1
|
Soraire T, Thompson K, Wenzler T, Taibi J, Coffin AB. Effect of pH on Development of the Zebrafish Inner Ear and Lateral Line: Comparisons between High School and University Settings. Zebrafish 2024; 21:409-417. [PMID: 39075066 DOI: 10.1089/zeb.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Increasing carbon dioxide levels associated with climate change will likely have a devastating effect on aquatic ecosystems. Aquatic environments sequester carbon dioxide, resulting in acidic conditions that can negatively affect fish development. Increasing climate change impacts in the coming decades will have an outsized effect on younger generations. Therefore, our research had two interconnected goals: 1) understand how aquatic acidification affects the development of zebrafish, and 2) support a high school scientist's ability to address environmental questions of increasing importance to her generation. Working with teachers and other mentors, the first author designed and conducted the research, first in her high school, then in a university research laboratory. Zebrafish embryos were reared in varying pH conditions (6.7-8.2) for up to 7 days. We assessed fish length and development of the inner ear, including the otoliths; structures that depend on calcium carbonate for proper development. Although pH did not affect fish length, fish reared in pH 7.75 had smaller anterior otoliths, showing that pH can impact zebrafish ear development. Furthermore, we demonstrate how zebrafish may be used for high school students to pursue open-ended questions using different levels of available resources.
Collapse
Affiliation(s)
- Theresa Soraire
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Kaitlyn Thompson
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Tracy Wenzler
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Jason Taibi
- Walter G. O'Connell Copiague High School, Copiague, New York, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, Washington, USA
| |
Collapse
|
2
|
Liu S, Hou Y, Shi YJ, Zhang N, Hu YG, Chen WM, Zhang JL. Triphenyltin induced darker body coloration by disrupting melanocortin system and pteridine metabolic pathway in a reef fish, Amphiprion ocellaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116177. [PMID: 38461573 DOI: 10.1016/j.ecoenv.2024.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.
Collapse
Affiliation(s)
- Song Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yu Hou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Ya-Jun Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Nan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yi-Guang Hu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Wen-Ming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China; Hainan Provincial Key Laboratory of Ecological Civilization and Integrated Land-Sea Development, Hainan Normal University, Haikou, Hainan 571158, China.
| |
Collapse
|
3
|
Wang X, Feng Y, Zhang Z, Li C, Han H. Balance dysfunction in large yellow croaker in response to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162444. [PMID: 36842599 DOI: 10.1016/j.scitotenv.2023.162444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is a coastal-dwelling soniferous, commercially important fish species that is sensitive to sound. An understanding of how ocean acidification might affect its auditory system is therefore important for its long-term viability and management as a fisheries resource. We tested the effects of ocean acidification with four CO2 treatments (440 ppm (control), 1000 ppm, 1800 ppm, and 3000 ppm) on the inner ear system of this species. After exposure to acidified water for 50 d, the impacts on the perimeter and mass of the sagitta, asteriscus, and lapillus otoliths were determined. In the acidified water treatments, the shape of sagittal otoliths became more irregular, and the surface became rougher. Similar sound frequency ranges triggered startle responses of fish in all treatments. In the highest CO2 treatment (3000 ppm CO2), significant asymmetry of the left and right lapillus perimeter and weight was apparent. Moreover, in the higher CO2 treatments (1800 ppm and 3000 ppm CO2), the fish were unable to maintain a balanced dorsal-up posture and tilted to one side. This result suggested that the balance functions of the inner ear might be affected by ocean acidification, which may threaten large yellow croaker individuals and populations. The molecular response to acidification was analyzed by RNA-Seq. The differentially expressed genes (DEGs) between right and left sensory epithelia of the utricle in each CO2 treatment group were identified. In higher CO2 concentration groups, nervous system function and regulation of bone mineralization pathways were enriched with DEGs. The comparative transcriptome analyses provide valuable molecular information about how the inner ear system responds to an acidified environment.
