1
|
Jiang Y, Burroughs S. Interactive Effects of Salinity and Mosquito Larvicides Toxicity to Larvae of Aedes Taeniorhynchus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:26-31. [PMID: 38369954 DOI: 10.2987/23-7151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding the influence of salinity on the efficacy of mosquito larvicides in brackish water habitats is crucial for effective salt-marsh Aedes taeniorhynchus control. This study investigated the interactive effects of salinity on the toxicity of 3 commonly used mosquito larvicides: Bacillus thuringiensis israelensis (VectoBac® 12AS), spinosad (Natular® SC), and S-methoprene (Altosid® 12AS) against Ae. taeniorhynchus larvae. Four salinity levels (0 ppt [parts per thousand], 8 ppt, 16 ppt, and 32 ppt) were tested in laboratory bioassays. The results revealed distinct responses of these larvicides to varying salinity levels. VectoBac 12AS displayed consistent efficacy across all salinity levels, indicating its suitability for brackish water habitats. In contrast, Natular 2EC exhibited increased effectiveness with higher salinity, making it a preferable choice for saline environments. Altosid 12AS showed its highest efficacy in freshwater, with reduced effectiveness as salinity increased. These findings underscore the need to consider salinity levels when selecting and applying mosquito larvicides in diverse aquatic habitats. Understanding the complex interplay between salinity and larvicide performance is essential for optimizing mosquito control strategies and mitigating mosquito-borne diseases in various environments.
Collapse
|
2
|
Lei DQ, Huang GY, Qiu SQ, Li XP, Wang CS, Fang GZ, Xie L, Ying GG. Exposure to estrone disrupts the endocrine system of western mosquitofish (Gambusia affinis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106457. [PMID: 36848693 DOI: 10.1016/j.aquatox.2023.106457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Estrone (E1) is one of the predominant natural estrogens detected in aquatic environments, yet little is known about its effects on the endocrine system in fish. In this study, the sex ratio, secondary sexual characteristics, gonadal histology, and transcriptional levels of genes closely related to sex differentiation and hypothalamic-pituitary-gonadal-liver (HPGL) axis were assessed in western mosquitofish (Gambusia affinis) after a full life-cycle exposure to E1 (0, 25.4, 143, 740, and 4300 ng/L) for 119 days. The results showed that exposure to 4300 ng/L of E1 resulted in 100% female and inhibited the growth of females. Exposure to environmentally relevant concentrations of E1 (143 and 740 ng/L) led to obvious feminization of skeletons and anal fins in males. Exposure to 740 and 4300 ng/L of E1 increased the proportion of mature spermatocytes in females, and exposure to 143 and 740 ng/L decreased the proportion of mature spermatocytes in males. Moreover, the transcripts of genes related to sex differentiation and HPGL axis were changed in the E1-exposed adult fish and embryos inside females. This study has provided valuable data on the endocrine disruption effects of E1 at environmentally relevant concentrations in G. affinis.
Collapse
Affiliation(s)
- Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
3
|
Clance LR, Ziegler SL, Fodrie FJ. Contaminants disrupt aquatic food webs via decreased consumer efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160245. [PMID: 36403840 DOI: 10.1016/j.scitotenv.2022.160245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Changes in consumer-resource dynamics due to environmental stressors can alter energy flows or key interactions within food webs, with potential for cascading effects at population, community, and ecosystem levels. We conducted a meta-analysis to quantify the direction and magnitude of changes in consumption rates following exposure of consumer-resource pairs within freshwater-brackish and marine systems to anthropogenic CO2, heavy metals, microplastics, oil, pesticides, or pharmaceuticals. Across all contaminants, exposure generally decreased consumption rates, likely due to reduced consumer mobility or search efficiency. These negative effects on consumers appeared to outweigh co-occurring reductions in prey vigilance or antipredator behaviors following contaminant exposure. Consumption was particularly dampened in freshwater-brackish systems, for consumers with sedentary prey, and for lower-trophic-level consumers. This synthesis indicates that energy flow up the food web, toward larger - often ecologically and economically prized - taxa may be dampened as aquatic contaminant loads increase.
