S, Kim M, Sunna A, Kautto L, Penesyan A, Paulsen IT, Nevalainen H. Pseudomonas aeruginosa inhibits the growth of Scedosporium aurantiacum, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients. Front Microbiol 2015; 6:866. [PMID: 26379643 PMCID: PMC4547459 DOI: 10.3389/fmicb.2015.00866] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022] Open
Abstract
The filamentous fungus Scedosporium aurantiacum and the bacterium Pseudomonas aeruginosa are opportunistic pathogens isolated from lungs of the cystic fibrosis (CF) patients. P. aeruginosa has been known to suppress the growth of a number of CF related fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. However, the interactions between P. aeruginosa and S. aurantiacum have not been investigated in depth. Hence we assessed the effect of P. aeruginosa reference strain PAO1 and two clinical isolates PASS1 and PASS2 on the growth of two clinical S. aurantiacum isolates WM 06.482 and WM 08.202 using solid plate assays and liquid cultures, in a synthetic medium mimicking the nutrient condition in the CF sputum. Solid plate assays showed a clear inhibition of growth of both S. aurantiacum strains when cultured with P. aeruginosa strains PASS1 and PAO1. The inhibitory effect was confirmed by confocal microscopy. In addition to using chemical fluorescent stains, strains tagged with yfp (P. aeruginosa PASS1) and mCherry (S. aurantiacum WM 06.482) were created to facilitate detailed microscopic observations on strain interaction. To our knowledge, this is the first study describing successful genetic transformation of S. aurantiacum. Inhibition of growth was observed only in co-cultures of P. aeruginosa and S. aurantiacum; the cell fractions obtained from independent bacterial monocultures failed to initiate a response against the fungus. In the liquid co-cultures, biofilm forming P. aeruginosa strains PASS1 and PAO1 displayed higher inhibition of fungal growth when compared to PASS2. No change was observed in the inhibition pattern when direct cell contact between the bacterial and fungal strains was prevented using a separation membrane suggesting the involvement of extracellular metabolites in the fungal inhibition. However, one of the most commonly described bacterial virulence factors, pyocyanin, had no effect against either of the S. aurantiacum strains. This study shows that P. aeruginosa has a substantial inhibitory effect on the growth of the recently described CF fungal pathogen S. aurantiacum. The findings also highlighted that P. aeruginosa biofilm formation is important but not crucial for inhibiting the growth of S. aurantiacum in a lung- mimicking environment.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Bhavin P Pethani
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Sheemal Kumar
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Minkyoung Kim
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Liisa Kautto
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences, Macquarie University Sydney, NSW, Australia ; Biomolecular Frontiers Research Centre, Macquarie University Sydney, NSW, Australia
| |
Collapse
|