Collapse
Affiliation(s)
- Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China.
| | - Yaoyi Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Zichao Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Chenchen Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Huan Han
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| |
Collapse
|
4
|
Cohen-Rengifo M, Danion M, Gonzalez AA, Bégout ML, Cormier A, Noël C, Cabon J, Vitré T, Mark FC, Mazurais D. The extensive transgenerational transcriptomic effects of ocean acidification on the olfactory epithelium of a marine fish are associated with a better viral resistance. BMC Genomics 2022; 23:448. [PMID: 35710351 PMCID: PMC9204966 DOI: 10.1186/s12864-022-08647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid–base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. Results We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. Conclusion F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08647-w.
Collapse
Affiliation(s)
| | - Morgane Danion
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Anne-Alicia Gonzalez
- MGX, CNRS, INSERM, University of Montpellier, Biocampus Montpellier, Montpellier, France
| | - Marie-Laure Bégout
- MARBEC, University of Montpellier, CNRS, IFREMER, 34250, Palavas-les-Flots, IRD, France
| | | | - Cyril Noël
- IFREMER, SEBIMER, 29280, Plouzané, France
| | - Joëlle Cabon
- Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Felix C Mark
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Department of Integrative Ecophysiology, 27570, Bremerhaven, Germany
| | | |
Collapse
|
5
|
Comparative Otolith Morphology of Two Morphs of Schizopygopsis thermalis Herzenstein 1891 (Pisces, Cyprinidae) in a Headwater Lake on the Qinghai-Tibet Plateau. FISHES 2022. [DOI: 10.3390/fishes7030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Teleost otoliths provide a pivotal medium for studying changes in population structure and population dynamics of fish. Understanding the otolith-fish size relationship and intraspecies variation in otolith morphology is essential for the accurate assessment and management of fishery resources. In our study, we aimed to estimate the relationships between otolith morphological measurements and fish length, and detect differences in the otolith morphology of planktivorous and benthivorous morphs of Schizopygopsis thermalis in Lake Amdo Tsonak Co on the Qinghai-Tibet Plateau (QTP). Both morphs exhibited strong linear otolith-fish size relationships; otolith morphology was sexually dimorphic in each morph; the morphs differed significantly in otolith shape and size (e.g., posterior side, the region between the posterior and ventral otolith, otolith length, circularity, and surface density). In addition, we found that the differences in otolith morphology between morphs are related to habitat preferences, diet, and growth. Basic data on the biology of S. thermalis are essential for poorly studied Lake Amdo Tsonak Co, and our study emphasizes that intraspecific variation in otolith morphology should be taken into consideration when differentiating stocks, populations, and age classes based on otolith morphology.
Collapse
|
6
|
Fluctuating Asymmetry in Asteriscii Otoliths of Common Carp (Cyprinus carpio) Collected from Three Localities in Iraqi Rivers Linked to Environmental Factors. FISHES 2022. [DOI: 10.3390/fishes7020091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Otoliths, calcified structures in the inner ears, are used to estimate fish age, and their shape is an efficient fish stock identification tool. Otoliths are thus very important for the management and assessment of commercial stocks. However, most studies have used left or right otoliths, chosen arbitrarily without evaluation of the difference between these otoliths. In this study, the asteriscii otoliths from 263 common carp (Cyprinus carpio; Linnaeus, 1758) were sampled in three Iraqi rivers to test the potential asymmetry and the geographical effect on otolith growth from three measurements (length, width and weight), and on shape from two shape indices (ellipticity and form-factor). Among all asteriscii otolith features, there was significant fluctuating asymmetry between fish length and every otolith descriptor. At one fish length, the size and/or the shape of otoliths could be different between two individuals and/or between left and right asteriscii otoliths for the same individual. Moreover, the relationship between fish length and otolith shape/growth was significantly dependent on the studied geographical area and, more especially, the environmental effects as the water temperature and pH. Finally, the relationships between fish length and otolith shape indices showed that the otolith evolves into the elliptical shape during the life of the fish. To use the otolith shape, it is essential to take into account the developmental stage of individuals to integrate the ontogenetic effect. Our results highlight the importance of verifying potential otolith asymmetry, especially for the asteriscii otoliths (lagenar otoliths) before their use in fisheries research.