Collapse
Affiliation(s)
- Lauren R Clance
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA
| | - Shelby L Ziegler
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA.
| | - F Joel Fodrie
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA
| |
Collapse
|
4
|
Brander SM, White JW, DeCourten BM, Major K, Hutton SJ, Connon RE, Mehinto A. Accounting for transgenerational effects of toxicant exposure in population models alters the predicted long-term population status. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac023. [PMID: 36518876 PMCID: PMC9730329 DOI: 10.1093/eep/dvac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 06/04/2023]
Abstract
Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g., DNA methylation) that are passed down to subsequent, unexposed generations. However, it is difficult to gauge the cumulative population-scale impacts of epigenetic effects from laboratory experiments alone. Here, we developed a size- and age-structured delay-coordinate population model to evaluate the long-term consequences of epigenetic modifications on population sustainability. The model emulated changes in growth, mortality, and fecundity in the F0, F1, and F2 generations observed in experiments in which larval Menidia beryllina were exposed to environmentally relevant concentrations of bifenthrin (Bif), ethinylestradiol (EE2), levonorgestrel (LV), or trenbolone (TB) in the parent generation (F0) and reared in clean water up to the F2 generation. Our analysis suggests potentially dramatic population-level effects of repeated, chronic exposures of early-life stage fish that are not captured by models not accounting for those effects. Simulated exposures led to substantial declines in population abundance (LV and Bif) or near-extinction (EE2 and TB) with the exact trajectory and timeline of population decline dependent on the combination of F0, F1, and F2 effects produced by each compound. Even acute one-time exposures of each compound led to declines and recovery over multiple years due to lagged epigenetic effects. These results demonstrate the potential for environmentally relevant concentrations of commonly used compounds to impact the population dynamics and sustainability of an ecologically relevant species and model organism.
Collapse
Affiliation(s)
- Susanne M Brander
- *Correspondence address. Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, USA. Tel: +541-737-5413; E-mail:
| | - J Wilson White
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA
| | | | - Kaley Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95656, USA
| | - Alvine Mehinto
- Toxicology Department, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| |
Collapse
|
5
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
6
|
Romersi RF, Nicklisch SCT. Interactions of Environmental Chemicals and Natural Products With ABC and SLC Transporters in the Digestive System of Aquatic Organisms. Front Physiol 2022; 12:767766. [PMID: 35095552 PMCID: PMC8793745 DOI: 10.3389/fphys.2021.767766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
An organism’s diet is a major route of exposure to both beneficial nutrients and toxic environmental chemicals and natural products. The uptake of dietary xenobiotics in the intestine is prevented by transporters of the Solute Carrier (SLC) and ATP Binding Cassette (ABC) family. Several environmental chemicals and natural toxins have been identified to induce expression of these defense transporters in fish and aquatic invertebrates, indicating that they are substrates and can be eliminated. However, certain environmental chemicals, termed Transporter-Interfering Chemicals or TICs, have recently been shown to bind to and inhibit fish and mammalian P-glycoprotein (ABCB1), thereby sensitizing cells to toxic chemical accumulation. If and to what extent other xenobiotic defense or nutrient uptake transporters can also be inhibited by dietary TICs is still unknown. To date, most chemical-transporter interaction studies in aquatic organisms have focused on ABC-type transporters, while molecular interactions of xenobiotics with SLC-type transporters are poorly understood. In this perspective, we summarize current advances in the identification, localization, and functional analysis of protective MXR transporters and nutrient uptake systems in the digestive system of fish and aquatic invertebrates. We collate the existing literature data on chemically induced transporter gene expression and summarize the molecular interactions of xenobiotics with these transport systems. Our review emphasizes the need for standardized assays in a broader panel of commercially important fish and seafood species to better evaluate the effects of TIC and other xenobiotic interactions with physiological substrates and MXR transporters across the aquatic ecosystem and predict possible transfer to humans through consumption.
