1
|
Tebbett SB, Schlaefer JA, Bowden CL, Collins WP, Hemingson CR, Ling SD, Morais J, Morais RA, Siqueira AC, Streit RP, Swan S, Bellwood DR. Bio-physical determinants of sediment accumulation on an offshore coral reef: A snapshot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165188. [PMID: 37385494 DOI: 10.1016/j.scitotenv.2023.165188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the 'post-settlement' fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Jodie A Schlaefer
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Townsville, Queensland, 4811, Australia
| | - Casey L Bowden
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - William P Collins
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Christopher R Hemingson
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
| | - Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, USR 3278 CRIOBE, University of Perpignan, Perpignan, France
| | - Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Robert P Streit
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Sam Swan
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
2
|
Han M, Li H, Kang Y, Liu H, Huang X, Zhang R, Yu K. Bioaccumulation and trophic transfer of PAHs in tropical marine food webs from coral reef ecosystems, the South China Sea: Compositional pattern, driving factors, ecological aspects, and risk assessment. CHEMOSPHERE 2022; 308:136295. [PMID: 36064010 DOI: 10.1016/j.chemosphere.2022.136295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Multiple environmental pressures caused by global warming and human activities have aroused widespread concern about PAHs pollution in tropical marine coral reef regions (CRRs). However, the trophodynamics of PAHs in the food webs of the CRRs and the related influence factors have not been reported. This study investigated the occurrence, trophic amplification, and transmission of PAHs in various organisms selecting between at least representative species for each level in CRRs of the South China Sea (SCS); revealed their driving mechanisms; and explored the trophodynamics of PAHs in the food web of the coral reef ecosystem. Results showed that more PAHs can be accumulated in the mantle tissue of Tridacnidae, and the proportion of mantle tissue of Tridacnidae increases with the increase of latitude (y = 0.01x + 0.17, R2 = 0.49, p < 0.05). Latitude drives the differential occurrence level and bioaccumulation of PAHs in tropical marine organisms, and also affects the trophodynamics of PAHs in aquatic ecosystem food webs. PAHs undergo trophic amplification in the food webs of tropical marine ecosystems represented by coral reefs, thus further aggravating the negative environmental impact on coral reef ecosystems. The cancer risk caused by accidental ingestion of PAHs by humans through consumption of seafood in CRRs is very low, but we should be alert to the biomagnification effect of PAHs.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Haolan Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Huanxin Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
3
|
Arjunwadkar CV, Tebbett SB, Bellwood DR, Bourne DG, Smith HA. Algal turf structure and composition vary with particulate loads on coral reefs. MARINE POLLUTION BULLETIN 2022; 181:113903. [PMID: 35843165 DOI: 10.1016/j.marpolbul.2022.113903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/10/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Algal turfs trap and retain particulates, however, little is known about the relationship between particulate accumulation and taxonomic composition of algal turfs. We investigated how particulate mass related to algal turf structure (length and density) and community composition (taxonomic and functional) on two disparate reefs. Particulate mass was positively related to algal turf length. By contrast, the relationship between particulate mass and turf density was more complex and followed a negative parabolic shape; density increased with particulate mass before stabilising and then declining. Community analyses showed taxonomic, but not functional group compositions differed significantly between reefs and with increasing particulate mass. Our results suggest high loads of particulates accumulated in algal turfs are related to a longer, lower density turf structure, typified by filamentous forms such as Cladophora. Changes in algal turf structure and composition could have a variety of bottom-up influences on coral reef ecosystems.