Collapse
|
7
|
Drake JL, Benayahu Y, Polishchuk I, Pokroy B, Pinkas I, Mass T. Sclerites of the soft coral Ovabunda macrospiculata (Xeniidae) are predominantly the metastable CaCO 3 polymorph vaterite. Acta Biomater 2021; 135:663-670. [PMID: 34492373 DOI: 10.1016/j.actbio.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
Soft corals (Cnidaria, Anthozoa, Octocorallia, Alcyonacea) produce internal sclerites of calcium carbonate previously shown to be composed of calcite, the most stable calcium carbonate polymorph. Here we apply multiple imaging and physical chemistry analyses to extracted and in-vivo sclerites of the abundant Red Sea soft coral, Ovabunda macrospiculata, to detail their mineralogy. We show that this species' sclerites are comprised predominantly of the less stable calcium carbonate polymorph vaterite (> 95%), with much smaller components of aragonite and calcite. Use of this mineral, which is typically considered to be metastable, by these soft corals has implications for how it is formed as well as how it will persist during the anticipated anthropogenic climate change in the coming decades. This first documentation of vaterite dominating the mineral composition of O. macrospiculata sclerites is likely just the beginning of establishing its presence in other soft corals. STATEMENT OF SIGNIFICANCE: Vaterite is typically considered to be a metastable polymorph of calcium carbonate. While calcium carbonate structures formed within the tissues of octocorals (phylum Cnidaria), have previously been reported to be composed of the more stable polymorphs aragonite and calcite, we observed that vaterite dominates the mineralogy of sclerites of Ovabunda macrospiculata from the Red Sea. Based on electron microscopy, Raman spectroscopy, and X-ray diffraction analysis, vaterite appears to be the dominant polymorph in sclerites both in the tissue and after extraction and preservation. Although this is the first documentation of vaterite in soft coral sclerites, it likely will be found in sclerites of other related taxa as well.
Collapse
|
8
|
Loeppky AR, Belding LD, Quijada-Rodriguez AR, Morgan JD, Pracheil BM, Chakoumakos BC, Anderson WG. Influence of ontogenetic development, temperature, and pCO 2 on otolith calcium carbonate polymorph composition in sturgeons. Sci Rep 2021; 11:13878. [PMID: 34230512 PMCID: PMC8260795 DOI: 10.1038/s41598-021-93197-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Changes to calcium carbonate (CaCO3) biomineralization in aquatic organisms is among the many predicted effects of climate change. Because otolith (hearing/orientation structures in fish) CaCO3 precipitation and polymorph composition are controlled by genetic and environmental factors, climate change may be predicted to affect the phenotypic plasticity of otoliths. We examined precipitation of otolith polymorphs (aragonite, vaterite, calcite) during early life history in two species of sturgeon, Lake Sturgeon, (Acipenser fulvescens) and White Sturgeon (A. transmontanus), using quantitative X-ray microdiffraction. Both species showed similar fluctuations in otolith polymorphs with a significant shift in the proportions of vaterite and aragonite in sagittal otoliths coinciding with the transition to fully exogenous feeding. We also examined the effect of the environment on otolith morphology and polymorph composition during early life history in Lake Sturgeon larvae reared in varying temperature (16/22 °C) and pCO2 (1000/2500 µatm) environments for 5 months. Fish raised in elevated temperature had significantly increased otolith size and precipitation of large single calcite crystals. Interestingly, pCO2 had no statistically significant effect on size or polymorph composition of otoliths despite blood pH exhibiting a mild alkalosis, which is contrary to what has been observed in several studies on marine fishes. These results suggest climate change may influence otolith polymorph composition during early life history in Lake Sturgeon.
