1
|
Wu Q, Deng M, Zhao X, Long J, Zhang J. Screening and validation of optimal real-time PCR reference genes for Abelmoschus Manihot. Sci Rep 2025; 15:11045. [PMID: 40169838 PMCID: PMC11961658 DOI: 10.1038/s41598-025-96110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
Abelmoschus Manihot is an important medicinal and edible plant known for its functional secondary metabolites. However, little is known about the key genes involved in production of secondary metabolites in A. manihot. This is largely due to the lack of effective gene expression detection systems for A. manihot, making the screening of real-time PCR reference genes a prerequisite. In this study, 11 candidate reference genes were screened and cloned from A. manihot, and their expression stability was evaluated in different tissues under different flowering stages using four algorithms: geNorm, NormFinder, BestKeeper, and RefFinder. The expression stability of eIF and PP2A1 was the highest, while that of tubulin alpha (TUA) was the lowest. The combined use of the two most stable reference genes, eIF and PP2A1, met the experimental requirements for normalizing gene expression in A. manihot. Furthermore, the gene expression of transcription factors bHLH147 and bHLH148 was further validated by data normalization. This study identified potential reference genes in different A. manihot tissues, paving the way for functional gene analysis and dissecting metabolite regulation mechanisms in A. manihot.
Collapse
Affiliation(s)
- Qixuan Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Meixin Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaolan Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianxia Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Daude MM, Ságio SA, Rodrigues JN, Lima NMP, Lima AA, Sarmento MI, Sarmento RA, Barreto HG. Reference genes for Eucalyptus spp. under Beauveria bassiana inoculation and subsequently infestation by the galling wasp Leptocybe invasa. Sci Rep 2024; 14:2556. [PMID: 38297150 PMCID: PMC10830493 DOI: 10.1038/s41598-024-52948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis. Thus, this study aimed to select and validate reference genes for relative gene expression studies through RT-qPCR in hybrids of Eucalyptus tereticornis × Eucalyptus camaldulensis (drought tolerant and susceptible to Leptocybe invasa) under conditions of inoculation by the Beauveria bassiana fungus and subsequent infestation by L. invasa. The expression level and stability of eleven candidate genes were evaluated. Stability was analyzed using the RefFinder tool, which integrates the geNorm, NormFinder, BestKeeper, and Delta-Ct algorithms. The selected reference genes were validated through the expression analysis of the transcriptional factor EcDREB2 (dehydration-responsive element-binding protein 2). For all treatments evaluated, EcPTB, EcPP2A-1, and EcEUC12 were the best reference genes. The triplets EcPTB/EcEUC12/EcUBP6, EcPP2A-1/EcEUC12/EcPTB, EcIDH/EcSAND/Ecα-TUB, EcPP2A-1/Ecα-TUB/EcPTB, and EcPP2A-1/EcUPL7/EcSAND were the best reference genes for the control plants, mother plants, plants inoculated with B. bassiana, plants infested with L. invasa, and plants inoculated with B. bassiana and subsequently infested with L. invasa, respectively. The best determined reference genes were used to normalize the RT-qPCR expression data for each experimental condition evaluated. The results emphasize the importance of this type of study to ensure the reliability of relative gene expression analyses. Furthermore, the findings of this study can be used as a basis for future research, comprising gene expression analysis of different eucalyptus metabolic pathways.
Collapse
Affiliation(s)
- Matheus Martins Daude
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
| | - Solange Aparecida Ságio
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil
| | - Jovielly Neves Rodrigues
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | | | - André Almeida Lima
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
| | - Maíra Ignacio Sarmento
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Renato Almeida Sarmento
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Horllys Gomes Barreto
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil.
| |
Collapse
|
3
|
Guo W, Yang Y, Ma B, Wang W, Hu Z, Leng P. Selection and Validation of Reference Genes for Gene Expression Studies in Euonymus japonicus Based on RNA Sequencing. Genes (Basel) 2024; 15:131. [PMID: 38275612 PMCID: PMC10815735 DOI: 10.3390/genes15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Euonymus japonicus is one of the most low-temperature-tolerant evergreen broad-leaved tree species in the world and is widely used in urban greening. However, there are very few molecular biology studies on its low-temperature tolerance mechanism. So far, no researcher has selected and reported on its reference genes. In this study, 21 candidate reference genes (12 traditional housekeeping genes and 9 other genes) were initially selected based on gene expression and coefficient of variation (CV) through RNA-Seq (unpublished data), and qRT-PCR was used to detect the expression levels of candidate reference genes in three different groups of samples (leaves under different temperature stresses, leaves of plants at different growth stages, and different organs). After further evaluating the expression stability of these genes using geNorm, NormFinder, Bestkeeper, and RefFind, the results show that the traditional housekeeping gene eIF5A and the new reference gene RTNLB1 have good stability in the three different groups of samples, so they are reference genes with universality. In addition, we used eIF5A and RTNLB1 as reference genes to calibrate the expression pattern of the target gene EjMAH1, which confirmed this view. This article is the first to select and report on the reference gene of E. japonicus, laying the foundation for its low-temperature tolerance mechanism and other molecular biology research.