Collapse
Affiliation(s)
| | - Sterling B Tebbett
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia; Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - David R Bellwood
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia; Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Hillary A Smith
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
4
|
Wang L, Peng C, Gong B, Yang Z, Song J, Li L, Xu L, Yue T, Wang X, Yang M, Xu H, Liu X. Actinobacteria Community and Their Antibacterial and Cytotoxic Activity on the Weizhou and Xieyang Volcanic Islands in the Beibu Gulf of China. Front Microbiol 2022; 13:911408. [PMID: 35903476 PMCID: PMC9317746 DOI: 10.3389/fmicb.2022.911408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Weizhou Island and Xieyang Island are two large and young volcanic sea islands in the northern part of the South China Sea. In this study, high-throughput sequencing (HTS) of 16S rRNA genes was used to explore the diversity of Actinobacteria in the Weizhou and Xieyang Islands. Moreover, a traditional culture-dependent method was utilized to isolate Actinobacteria, and their antibacterial and cytotoxic activities were detected. The alpha diversity indices (ACE metric) of the overall bacterial communities for the larger island (Weizhou) were higher than those for the smaller island (Xieyang). A beta diversity analysis showed a more dispersive pattern of overall bacterial and actinobacterial communities on a larger island (Weizhou). At the order level, Frankiales, Propionibacteriales, Streptomycetales, Micrococcales, Pseudonocardiales, Micromonosporales, Glycomycetales, Corynebacteriales, and Streptosporangiales were the predominant Actinobacteria. A total of 22.7% of the OTUs shared 88%-95% similarity with some known groups. More interestingly, 15 OTUs formed a distinct and most predominant clade, and shared identities of less than 95% with any known families. This is the first report about this unknown group and their 16S rRNA sequences obtained from volcanic soils. A total of 268 actinobacterial strains were isolated by the culture-dependent method. Among them, 55 Streptomyces species were isolated, representing that 76.6% of the total. S. variabilis and S. flavogriseus were the most abundant. Moreover, some rare Actinobacteria were isolated. These included Micromonospora spp., Nocardia spp., Amycolatopsis spp., Tsukamurella spp., Mycobacterium spp., and Nonomuraea spp. Among them, eight Streptomyces spp. exhibited antibacterial activity against Bacillus cereus. Only three strains inhibited the growth of Escherichia coli. Four strains showed good activity against aquatic pathogenic bacterial strains of Streptococcus iniae. The cytotoxicity assay results showed that 27 strains (10.07%) exhibited cytotoxic activity against HeLa and A549 cell lines. Many actinobacterial strains with cytotoxic activity were identified as rare Actinobacteria, which illustrated that volcanic islands are vast reservoirs for Actinobacteria with promising antibacterial and cytotoxic activity. This study may significantly improve our understanding of actinobacterial communities on volcanic islands. The isolated Actinobacteria showed promising prospects for future use.
Collapse
Affiliation(s)
- Lin Wang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Lili Xu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Tao Yue
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Xiaolin Wang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Mengping Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Huimin Xu
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, China
| | - Xiong Liu
- Sea Area Use Dynamic Supervising and Managing Center of Fangchenggang City, Fangchenggang, China
| |
Collapse
|
5
|
Tebbett SB, Sgarlatta MP, Pessarrodona A, Vergés A, Wernberg T, Bellwood DR. How to quantify algal turf sediments and particulates on tropical and temperate reefs: An overview. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105673. [PMID: 35688019 DOI: 10.1016/j.marenvres.2022.105673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Algal turfs are the most abundant benthic covering on reefs in many shallow-water marine ecosystems. The particulates and sediments bound within algal turfs can influence a multitude of functions within these ecosystems. Despite the global abundance and importance of algal turfs, comparison of algal turf-bound sediments is problematic due to a lack of standardisation across collection methods. Here we provide an overview of three methods (vacuum sampling, airlift sampling, and TurfPods), and the necessary equipment (including construction suggestions), commonly employed to quantify sediments from algal turfs. We review the purposes of these methods (e.g. quantification of standing stock versus net accumulation) and how methods can vary depending on the research question or monitoring protocol. By providing these details in a readily accessible format we hope to encourage a standardised set of approaches for marine benthic ecologists, geologists and managers, that facilitates further quantification and global comparisons of algal turf sediments.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - M Paula Sgarlatta
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia
| | - Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Adriana Vergés
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, Australia; Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia; Norwegian Institute of Marine Research, His, Norway
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
6
|
Fong J, Todd PA. Spatio-temporal dynamics of coral-macroalgal interactions and their impacts on coral growth on urbanised reefs. MARINE POLLUTION BULLETIN 2021; 172:112849. [PMID: 34425366 DOI: 10.1016/j.marpolbul.2021.112849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Interactions between corals and macroalgae are important in influencing benthic community structures on coral reefs and have become increasingly common occurrences. However, little is known about their temporal variation as most studies have only documented them from single surveys. To investigate the dynamics of coral-macroalgal interactions, we surveyed three urbanised reefs in Singapore bi-monthly for three years. We found that the frequency of coral-macroalgal interactions varied greatly across sites and seasons. The extent of coral-macroalgal contact was positively correlated with macroalgal abundance, but the correlation differed significantly among macroalgal genera. The growth rates of Goniopora, Montipora and Pavona corals, but not Platygra, were also negatively correlated with the extent of macroalgal interactions. Overall, our results highlight that coral-macroalgal interactions are spatially and temporally dynamic, with varying effects among coral species. It is critical to consider seasonal fluctuations of macroalgae if the overall long-term impacts of macroalgae are to be understood.