Collapse
Affiliation(s)
- Alison R Loeppky
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Luke D Belding
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - John D Morgan
- Department of Resource Management and Protection, Vancouver Island University, Nanaimo, BC, Canada
| | - Brenda M Pracheil
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, Canada
| | - Bryan C Chakoumakos
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Radford CA, Collins SP, Munday PL, Parsons D. Ocean acidification effects on fish hearing. Proc Biol Sci 2021; 288:20202754. [PMID: 33653144 DOI: 10.1098/rspb.2020.2754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Humans are rapidly changing the marine environment through a multitude of effects, including increased greenhouse gas emissions resulting in warmer and acidified oceans. Elevated CO2 conditions can cause sensory deficits and altered behaviours in marine organisms, either directly by affecting end organ sensitivity or due to likely alterations in brain chemistry. Previous studies show that auditory-associated behaviours of larval and juvenile fishes can be affected by elevated CO2 (1000 µatm). Here, using auditory evoked potentials (AEP) and micro-computer tomography (microCT) we show that raising juvenile snapper, Chrysophyrs auratus, under predicted future CO2 conditions resulted in significant changes to their hearing ability. Specifically, snapper raised under elevated CO2 conditions had a significant decrease in low frequency (less than 200 Hz) hearing sensitivity. MicroCT demonstrated that these elevated CO2 snapper had sacculus otolith's that were significantly larger and had fluctuating asymmetry, which likely explains the difference in hearing sensitivity. We suggest that elevated CO2 conditions have a dual effect on hearing, directly effecting the sensitivity of the hearing end organs and altering previously described hearing induced behaviours. This is the first time that predicted future CO2 conditions have been empirically linked through modification of auditory anatomy to changes in fish hearing ability. Given the widespread and well-documented impact of elevated CO2 on fish auditory anatomy, predictions of how fish life-history functions dependent on hearing may respond to climate change may need to be reassessed.
Collapse
Affiliation(s)
- C A Radford
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth 0941, New Zealand
| | - S P Collins
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth 0941, New Zealand
| | - P L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - D Parsons
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth 0941, New Zealand.,National Institute of Water and Atmosphere, Private Bag 99940, Newmarket, Auckland 1149, New Zealand
| |
Collapse
|
10
|
Mazurais D, Servili A, Noel C, Cormier A, Collet S, Leseur R, Le Roy M, Vitré T, Madec L, Zambonino-Infante JL. Transgenerational regulation of cbln11 gene expression in the olfactory rosette of the European sea bass (Dicentrarchus labrax) exposed to ocean acidification. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105022. [PMID: 32662446 DOI: 10.1016/j.marenvres.2020.105022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Elevated amounts of atmospheric CO2 are causing ocean acidification (OA) that may affect marine organisms including fish species. While several studies carried out in fish revealed that OA induces short term dysfunction in sensory systems including regulation of neurons activity in olfactory epithelium, information on the effects of OA on other physiological processes and actors is scarcer. In the present study we focused our attention on a European sea bass (Dicentrarchus labrax) sghC1q gene, a member of the C1q-domain-containing (C1qDC) protein family. In vertebrates, C1qDC family includes actors involved in different physiological processes including immune response and synaptic organization. Our microsynteny analysis revealed that this sghC1q gene is the orthologous gene in European sea bass to zebrafish (Danio rerio) cbln11 gene. We cloned the full length cbln11 mRNA and identified the different domains (the signal peptide, the coiled coil region and the globular C1q domain) of the deduced protein sequence. Investigation of mRNA expression by qPCR and in situ hybridization revealed that cbln11gene is especially expressed in the non-sensory epithelium of the olfactory rosette at larval and adult stages. The expression of cbln11 mRNA was analysed by qPCR in the first generation (F0) of European sea bass broodstock exposed since larval stages to water pH of 8.0 (control) or 7.6 (predicted for year 2100) and in their offspring (F1) maintained in the environmental conditions of their parents. Our results showed that cbln11 mRNA expression level was lower in larvae exposed to OA then up-regulated at adult stage in the olfactory rosette of F0 and that this up-regulation is maintained under OA at larval and juvenile stages in F1. Overall, this work provides evidence of a transgenerational inheritance of OA-induced up-regulation of cbln11 gene expression in European sea bass. Further studies will investigate the potential immune function of cbln11 gene and the consequences of these regulations, as well as the possible implications in terms of fitness and adaptation to OA in European sea bass.
Collapse
Affiliation(s)
- David Mazurais
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France.
| | - Arianna Servili
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Cyril Noel
- IFREMER, SEBIMER, F-29280, Plouzané, France
| | | | - Sophie Collet
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Romane Leseur
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Maelenn Le Roy
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Thomas Vitré
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Lauriane Madec
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|