Collapse
Affiliation(s)
- Wei Guo
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Yihui Yang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Bo Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Wenbo Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Zenghui Hu
- Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, Beijing 102206, China
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| |
Collapse
|
4
|
Vieira P, Myers RY, Pellegrin C, Wram C, Hesse C, Maier TR, Shao J, Koutsovoulos GD, Zasada I, Matsumoto T, Danchin EGJ, Baum TJ, Eves-van den Akker S, Nemchinov LG. Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis. PLoS Pathog 2021; 17:e1010036. [PMID: 34748609 PMCID: PMC8601627 DOI: 10.1371/journal.ppat.1010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Roxana Y. Myers
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Clement Pellegrin
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Wram
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Cedar Hesse
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Thomas R. Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan Shao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | | | - Inga Zasada
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Tracie Matsumoto
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Etienne G. J. Danchin
- INRAE, Université Côte d’Azur, CNRS, Institute Sophia Agrobiotech, Sophia Antipolis, France
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | | | - Lev G. Nemchinov
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
5
|
Li J, Xu C, Yang S, Chen C, Tang S, Wang J, Xie H. A Venom Allergen-Like Protein, RsVAP, the First Discovered Effector Protein of Radopholus similis That Inhibits Plant Defense and Facilitates Parasitism. Int J Mol Sci 2021; 22:4782. [PMID: 33946385 PMCID: PMC8125365 DOI: 10.3390/ijms22094782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Radopholus similis is a migratory endoparasitic nematode that is extremely harmful to host plants. Venom allergen-like proteins (VAPs) are members of the cysteine-rich secretory protein family that are widely present in plants and animals. In this study, we cloned a VAP gene from R. similis, designated as RsVAP. RsVAP contains an open reading frame of 1089 bp encoding 362 amino acids. RsVAP is specifically expressed in the esophageal gland, and the expression levels of RsVAP are significantly higher in juveniles than in other life stages of R. similis. This expression pattern of RsVAP was consistent with the biological characteristics of juveniles of R. similis, which have the ability of infection and are the main infection stages of R. similis. The pathogenicity and reproduction rate of R. similis in tomato was significantly attenuated after RsVAP was silenced. In tobacco leaves transiently expressing RsVAP, the pathogen-associated molecular pattern-triggered immunity (PTI) induced by a bacterial flagellin fragment (flg22) was inhibited, while the cell death induced by two sets of immune elicitors (BAX and Gpa2/RBP-1) was repressed. The RsVAP-interacting, ras-related protein RABA1d (LeRabA1d) was identified in tomato hosts by yeast two-hybrid and co-immunoprecipitation assays. RsVAP may interact with LeRabA1d to affect the host defense response, which in turn facilitates nematode infection. This study provides the first evidence for the inhibition of plant defense response by a VAP from migratory plant-parasitic nematodes, and, for the first time, the target protein of R. similis in its host was identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Xie
- Research Center of Nematodes of Plant Quarantine, Laboratory of Plant Nematology, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.X.); (S.Y.); (C.C.); (S.T.); (J.W.)
| |
Collapse
|
6
|
Li J, Zhang Z, Xu C, Wang D, Lv M, Xie H. Identification and validation of reference genes for real-time RT-PCR in Aphelenchoides besseyi. Mol Biol Rep 2020; 47:4485-4494. [PMID: 32468259 PMCID: PMC7295731 DOI: 10.1007/s11033-020-05547-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/23/2020] [Indexed: 01/08/2023]
Abstract
Fragments of four candidate reference genes of Aphelenchoides besseyi, including actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin conjugating-3 enzyme (UBC) and alpha-tubulin (α-tubulin) were cloned from the transcriptome database of A. besseyi. The expression level of these four candidate reference genes and a commonly used reference gene of A. besseyi (18S rRNA) in three experimental conditions, including the four life stages (female, male, juvenile and egg) of two populations and the mixed-stage nematodes of four populations with different origins and hosts were analyzed by RT-qPCR. The expression stability of the five candidate reference genes under the three experimental conditions was analyzed by ΔCt, geNorm, NormFinder and RefFinder respectively. The analysis results of ΔCt, geNorm, NormFinder and RefFinder all indicated that UBC was the gene with the highest average ranking of stability. In conclusion, the expression stability of UBC was optimal under the three experimental conditions, indicating that UBC could be used as a suitable reference gene instead of 18S rRNA in the RT-qPCR analysis for A. besseyi.
Collapse
Affiliation(s)
- Junyi Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zixu Zhang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Chunling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Dongwei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Mei Lv
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|