1
|
Hubert J, Glowska-Patyniak E, Dowd SE, Klimov PB. A novel Erwiniaceae gut symbiont modulates gene expression of the intracellular bacterium Cardinium in the stored product mite Tyrophagus putrescentiae. mSphere 2025; 10:e0087924. [PMID: 40126013 PMCID: PMC12039267 DOI: 10.1128/msphere.00879-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
We examined host and bacterial gene expression profiles in the stored product mite Tyrophagus putrescentiae co-infected with Wolbachia (wTPut) and Cardinium (cTPut) while varying the presence of the Erwiniaceae symbiont (SLS). SLS, a novel symbiont in the family Erwiniaceae, with a genome size of 1.7 Mb, is found in 16% of mite species in infected cultures. In addition, SLS was detected in mite feces but not in their eggs. Although Wolbachia expression remained unchanged, the presence or absence of SLS significantly affected Cardinium expression. It indicated that the effect of Wolbachia on SLS was neutral. In SLS-positive samples, Cardinium exhibited 29 upregulated and 48 downregulated genes compared to SLS-negative samples. Furthermore, Cardinium gene expression strongly correlated with mite KEGG gene expression in SLS-positive samples. Positive Spearman's correlations between Cardinium gene expression and mite KEGG immune and regulatory pathways were doubled in SLS-positive compared to SLS-negative samples. The diversity of expressed genes in the mite host decreased in the presence of SLS. Cardinium had more interacting genes to mite host in SLS-positive samples than without SLS. Transposases are the most affected Cardinium genes, showing upregulation in the presence of SLS. Correlation analyses revealed interactions between Cardinium and SLS via mite immune and regulatory pathways, including lysosome, ubiquitin-mediated proteolysis, PIK3_Akt, and cGMP-PKG. The results showed that Cardinium indirectly affects the gut symbionts of mites.IMPORTANCEThis study introduces a new model to analyze interactions between intracellular bacterial symbionts, gut bacterial symbionts, and their mite hosts. Using gene expression correlations, we investigated how the intracellular Cardinium responds to the novel Erwiniaceae gut symbiont in the mold mite Tyrophagus putrescentiae. The data showed that both mite and Cardinium gene expression are different in the samples with and without Erwiniaceae symbionts. In the presence of Erwiniaceae symbionts, Cardinium increased the interaction with the mite host in terms of changes in gene expression. The mite immune and regulatory pathway gene expression is differently correlated to Cardinium genes in relation to Erwiniaceae symbionts. As a well-known producer of allergens, T. putrescentiae physiology and thus its allergen production are influenced by both symbionts, potentially affecting the release of allergens into human environments.
Collapse
Affiliation(s)
- Jan Hubert
- Czech Agrifood Research Center, Prague, Czechia
| | - Eliza Glowska-Patyniak
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Scot E. Dowd
- MR DNA (Molecular Research LP), Shallowater, Texas, USA
| | - Pavel B. Klimov
- Purdue University, Lilly Hall of Life Sciences, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Distribution of Bacterial Endosymbionts of the Cardinium Clade in Plant-Parasitic Nematodes. Int J Mol Sci 2023; 24:ijms24032905. [PMID: 36769231 PMCID: PMC9918034 DOI: 10.3390/ijms24032905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Bacteria of the genus "Candidatus Cardinium" and related organisms composing the Cardinium clade are intracellular endosymbionts frequently occurring in several arthropod groups, freshwater mussels and plant-parasitic nematodes. Phylogenetic analyses based on two gene sequences (16S rRNA and gyrB) showed that the Cardinium clade comprised at least five groups: A, B, C, D and E. In this study, a screening of 142 samples of plant-parasitic nematodes belonging to 93 species from 12 families and two orders using PCR with specific primers and sequencing, revealed bacteria of Cardinium clade in 14 nematode samples belonging to 12 species of cyst nematodes of the family Heteroderidae. Furthermore, in this study, the genome of the Cardinium cHhum from the hop cyst nematode, Heterodera humuli, was also amplified, sequenced and analyzed. The comparisons of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values for the strain Cardinium cHhum with regard to related organisms with available genomes, combined with the data on 16S rRNA and gyrB gene sequence identities, showed that this strain represents a new candidate species within the genus "Candidatus Paenicardinium". The phylogenetic position of endosymbionts of the Cardinium clade detected in nematode hosts was also compared to known representatives of this clade from other metazoans. Phylogenetic reconstructions based on analysis of 16S rRNA, gyrB, sufB, gloEL, fusA, infB genes and genomes and estimates of genetic distances both indicate that the endosymbiont of the root-lesion nematode Pratylenchus penetrans represented a separate lineage and is designated herein as a new group F. The phylogenetic analysis also confirmed that endosymbionts of ostracods represent the novel group G. Evolutionary relationships of bacterial endosymbionts of the Cardinium clade within invertebrates are presented and discussed.