Collapse
|
7
|
Usal M, Veyrenc S, Darracq-Ghitalla-Ciock M, Regnault C, Sroda S, Fini JB, Raveton M, Reynaud S. Exposure to a mixture of benzo[a]pyrene and triclosan induces multi-and transgenerational metabolic disorders associated with decreased female investment in reproduction in Silurana (Xenopus) tropicalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118418. [PMID: 34737028 DOI: 10.1016/j.envpol.2021.118418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Animals must partition limited resources between their own growth and subsequent reproduction. Endocrine disruptors (ED) may cause maternal metabolic disorders that decrease successful reproduction and might be responsible for multi- and transgenerational effects in amphibians. We found that the frog Silurana (Xenopus) tropicalis, exposed to environmentally relevant concentrations of benzo[a]pyrene and triclosan throughout its life cycle, produced F1 females with delayed sexual maturity and decreased size and weight. These F1 females displayed a marked metabolic syndrome associated with decreased fasting plasma cholesterol and triglyceride concentrations and decreased gonadal development. F1 females from F0 exposed animals also had decreased reproductive investment highlighted by a decrease of oocyte lipid reserves associated with significant F2-tadpole mortality. F2 females from F0 exposed animals also displayed a marked metabolic syndrome but were able to correctly direct liver lipid metabolism to the constitution of fat bodies and oocyte yolk stores. In addition, the F2 females produced progeny that had normal mortality levels at 5 days post hatching compared to the controls suggesting a good reproductive investment. Our data confirmed that these ED, at concentrations often found in natural ponds, can induce multi- and transgenerational metabolic disorders in the progeny of amphibians that are not directly exposed. We present a hypothesis to explain the transmission of the metabolic syndrome across generations through modification of egg reserves. However, when high mortality occurred at the tadpole stage, surviving females were able to cope with metabolic costs and produce viable progeny through sufficient investment in the contents of oocyte reserves.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | | | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sophie Sroda
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation du Vivant, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005, Paris, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
8
|
Hutton SJ, St. Romain SJ, Pedersen EI, Siddiqui S, Chappell PE, White JW, Armbrust KL, Brander SM. Salinity Alters Toxicity of Commonly Used Pesticides in a Model Euryhaline Fish Species ( Menidia beryllina). TOXICS 2021; 9:toxics9050114. [PMID: 34065370 PMCID: PMC8161390 DOI: 10.3390/toxics9050114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Changing salinity in estuaries due to sea level rise and altered rainfall patterns, as a result of climate change, has the potential to influence the interactions of aquatic pollutants as well as to alter their toxicity. From a chemical property point of view, ionic concentration can increase the octanol–water partition coefficient and thus decrease the water solubility of a compound. Biologically, organism physiology and enzyme metabolism are also altered at different salinities with implications for drug metabolism and toxic effects. This highlights the need to understand the influence of salinity on pesticide toxicity when assessing risk to estuarine and marine fishes, particularly considering that climate change is predicted to alter salinity regimes globally and many risk assessments and regulatory decisions are made using freshwater studies. Therefore, we exposed the Inland Silverside (Menidia beryllina) at an early life stage to seven commonly used pesticides at two salinities relevant to estuarine waters (5 PSU and 15 PSU). Triadimefon was the only compound to show a statistically significant increase in toxicity at the 15 PSU LC50. However, all compounds showed a decrease in LC50 values at the higher salinity, and all but one showed a decrease in the LC10 value. Many organisms rely on estuaries as nurseries and increased toxicity at higher salinities may mean that organisms in critical life stages of development are at risk of experiencing adverse, toxic effects. The differences in toxicity demonstrated here have important implications for organisms living within estuarine and marine ecosystems in the Anthropocene as climate change alters estuarine salinity regimes globally.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Scott J. St. Romain
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (S.J.S.R.); (K.L.A.)
| | - Emily I. Pedersen
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Patrick E. Chappell
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - J. Wilson White
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
| | - Kevin L. Armbrust
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (S.J.S.R.); (K.L.A.)
| | - Susanne M. Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA; (E.I.P.); (S.S.); (J.W.W.)