Collapse
Affiliation(s)
- Jenny Fong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
7
|
Liao Z, Yu K, Chen B, Huang X, Qin Z, Yu X. Spatial distribution of benthic algae in the South China Sea: Responses to gradually changing environmental factors and ecological impacts on coral communities. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Zhiheng Liao
- Coral Reef Research Center of China Guangxi University Nanning China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea Guangxi University Nanning China
- School of Marine Sciences Guangxi University Nanning China
| | - Kefu Yu
- Coral Reef Research Center of China Guangxi University Nanning China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea Guangxi University Nanning China
- School of Marine Sciences Guangxi University Nanning China
- Southern Marine Science and Engineering Guangdong Laboratory Zhuhai China
| | - Biao Chen
- Coral Reef Research Center of China Guangxi University Nanning China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea Guangxi University Nanning China
- School of Marine Sciences Guangxi University Nanning China
| | - Xueyong Huang
- Coral Reef Research Center of China Guangxi University Nanning China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea Guangxi University Nanning China
- School of Marine Sciences Guangxi University Nanning China
| | - Zhenjun Qin
- Coral Reef Research Center of China Guangxi University Nanning China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea Guangxi University Nanning China
- School of Marine Sciences Guangxi University Nanning China
| | - Xiaopeng Yu
- Coral Reef Research Center of China Guangxi University Nanning China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea Guangxi University Nanning China
- School of Marine Sciences Guangxi University Nanning China
| |
Collapse
|
8
|
Hata H, Takano S, Masuhara H. Herbivorous damselfishes expand their territories after causing white scars on Porites corals. Sci Rep 2020; 10:16172. [PMID: 32999358 PMCID: PMC7527513 DOI: 10.1038/s41598-020-73232-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Turf algae become the most abundant benthic group on coral reefs after mass coral bleaching. By defending feeding territories, damselfishes enhance the growth of turf algae in so-called algal farms and affect coral communities both directly and indirectly. We found several white scars (i.e., bite lesions) on massive Porites colonies around feeding territories. In this study, we examined the occurrence of white scars on corals and their function in coral-algal competition at the boundaries between algal farms of two damselfish species-the intensive farmer Stegastes nigricans, and the intermediate farmer S. lividus-and adjacent Porites corals for 3 years around Okinawa Island, Japan. White scars occurred on Porites colonies only adjacent to the territories of both damselfish species. Of the white scars on corals around S. nigricans territories, 73% of the area was covered by algae within 2 weeks, while the remaining was re-covered by Porites tissues. The coral-algal boundaries encroached further into areas of coral when the area of white scars were larger. These results suggest that both intensive and intermediate farmers bite adjacent Porites colonies causing white scars on corals, and expand their territories onto corals using algae-covered white scars as stepping stones.