Collapse
|
3
|
Halter T, Hendrickx F, Horn M, Manzano-Marín A. A Novel Widespread MITE Element in the Repeat-Rich Genome of the Cardinium Endosymbiont of the Spider Oedothorax gibbosus. Microbiol Spectr 2022; 10:e0262722. [PMID: 36301108 PMCID: PMC9769881 DOI: 10.1128/spectrum.02627-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023] Open
Abstract
Free-living bacteria have evolved multiple times to become host-restricted endosymbionts. The transition from a free-living to a host-restricted lifestyle comes with a number of different genomic changes, including a massive loss of genes. In host-restricted endosymbionts, gene inactivation and genome reduction are facilitated by mobile genetic elements, mainly insertion sequences (ISs). ISs are small autonomous mobile elements, and one of, if not the most, abundant transposable elements in bacteria. Proliferation of ISs is common in some facultative endosymbionts, and is likely driven by the transmission bottlenecks, which increase the level of genetic drift. In this study, we present a manually curated genome annotation for a Cardinium endosymbiont of the dwarf spider Oedothorax gibbosus. Cardinium species are host-restricted endosymbionts that, similarly to ColbachiaWolbachia spp., include strains capable of manipulating host reproduction. Through the focus on mobile elements, the annotation revealed a rampant spread of ISs, extending earlier observations in other Cardinium genomes. We found that a large proportion of IS elements are pseudogenized, with many displaying evidence of recent inactivation. Most notably, we describe the lineage-specific emergence and spread of a novel IS-derived Miniature Inverted repeat Transposable Element (MITE), likely being actively maintained by intact copies of its parental IS982-family element. This study highlights the relevance of manual curation of these repeat-rich endosymbiont genomes for the discovery of novel MITEs, as well as the possible role these understudied elements might play in genome streamlining. IMPORTANCE Cardinium bacteria, a widespread symbiont lineage found across insects and nematodes, have been linked to reproductive manipulation of their hosts. However, the study of Cardinium has been hampered by the lack of comprehensive genomic resources. The high content of mobile genetic elements, namely, insertion sequences (ISs), has long complicated the analyses and proper annotations of these genomes. In this study, we present a manually curated annotation of the Cardinium symbiont of the spider Oedothorax gibbosus. Most notably, we describe a novel IS-like element found exclusively in this strain. We show that this mobile element likely evolved from a defective copy of its parental IS and then spread throughout the genome, contributing to the pseudogenization of several other mobile elements. We propose this element is likely being maintained by the intact copies of its parental IS element and that other similar elements in the genome could potentially follow this route.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Frederik Hendrickx
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Pollmann M, Moore LD, Krimmer E, D'Alvise P, Hasselmann M, Perlman SJ, Ballinger MJ, Steidle JL, Gottlieb Y. Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. iScience 2022; 25:104335. [PMID: 35602967 PMCID: PMC9118660 DOI: 10.1016/j.isci.2022.104335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a form of reproductive manipulation caused by maternally inherited endosymbionts infecting arthropods, like Wolbachia, whereby matings between infected males and uninfected females produce few or no offspring. We report the discovery of a new CI symbiont, a strain of Spiroplasma causing CI in the parasitoid wasp Lariophagus distinguendus. Its extracellular occurrence enabled us to establish CI in uninfected adult insects by transferring Spiroplasma-infected hemolymph. We sequenced the CI-Spiroplasma genome and did not find any homologues of any of the cif genes discovered to cause CI in Wolbachia, suggesting independent evolution of CI. Instead, the genome contains other potential CI-causing candidate genes, such as homologues of high-mobility group (HMG) box proteins that are crucial in eukaryotic development but rare in bacterial genomes. Spiroplasma's extracellular nature and broad host range encompassing medically and agriculturally important arthropods make it a promising tool to study CI and its applications.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Elena Krimmer
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Paul D'Alvise
- Institute of Medical Microbiology and Hygiene, University Hospital of Tuebingen, 72016 Tuebingen, Germany
| | - Martin Hasselmann
- Department of Livestock Population Genomics 460h, Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Steve J. Perlman