- Correspondence:
| |
Collapse
|
9
|
Derby AP, Fuller NW, Huff Hartz KE, Segarra A, Connon RE, Brander SM, Lydy MJ. Trophic transfer, bioaccumulation and transcriptomic effects of permethrin in inland silversides, Menidia beryllina, under future climate scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116545. [PMID: 33578317 DOI: 10.1016/j.envpol.2021.116545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Global climate change (GCC) significantly affects aquatic ecosystems. Continual use of pyrethroid insecticides results in contamination of these ecosystems and concurrent GCC raises the potential for synergistic effects. Resistance to pyrethroids has been documented in Hyalella azteca, a common epibenthic amphipod and model organism. Resistant H. azteca can bioconcentrate elevated amounts of pyrethroids and represent a threat to consumers via trophic transfer. In the present study, a predator of H. azteca, the inland silverside (Menidia beryllina), was used to examine the impacts of GCC on pyrethroid bioaccumulation via trophic transfer from resistant prey organisms. M. beryllina were fed 14C-permethrin dosed pyrethroid-resistant H. azteca for 14 days at three salinities (6, 13 and 20 practical salinity units (PSU)) and two temperatures (18 and 23 °C). Fish were analyzed for total body residues, percent parent compound and percent metabolites. Gene expression in liver and brain tissue were evaluated to assess whether dietary bioaccumulation of permethrin would impact detoxification processes, metabolism, and general stress responses. M. beryllina bioaccumulated significant amounts of permethrin across all treatments, ranging from 39 to 557 ng g-1 lipid. No statistically significant effect of temperature was found on total bioaccumulation. Salinity had a significant effect on total bioaccumulation, owing to greater bioaccumulation at 6 PSU compared to 13 and 20 PSU, which may be due to alterations to xenobiotic elimination. Permethrin bioaccumulation and the interaction with temperature and salinity elicited significant transcriptional responses in genes relating to detoxification, growth, development, and immune response. Given the increased prevalence of pesticide-resistant aquatic invertebrates, GCC-induced alterations to temperature and salinity, and the predicted increase in pesticide usage, these findings suggest trophic transfer may play an important role in pesticide bioaccumulation and effects in predatory fish.
Collapse
Affiliation(s)
- Andrew P Derby
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Neil W Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Amelie Segarra
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Richard E Connon
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR, 97365, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
10
|
Huff Hartz KE, Weston DP, Johanif N, Poynton HC, Connon RE, Lydy MJ. Pyrethroid bioaccumulation in field-collected insecticide-resistant Hyalella azteca. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:514-523. [PMID: 33624205 DOI: 10.1007/s10646-021-02361-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Wild-type Hyalella azteca are highly sensitive to pyrethroid insecticides and typically do not survive exposure; however, pyrethroid bioaccumulation by insecticide-resistant H. azteca is an important potential risk factor for the transfer of pyrethroids to higher trophic species in aquatic systems. In the current study, four populations of pyrethroid-resistant H. azteca with corresponding sediment samples were sampled throughout the year, and nine-current use pyrethroids (tefluthrin, fenpropathrin, bifenthrin, cyhalothrin, permethrin, cyfluthrin, cypermethrin, esfenvalerate and deltamethrin) were measured. Bifenthrin was detected in every pyrethroid-resistant H. azteca tissue sample, up to 813 ng/g lipid, while cyhalothrin and permethrin were detected in fewer (18 and 28%, respectively) samples. Concurrent sampling of the sediment showed total pyrethroid concentrations exceeding toxic unit thresholds for non-resistant H. azteca survival, and confirmed the ubiquitous presence of bifenthrin at each site and sampling event. Bifenthrin concentrations in H. azteca tended to be higher in samples collected in winter months, and seasonal factors, such as temperature and rainfall, may have contributed to the noted differences in bioaccumulation. Finally, the bifenthrin and permethrin biota-sediment accumulation factors (BSAF) for pyrethroid-resistant H. azteca were similar to the BSAF values for less sensitive invertebrates, and therefore the development of resistance may enable an additional pathway for trophic transfer of pyrethroids in species that would otherwise be too sensitive to survive the exposure.