Collapse
Affiliation(s)
- Hiroki Hata
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime, 790-8577, Japan.
| | - Shota Takano
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime, 790-8577, Japan
| | - Hiroyuki Masuhara
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
9
|
Evans RD, Wilson SK, Fisher R, Ryan NM, Babcock R, Blakeway D, Bond T, Dorji P, Dufois F, Fearns P, Lowe RJ, Stoddart J, Thomson DP. Early recovery dynamics of turbid coral reefs after recurring bleaching events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110666. [PMID: 32510431 DOI: 10.1016/j.jenvman.2020.110666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
The worlds' coral reefs are declining due to the combined effects of natural disturbances and anthropogenic pressures including thermal coral bleaching associated with global climate change. Nearshore corals are receiving increased anthropogenic stress from coastal development and nutrient run-off. Considering forecast increases in global temperatures, greater understanding of drivers of recovery on nearshore coral reefs following widespread bleaching events is required to inform management of local stressors. The west Pilbara coral reefs, with cross-shelf turbidity gradients coupled with a large nearby dredging program and recent history of repeated coral bleaching due to heat stress, represent an opportune location to study recovery from multiple disturbances. Mean coral cover at west Pilbara reefs was monitored from 2009 to 2018 and declined from 45% in 2009 to 5% in 2014 following three heat waves. Recruitment and juvenile abundance of corals were monitored from 2014 to 2018 and were combined with biological and physical data to identify which variables enhanced or hindered early-stage coral recovery of all hard corals and separately for the acroporids, the genera principally responsible for recovery in the short-term (<7 years). From 2014 to 2018, coral cover increased from 5 to 10% but recovery varied widely among sites (0-13%). Hard coral cover typically recovered most at shallower sites that had higher abundance of herbivorous fish, less macroalgae, and lower turbidity. Similarly, acroporid corals recovered most at sites with lower turbidity and macroalgal cover. Juvenile acroporid densities were a good indicator of recovery at least two years after they were recorded. However, recruitment to settlement tiles was not a good predictor of total coral or acroporid recovery. This study shows that coral recovery can be slower in areas of high turbidity and the rate may be reduced by local pressures, such as dredging. Management should focus on improving or maintaining local water quality to increase the likelihood of coral recovery under climate stress. Further, in turbid environments, juvenile coral density predicts early coral recovery better than recruits on tiles and may be a more cost-effective technique for monitoring recovery potential.
Collapse
Affiliation(s)
- Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia.
| | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, W.A, 6151, Australia; Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Rebecca Fisher
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Nicole M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Russ Babcock
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | | | - Todd Bond
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Passang Dorji
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Francois Dufois
- IFREMER, DYNECO/DHYSED, ZI Pointe du Diable, 29280, Plouzané, France
| | - Peter Fearns
- Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Bentley, WA, 6102, Australia
| | - Ryan J Lowe
- School of Biological Science, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Jim Stoddart
- Oceans Institute, The University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia; MScience Pty Ltd, Perth, WA, Australia
| | - Damian P Thomson
- CSIRO Oceans & Atmosphere, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| |
Collapse
|
10
|
Tebbett SB, Bellwood DR. Algal turf sediments on coral reefs: what's known and what's next. MARINE POLLUTION BULLETIN 2019; 149:110542. [PMID: 31542595 DOI: 10.1016/j.marpolbul.2019.110542] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Algal turfs are likely to rise in prominence on coral reefs in the Anthropocene. In these ecosystems the sediments bound within algal turfs will shape ecosystem functions and the services humanity can obtain from reefs. However, while interest is growing in the role of algal turf sediments, studies remain limited. In this review we provide an overview of our knowledge to-date concerning algal turf sediments on coral reefs. Specifically, we highlight what algal turf sediments are, their role in key ecosystem processes, the potential importance of algal turf sediments on Anthropocene reefs, and key knowledge gaps for future research. The evidence suggests that the management of algal turf sediments will be critically important if we are to sustain key functions and services on highly-altered, Anthropocene coral reef configurations.
Collapse
Affiliation(s)
- Sterling B Tebbett
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - David R Bellwood
- ARC Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|