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Matthew J. Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Johannes L.M. Steidle
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
- KomBioTa - Center of Biodiversity and Integrative Taxonomy, University of Hohenheim, 70599 Stuttgart, Germany
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| |
Collapse
|
5
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
6
|
Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data. mSystems 2021; 6:e0091621. [PMID: 34726490 PMCID: PMC8562489 DOI: 10.1128/msystems.00916-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dermatophagoides farinae is inhabited by an intracellular bacterium, Cardinium. Using correlations between host and symbiont gene expression profiles, we identified several important molecular pathways that potentially regulate/facilitate their interactions. The expression of Cardinium genes collectively explained 95% of the variation in the expression of mite genes assigned to pathways for phagocytosis, apoptosis, the MAPK signaling cascade, endocytosis, the tumor necrosis factor (TNF) pathway, the transforming growth factor beta (TGF-β) pathway, lysozyme, and the Toll/Imd pathway. In addition, expression of mite genes explained 76% of the variability in Cardinium gene expression. In particular, the expression of the Cardinium genes encoding the signaling molecules BamD, LepA, SymE, and VirD4 was either positively or negatively correlated with the expression levels of mite genes involved in endocytosis, phagocytosis, and apoptosis. We also found that Cardinium possesses a complete biosynthetic pathway for lipoic acid and may provide lipoate, but not biotin, to mites. Cardinium gene expression collectively explained 84% of the variation in expression related to several core mite metabolic pathways, and, most notably, a negative correlation was observed between bacterial gene expression and expression of mite genes assigned to the glycolysis and citric acid cycle pathways. Furthermore, we showed that Cardinium gene expression is correlated with expression levels of genes associated with terpenoid backbone biosynthesis. This pathway is important for the synthesis of pheromones, thus providing an opportunity for Cardinium to influence mite reproductive behavior to facilitate transmission of the bacterium. Overall, our study provided correlational gene expression data that can be useful for future research on mite-Cardinium interactions. IMPORTANCE The molecular mechanisms of mite-symbiont interactions and their impacts on human health are largely unknown. Astigmatid mites, such as house dust and stored-product mites, are among the most significant allergen sources worldwide. Although mites themselves are the main allergen sources, recent studies have indicated that mite-associated microbiomes may have implications for allergen production and human health. The major medically important house dust mite, D. farinae, is known to harbor a highly abundant intracellular bacterium belonging to the genus Cardinium. Expression analysis of the mite and symbiont genes can identify key mite molecular pathways that facilitate interactions with this endosymbiont and possibly shed light on how this bacterium affects mite allergen production and physiology in general.
Collapse
|
7
|
Pilgrim J, Siozios S, Baylis M, Venter G, Garros C, Hurst GDD. Identifying potential candidate Culicoides spp. for the study of interactions with Candidatus Cardinium hertigii. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:501-506. [PMID: 33955029 DOI: 10.1111/mve.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are vectors responsible for the transmission of several viruses of veterinary importance. Previous screens of Culicoides have described the presence of the endosymbiont Candidatus Cardinium hertigii (Bacteroidetes). However, any impacts of this microbe on vectorial capacity, akin to those conferred by Wolbachia in mosquitoes, are yet to be uncovered and await a suitable system to study Cardinium-midge interactions. To identify potential candidate species to investigate these interactions, accurate knowledge of the distribution of the endosymbiont within Culicoides populations is needed. We used conventional and nested PCR assays to screen Cardinium infection in 337 individuals of 25 Culicoides species from both Palearctic and Afrotropical regions. Infections were observed in several vector species including C. imicola and the Pulicaris complex (C. pulicaris, C. bysta, C. newsteadi and C. punctatus) with varying prevalence. Phylogenetic analysis based on the Gyrase B gene grouped all new isolates within 'group C' of the genus, a clade that has to date been exclusively described in Culicoides. Through a comparison of our results with previous screens, we suggest C. imicola and C. sonorensis represent good candidates for onward study of Cardinium-midge interactions.