Collapse
Affiliation(s)
- Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nadhirah Johanif
- School for the Environment, University of Massachusetts, Boston, MA, USA
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, Boston, MA, USA
| | - Richard E Connon
- School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
11
|
Usal M, Veyrenc S, Darracq-Ghitalla-Ciock M, Regnault C, Sroda S, Fini JB, Canlet C, Tremblay-Franco M, Raveton M, Reynaud S. Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116109. [PMID: 33234375 DOI: 10.1016/j.envpol.2020.116109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L-1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2-BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2-BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | | | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sophie Sroda
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation Du Vivant, Muséum National D'Histoire Naturelle, 7 Rue Cuvier, 75005, Paris, France.
| | - Cécile Canlet
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
12
|
Sutherland WJ, Atkinson PW, Broad S, Brown S, Clout M, Dias MP, Dicks LV, Doran H, Fleishman E, Garratt EL, Gaston KJ, Hughes AC, Le Roux X, Lickorish FA, Maggs L, Palardy JE, Peck LS, Pettorelli N, Pretty J, Spalding MD, Tonneijck FH, Walpole M, Watson JEM, Wentworth J, Thornton A. A 2021 Horizon Scan of Emerging Global Biological Conservation Issues. Trends Ecol Evol 2020; 36:87-97. [PMID: 33213887 DOI: 10.1016/j.tree.2020.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022]
Abstract
We present the results from our 12th annual horizon scan of issues likely to impact biological conservation in the future. From a list of 97 topics, our global panel of 25 scientists and practitioners identified the top 15 issues that we believe society may urgently need to address. These issues are either novel in the biological conservation sector or represent a substantial positive or negative step-change in impact at global or regional level. Six issues, such as coral reef deoxygenation and changes in polar coastal productivity, affect marine or coastal ecosystems and seven relate to human and ecosystem-level responses to climate change. Identification of potential forthcoming issues for biological conservation may enable increased preparedness by researchers, practitioners, and decision-makers.
Collapse
Affiliation(s)
- William J Sutherland
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.
| | | | - Steven Broad
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - Sam Brown
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Mick Clout
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, PB 90129 Auckland, New Zealand
| | - Maria P Dias
- BirdLife International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; MARE Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisboa, Portugal
| | - Lynn V Dicks
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Helen Doran
- Natural England, Eastbrook, Shaftesbury Road, Cambridge CB2 8DR, UK
| | - Erica Fleishman
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Elizabeth L Garratt
- UK Research and Innovation, Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 666303, PR China
| | - Xavier Le Roux
- Microbial Ecology Centre, UMR1418 INRAE, CNRS, University Lyon 1, VetAgroSup, 69622 Villeurbanne, France; BiodivERsA, Fondation pour la Recherche sur la Biodiversité, 195 rue Saint Jacques, 75005 Paris, France
| | - Fiona A Lickorish
- UK Research and Consultancy Services (RCS) Ltd, Valletts Cottage, Westhope, Hereford HR4 8BU, UK
| | - Luke Maggs
- Natural Resources Wales, Cambria House, 29 Newport Road, Cardiff CF24 0TP, UK
| | - James E Palardy
- The Pew Charitable Trusts, 901 E St NW, Washington, DC 20004, USA
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Jules Pretty
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Mark D Spalding
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; The Nature Conservancy, Department of Physical, Earth and Environmental Sciences, University of Siena, Pian dei Mantellini, Siena 53100, Italy
| | | | - Matt Walpole
- Fauna and Flora International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - James E M Watson
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, QLD, 4072, Australia; Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Jonathan Wentworth
- Parliamentary Office of Science and Technology, 14 Tothill Street, Westminster, London SW1H 9NB, UK
| | - Ann Thornton
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| |
Collapse
|
13
|
DeCourten BM, Forbes JP, Roark HK, Burns NP, Major KM, White JW, Li J, Mehinto AC, Connon RE, Brander SM. Multigenerational and Transgenerational Effects of Environmentally Relevant Concentrations of Endocrine Disruptors in an Estuarine Fish Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13849-13860. [PMID: 32989987 DOI: 10.1021/acs.est.0c02892] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Joshua P Forbes
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Hunter K Roark
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Nathan P Burns
