1
|
Hugoni M, Nunan N, Thioulouse J, Dubost A, Abrouk D, Martins JMF, Goffner D, Prigent-Combaret C, Grundmann G. Small-Scale Variability in Bacterial Community Structure in Different Soil Types. MICROBIAL ECOLOGY 2021; 82:470-483. [PMID: 33443587 DOI: 10.1007/s00248-020-01660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Microbial spatial distribution has mostly been studied at field to global scales (i.e., ecosystem scales). However, the spatial organization at small scales (i.e., centimeter to millimeter scales), which can help improve our understanding of the impacts of spatial communities structure on microbial functioning, has received comparatively little attention. Previous work has shown that small-scale spatial structure exists in soil microbial communities, but these studies have not compared soils from geographically distant locations, nor have they utilized community ecology approaches, such as the core and satellite hypothesis and/or abundance-occupancy relationships, often used in macro-ecology, to improve the description of the spatial organization of communities. In the present work, we focused on bacterial diversity (i.e., 16S rRNA gene sequencing) occurring in micro-samples from a variety of locations with different pedo-climatic histories (i.e., from semi-arid, alpine, and temperate climates) and physicochemical properties. The forms of ecological spatial relationships in bacterial communities (i.e., occupancy-frequency and abundance-occupancy) and taxa distributions (i.e., habitat generalists and specialists) were investigated. The results showed that bacterial composition differed in the four soils at the small scale. Moreover, one soil presented a satellite mode distribution, whereas the three others presented bimodal distributions. Interestingly, numerous core taxa were present in the four soils among which 8 OTUs were common to the four sites. These results confirm that analyses of the small-scale spatial distribution are necessary to understand consequent functional processes taking place in soils, affecting thus ecosystem functioning.
Collapse
Affiliation(s)
- Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, INRA, UMR1418, 69220, F-69622, Villeurbanne Cedex, France.
| | - Naoise Nunan
- Institute of Ecology and Environmental Sciences - Paris, CNRS - Sorbonne Université, 4 place Jussieu, 75005, Paris, France
- Department of Soil and Environment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Jean Thioulouse
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, INRA, UMR1418, 69220, F-69622, Villeurbanne Cedex, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, INRA, UMR1418, 69220, F-69622, Villeurbanne Cedex, France
| | - Jean M F Martins
- Université Grenoble Alpes, CNRS, IRD, IGE UMR 5001, 38000, Grenoble, France
| | - Deborah Goffner
- Unité Mixte Internationale CNRS 3189 « Environment, Health and Societies », Faculté de Médecine, 51 Bd Pierre Dramard, 13344, Marseille, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, INRA, UMR1418, 69220, F-69622, Villeurbanne Cedex, France
| | - Geneviève Grundmann
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, INRA, UMR1418, 69220, F-69622, Villeurbanne Cedex, France
| |
Collapse
|
2
|
Pérez-Hernández V, Hernández-Guzmán M, Luna-Guido M, Navarro-Noya YE, Romero-Tepal EM, Dendooven L. Bacterial Communities in Alkaline Saline Soils Amended with Young Maize Plants or Its (Hemi)Cellulose Fraction. Microorganisms 2021; 9:1297. [PMID: 34203640 PMCID: PMC8232260 DOI: 10.3390/microorganisms9061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
We studied three soils of the former lake Texcoco with different electrolytic conductivity (1.9 dS m-1, 17.3 dS m-1, and 33.4 dS m-1) and pH (9.3, 10.4, and 10.3) amended with young maize plants and their neutral detergent fibre (NDF) fraction and aerobically incubated in the laboratory for 14 days while the soil bacterial community structure was monitored by means of 454-pyrosequencing of their 16S rRNA marker gene. We identified specific bacterial groups that showed adaptability to soil salinity, i.e., Prauseria in soil amended with young maize plants and Marinobacter in soil amended with NDF. An increase in soil salinity (17.3 dS m-1, 33.4 dS m-1) showed more bacterial genera enriched than soil with low salinity (1.9 dS m-1). Functional prediction showed that members of Alfa-, Gamma-, and Deltaproteobacteria, which are known to adapt to extreme conditions, such as salinity and low nutrient soil content, were involved in the lignocellulose degradation, e.g., Marinimicrobium and Pseudomonas as cellulose degraders, and Halomonas and Methylobacterium as lignin degraders. This research showed that the taxonomic annotation and their functional prediction both highlighted keystone bacterial groups with the ability to degrade complex C-compounds, such as lignin and (hemi)cellulose, in the extreme saline-alkaline soil of the former Lake of Texcoco.
Collapse
Affiliation(s)
- Valentín Pérez-Hernández
- Laboratory of Soil Ecology, Department of Chemistry and Biochemistry, Instituto Tecnológico de Tuxtla-Gutiérrez, Tecnológico Nacional de México, Tuxtla Gutiérrez, Chiapas 29050, Mexico;
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Mario Hernández-Guzmán
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Marco Luna-Guido
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Yendi E. Navarro-Noya
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala 90070, Mexico;
| | - Elda M. Romero-Tepal
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City 07360, Mexico; (M.H.-G.); (M.L.-G.); (E.M.R.-T.)
| |
Collapse
|
3
|
Mony C, Vandenkoornhuyse P, Bohannan BJM, Peay K, Leibold MA. A Landscape of Opportunities for Microbial Ecology Research. Front Microbiol 2020; 11:561427. [PMID: 33329422 PMCID: PMC7718007 DOI: 10.3389/fmicb.2020.561427] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Microbes encompass tremendous biodiversity, provide support to all living forms, including humans, and play an important role in many ecosystem services. The rules that govern microorganism community assembly are increasingly revealed due to key advances in molecular and analytical methods but their understanding remain a key challenge in microbial ecology. The existence of biogeographic patterns within microbial communities has been established and explained in relation to landscape-scale processes, including selection, drift, dispersal and mutation. The effect of habitat patchiness on microorganisms' assembly rules remains though incompletely understood. Here, we review how landscape ecology principles can be adapted to explore new perspectives on the mechanisms that determine microbial community structure. To provide a general overview, we characterize microbial landscapes, the spatial and temporal scales of the mechanisms that drive microbial assembly and the feedback between microorganisms and landscape structure. We provide evidence for the effects of landscape heterogeneity, landscape fragmentation and landscape dynamics on microbial community structure, and show that predictions made for macro-organisms at least partly also apply to microorganisms. We explain why emerging metacommunity approaches in microbial ecology should include explicit characterization of landscape structure in their development and interpretation. We also explain how biotic interactions, such as competition, prey-predator or mutualist relations may influence the microbial landscape and may be involved in the above-mentioned feedback process. However, we argue that the application of landscape ecology to the microbial world cannot simply involve transposing existing theoretical frameworks. This is due to the particularity of these organisms, in terms of size, generation time, and for some of them, tight interaction with hosts. These characteristics imply dealing with unusual and dependent space and time scales of effect. Evolutionary processes have also a strong importance in microorganisms' response to their landscapes. Lastly, microorganisms' activity and distribution induce feedback effects on the landscape that have to be taken into account. The transposition of the landscape ecology framework to microorganisms provides many challenging research directions for microbial ecology.
Collapse
Affiliation(s)
- Cendrine Mony
- UMR CNRS ECOBIO, Université de Rennes, Rennes, France
| | | | | | - Kabir Peay
- Department of Biology, University of Stanford, Stanford, CA, United States
| | - Mathew A Leibold
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|