Collapse
Affiliation(s)
- J Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, U.K
| | - S Siozios
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, U.K
| | - M Baylis
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, U.K
- Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, U.K
| | - G Venter
- Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria, South Africa
| | - C Garros
- ASTRE, University of Montpellier, Cirad, INRA, Montpellier, France
- Cirad, UMR ASTRE, Montpellier, France
| | - G D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, U.K
| |
Collapse
|
8
|
Takano SI, Gotoh Y, Hayashi T. "Candidatus Mesenet longicola": Novel Endosymbionts of Brontispa longissima that Induce Cytoplasmic Incompatibility. MICROBIAL ECOLOGY 2021; 82:512-522. [PMID: 33454808 DOI: 10.1007/s00248-021-01686-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Intracellular bacteria that are mainly transmitted maternally affect their arthropod hosts' biology in various ways. One such effect is known as cytoplasmic incompatibility (CI), and three bacterial species are known to induce CI: Wolbachia, Cardinium hertigii, and a recently found alphaproteobacterial symbiont. To clarify the taxonomic status and provide the foundation for future studies to reveal CI mechanisms and other phenotypes, we investigated genetic and morphological properties of the third CI inducer that we have previously reported inducing CI in the coconut beetle Brontispa longissima. The draft genome of the bacteria was obtained from the oocytes of two isofemale lines of B. longissima infected with the bacteria: one from Japan (GL2) and the other from Vietnam (L5). Genome features of the symbionts (sGL2 and sL5) were highly similar, showing 1.3 Mb in size, 32.1% GC content, and 99.83% average nucleotide sequence. A phylogenetic study based on 43 universal and single-copy phylogenetic marker genes indicates that they formed a distinct clade in the family Anaplasmataceae. 16S rRNA gene sequences indicate that they are different from the closest known relatives, at least at the genus level. Therefore, we propose a new genus and species, "Candidatus Mesenet longicola", for the symbionts of B. longissima. Morphological analyses showed that Ca. M. longicola is an intracellular bacterium that is ellipsoidal to rod-shaped and 0.94 ± 0.26 μm (mean ± SD) in length, and accumulated in the anterior part of the oocyte. Candidates for the Ca. M. longicola genes responsible for CI induction are also described.
Collapse
Affiliation(s)
- Shun-Ichiro Takano
- Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646. [PMID: 33362982 PMCID: PMC7750005 DOI: 10.7717/peerj.10646] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.
Collapse
Affiliation(s)
| | - Victoria I. Verhoeve
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | | - Mariah Plumer
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Spiridon E. Sevdalis
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - John F. Beckmann
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Laura M. Krueger
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Kevin R. Macaluso
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Abdu F. Azad
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Joseph J. Gillespie
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
10
|
Stouthamer CM, Kelly SE, Mann E, Schmitz-Esser S, Hunter MS. Development of a multi-locus sequence typing system helps reveal the evolution of Cardinium hertigii, a reproductive manipulator symbiont of insects. BMC Microbiol 2019; 19:266. [PMID: 31775631 PMCID: PMC6882061 DOI: 10.1186/s12866-019-1638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background Cardinium is an intracellular bacterial symbiont in the phylum Bacteroidetes that is found in many different species of arthropods and some nematodes. This symbiont is known to be able to induce three reproductive manipulation phenotypes, including cytoplasmic incompatibility. Placing individual strains of Cardinium within a larger evolutionary context has been challenging because only two, relatively slowly evolving genes, 16S rRNA gene and Gyrase B, have been used to generate phylogenetic trees, and consequently, the relationship of different strains has been elucidated in only its roughest form. Results We developed a Multi Locus Sequence Typing (MLST) system that provides researchers with three new genes in addition to Gyrase B for inferring phylogenies and delineating Cardinium strains. From our Cardinium phylogeny, we confirmed the presence of a new group D, a Cardinium clade that resides in the arachnid order harvestmen (Opiliones). Many Cardinium clades appear to display a high degree of host affinity, while some show evidence of host shifts to phylogenetically distant hosts, likely associated with ecological opportunity. Like the unrelated reproductive manipulator Wolbachia, the Cardinium phylogeny also shows no clear phylogenetic signal associated with particular reproductive manipulations. Conclusions The Cardinium phylogeny shows evidence of diversification within particular host lineages, and also of host shifts among trophic levels within parasitoid-host communities. Like Wolbachia, the relatedness of Cardinium strains does not necessarily predict their reproductive phenotypes. Lastly, the genetic tools proposed in this study may help future authors to characterize new strains and add to our understanding of Cardinium evolution.
Collapse
Affiliation(s)
- Corinne M Stouthamer
- Department of Entomology, University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA
| | - Suzanne E Kelly
- Department of Entomology, University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA
| | - Evelyne Mann
- Milk Technology and Food Science, Institute for Milk Hygiene, University of Veterinary Medicine, Vienna, Austria
| | | | - Martha S Hunter
- Department of Entomology, University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA.
| |
Collapse
|