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Kaley M Major
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, California 92626, United States
| | - Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, United States
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon 97365, United States
| |
Collapse
|
14
|
Zhou R, Lu G, Yan Z, Jiang R, Bao X, Lu P. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139222. [PMID: 32438173 DOI: 10.1016/j.scitotenv.2020.139222] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
PPCPs (pharmaceutical and personal care products) and microplastics (MPs) are two types of emerging pollutants that are ubiquitous and widely concerned in the environment. Both of them can accumulate in fish or aquatic invertebrates and transfer to offspring, thereby producing toxic effects on both parents and offspring, in which the characteristics of MPs also enable them to adsorb PPCPs thus producing carrier effects. In this study, we have conducted a comprehensive review of MPs and PPCPs and found that MPs can act as a carrier of PPCPs to influence the bioaccumulation of PPCPs. MPs and PPCPs have toxicity and transgenerational effects on both fish and aquatic invertebrates in many aspects, and MPs can also affect the toxicity and transgenerational effects of PPCPs due to their carrier effects. This paper revealed that MPs may have an important impact on the bioavailability of PPCPs and the interaction between MPs and PPCPs is a hot topic in future research. This study also puts forward the shortcomings of the current research and related suggestions, and relevant research should be carried out as soon as possible to provide the basis for the prevention and treatment of fresh water.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ping Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
15
|
Little AG, Loughland I, Seebacher F. What do warming waters mean for fish physiology and fisheries? JOURNAL OF FISH BIOLOGY 2020; 97:328-340. [PMID: 32441327 DOI: 10.1111/jfb.14402] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental signals act primarily on physiological systems, which then influence higher-level functions such as movement patterns and population dynamics. Increases in average temperature and temperature variability associated with global climate change are likely to have strong effects on fish physiology and thereby on populations and fisheries. Here we review the principal mechanisms that transduce temperature signals and the physiological responses to those signals in fish. Temperature has a direct, thermodynamic effect on biochemical reaction rates. Nonetheless, plastic responses to longer-term thermal signals mean that fishes can modulate their acute thermal responses to compensate at least partially for thermodynamic effects. Energetics are particularly relevant for growth and movement, and therefore for fisheries, and temperature can have pronounced effects on energy metabolism. All energy (ATP) production is ultimately linked to mitochondria, and temperature has pronounced effects on mitochondrial efficiency and maximal capacities. Mitochondria are dependent on oxygen as the ultimate electron acceptor so that cardiovascular function and oxygen delivery link environmental inputs with energy metabolism. Growth efficiency, that is the conversion of food into tissue, changes with temperature, and there are indications that warmer water leads to decreased conversion efficiencies. Moreover, movement and migration of fish relies on muscle function, which is partially dependent on ATP production but also on intracellular calcium cycling within the myocyte. Neuroendocrine processes link environmental signals to regulated responses at the level of different tissues, including muscle. These physiological processes within individuals can scale up to population responses to climate change. A mechanistic understanding of thermal responses is essential to predict the vulnerability of species and populations to climate change.
Collapse
Affiliation(s)
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Rutherford R, Lister A, Bosker T, Blewett T, Gillio Meina E, Chehade I, Kanagasabesan T, MacLatchy D. Mummichog (Fundulus heteroclitus) are less sensitive to 17α-ethinylestradiol (EE 2) than other common model teleosts: A comparative review of reproductive effects. Gen Comp Endocrinol 2020; 289:113378. [PMID: 31899193 DOI: 10.1016/j.ygcen.2019.113378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/28/2022]
Abstract
The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17β-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20β-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.
Collapse
Affiliation(s)
- Robert Rutherford
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Andrea Lister
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| | - Thijs Bosker
- Leiden University College/Institute of Environmental Sciences, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands.
| | - Tamzin Blewett
- University of Alberta, Edmonton, AB, 116 St & 85 Ave, T6G 2R3, Canada.
| | | | - Ibrahim Chehade
- New York University Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | | | - Deborah MacLatchy
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
17
|
Major KM, Brander SM. The Ecological and Evolutionary Implications of Pyrethroid Exposure: A New Perspective on Aquatic Ecotoxicity. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2019_432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Rutherford RJ, Lister AL, MacLatchy DL. Physiological effects of 5α-dihydrotestosterone in male mummichog (Fundulus heteroclitus) are dose and time dependent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105327. [PMID: 31703940 DOI: 10.1016/j.aquatox.2019.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Numerous anthropogenic sources, such as pulp mill and sewage treatment effluents, contain androgenic endocrine disrupting compounds that alter the reproductive status of aquatic organisms. The current study injected adult male mummichog (Fundulus heteroclitus) with 0 (control), 1 pg/g, 1 ng/g or 1 μg/g body weight of the model androgen 5α-dihydrotestosterone (DHT) with the intent to induce a period of plasma sex hormone depression, a previously-observed effect of DHT in fish. A suite of gonadal steroidogenic genes were assessed during sex hormone depression and recovery. Fish were sampled 6, 12, 16, 18, 24, 30 and 36 h post-injection, and sections of testis tissue were either snap frozen immediately or incubated for 24 h at 18 °C to determine in vitro gonadal hormone production and then frozen. Plasma testosterone (T) and 11-ketotestosterone (11KT) were depressed beginning 24 h post-injection. At 36 h post-injection plasma T remained depressed while plasma 11KT had recovered. In snap frozen tissue there was a correlation between plasma sex hormone depression and downregulation of key steroidogenic genes including steroidogenic acute regulatory protein (star), cytochrome P450 17a1 (cyp17a1), 3β-hydroxysteroid dehydrogenase (3βhsd), 11β-hydroxysteroid dehydrogenase (11βhsd) and 17β-hydroxysteroid dehydrogenase (17βhsd). Similar to previous studies, 3βhsd was the first and most responsive gene during DHT exposure. Gene responses from in vitro tissue were more variable and included the upregulation of 3βhsd, 11βhsd and star during the period of hormone depression. The differential expression of steroidogenic genes from the in vitro testes compared to the snap frozen tissues may be due to the lack of regulators from the hypothalamo-pituitary-gonadal axis present in whole-animal systems. Due to these findings it is recommended to use snap frozen tissue, not post-incubation tissue from in vitro analysis, for gonadal steroidogenic gene expression to more accurately reflect in vivo responses.
Collapse
Affiliation(s)
- Robert J Rutherford
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Andrea L Lister
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
19
|
|
20
|
Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE. Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:1-13. [PMID: 30414561 PMCID: PMC6464817 DOI: 10.1016/j.aquatox.2018.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/05/2023]
Abstract
Altered transcription of calcium-dependent signaling cascades involving the ryanodine receptor (RyR) and mechanistic target of rapamycin (mTOR) in response to environmental exposures have been described in model vertebrates, including zebrafish, while the relevance for wild fishes remains unknown. To address this knowledge gap, we exposed the euryhaline model species Menidia beryllina (inland silversides) to the insecticide bifenthrin, a known modulator of calcium signaling. The main objectives of this study were to determine: (1) whether exposure of developing silversides to environmentally relevant concentrations of bifenthrin alters their behavior; and (2) whether behavioral changes correlate with altered expression of genes involved in RyR and mTOR-dependent signaling pathways. At six hours post fertilization (hpf), inland silversides were exposed to bifenthrin at 3, 27 and 122 ng/L until 7 days post fertilization (dpf, larvae hatched at 6dpf), followed by a 14-day recovery period in uncontaminated water. Transcriptional responses were measured at 5, 7 and 21 dpf; locomotor behavior following external stimuli and response to an olfactory predator cue were assessed at 7 and 21 dpf. Bifenthrin elicited significant non-monotonic transcriptional responses in the majority of genes examined at 5 dpf and at 21 dpf. Bifenthrin also significantly altered predator avoidance behavior via olfactory mechanisms with main effects identified for animals exposed to 3 and 27 ng/L. Behavioral effects were not detected in response to visual stimuli during acute exposure, but were significant in the predator-cue assessment following the recovery period, suggesting delayed and long-term effects of early developmental exposures to bifenthrin. Our findings demonstrate that at picomolar (pM) concentrations, which are often not represented in ecotoxicological studies, bifenthrin perturbs early development of inland silversides. These developmental impacts are manifested behaviorally at later life stages, specifically as altered patterns of predator avoidance behavior, which have been correlated with population decline. Collectively, these data suggest that bifenthrin may be negatively impacting wild fish populations.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Simone Hasenbein
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|