1
|
Martoni F, Smith R, Piper AM, Lye J, Trollip C, Rodoni BC, Blacket MJ. Non-destructive insect metabarcoding for surveillance and biosecurity in citrus orchards: recording the good, the bad and the psyllids. PeerJ 2023; 11:e15831. [PMID: 37601253 PMCID: PMC10437040 DOI: 10.7717/peerj.15831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Background The Australian citrus industry remains one of the few in the world to be unaffected by the African and the Asian citrus psyllids, Trioza erytreae Del Guercio and Diaphorina citri Kuwayama, respectively, and the diseases their vectored bacteria can cause. Surveillance, early detection, and strict quarantine measures are therefore fundamental to safeguard Australian citrus. However, long-term targeted surveillance for exotic citrus pests can be a time-consuming and expensive activity, often relying on manually screening large numbers of trap samples and morphological identification of specimens, which requires a high level of taxonomic knowledge. Methods Here we evaluated the use of non-destructive insect metabarcoding for exotic pest surveillance in citrus orchards. We conducted an 11-week field trial, between the months of December and February, at a horticultural research farm (SuniTAFE Smart Farm) in the Northwest of Victoria, Australia, and processed more than 250 samples collected from three types of invertebrate traps across four sites. Results The whole-community metabarcoding data enabled comparisons between different trapping methods, demonstrated the spatial variation of insect diversity across the same orchard, and highlighted how comprehensive assessment of insect biodiversity requires use of multiple complimentary trapping methods. In addition to revealing the diversity of native psyllid species in citrus orchards, the non-targeted metabarcoding approach identified a diversity of other pest and beneficial insects and arachnids within the trap bycatch, and recorded the presence of the triozid Casuarinicola cf warrigalensis for the first time in Victoria. Ultimately, this work highlights how a non-targeted surveillance approach for insect monitoring coupled with non-destructive DNA metabarcoding can provide accurate and high-throughput species identification for biosecurity and biodiversity monitoring.
Collapse
Affiliation(s)
- Francesco Martoni
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Reannon Smith
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Alexander M. Piper
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Jessica Lye
- Citrus Australia Ltd., Wandin North, Victoria, Australia
| | - Conrad Trollip
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Mark J. Blacket
- Agriculture Victoria Research, State Government Victoria, Bundoora, Victoria, Australia
| |
Collapse
|
2
|
Meeus S, Silva-Rocha I, Adriaens T, Brown PMJ, Chartosia N, Claramunt-López B, Martinou AF, Pocock MJO, Preda C, Roy HE, Tricarico E, Groom QJ. More than a Bit of Fun: The Multiple Outcomes of a Bioblitz. Bioscience 2023; 73:168-181. [PMID: 36936381 PMCID: PMC10020829 DOI: 10.1093/biosci/biac100 10.3897/biss.5.74361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Bioblitzes are a popular approach to engage people and collect biodiversity data. Despite this, few studies have actually evaluated the multiple outcomes of bioblitz activities. We used a systematic review, an analysis of data from more than 1000 bioblitzes, and a detailed analysis of one specific bioblitz to inform our inquiry. We evaluated five possible bioblitz outcomes, which were creating a species inventory, engaging people in biological recording, enhancing learning about nature, discovering a species new to an area, and promoting an organization. We conclude that bioblitzes are diverse but overall effective at their aims and have advantages over unstructured biodiversity recording. We demonstrate for the first time that bioblitzes increase the recording activity of the participants for several months after the event. In addition, we provide evidence that bioblitzes are effective at bringing people and organizations together to build communities of professionals and amateurs, critical for conserving and protecting biodiversity.
Collapse
Affiliation(s)
| | | | - Tim Adriaens
- Research Institute for Nature and Forest, Brussels, Belgium
| | - Peter M J Brown
- Zoology in the School of Life Sciences at Anglia Ruskin University, Cambridge, England, United Kingdom
| | - Niki Chartosia
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | - Michael J O Pocock
- UK Centre for Ecology and Hydrology in Wallingford, England, United Kingdom
| | | | - Helen E Roy
- UK Centre for Ecology and Hydrology in Wallingford, England, United Kingdom
| | - Elena Tricarico
- Department of Biology at the University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
3
|
Meeus S, Silva-Rocha I, Adriaens T, Brown PMJ, Chartosia N, Claramunt-López B, Martinou AF, Pocock MJO, Preda C, Roy HE, Tricarico E, Groom QJ. More than a Bit of Fun: The Multiple Outcomes of a Bioblitz. Bioscience 2023; 73:168-181. [PMID: 36936381 PMCID: PMC10020829 DOI: 10.1093/biosci/biac100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Bioblitzes are a popular approach to engage people and collect biodiversity data. Despite this, few studies have actually evaluated the multiple outcomes of bioblitz activities. We used a systematic review, an analysis of data from more than 1000 bioblitzes, and a detailed analysis of one specific bioblitz to inform our inquiry. We evaluated five possible bioblitz outcomes, which were creating a species inventory, engaging people in biological recording, enhancing learning about nature, discovering a species new to an area, and promoting an organization. We conclude that bioblitzes are diverse but overall effective at their aims and have advantages over unstructured biodiversity recording. We demonstrate for the first time that bioblitzes increase the recording activity of the participants for several months after the event. In addition, we provide evidence that bioblitzes are effective at bringing people and organizations together to build communities of professionals and amateurs, critical for conserving and protecting biodiversity.
Collapse
Affiliation(s)
| | | | - Tim Adriaens
- Research Institute for Nature and Forest, Brussels, Belgium
| | - Peter M J Brown
- Zoology in the School of Life Sciences at Anglia Ruskin University, Cambridge, England, United Kingdom
| | - Niki Chartosia
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | - Michael J O Pocock
- UK Centre for Ecology and Hydrology in Wallingford, England, United Kingdom
| | | | - Helen E Roy
- UK Centre for Ecology and Hydrology in Wallingford, England, United Kingdom
| | - Elena Tricarico
- Department of Biology at the University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
4
|
Vertical Stratification of Beetles in Deciduous Forest Communities in the Centre of European Russia. DIVERSITY 2021. [DOI: 10.3390/d13110508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies on the vertical distribution of arthropods in temperate forests have revealed the uneven vertical distribution of communities. Many factors influence these patterns simultaneously. However, there are still many questions related to the vertical distribution of Coleoptera in deciduous forests of the temperate zone. The research was carried out within the territory of the Republic of Mordovia (the center of the European part of Russia). Fermental traps with a bait made of fermenting beer with sugar were used to collect Coleoptera. The collections were carried out from May to September 2020 at five sites in a deciduous forest. We set traps at a height of 1.5, 3.5, 7.5 and 12 m above the ground) on the branches of trees. Ninety-two species were identified at the end of studies at different heights. The families Nitidulidae (15 species), Cerambycidae (14 species), Elateridae (7 species), Curculionidae (7 species) and Scarabaeidae (7 species) had the greatest species diversity. The greatest species diversity was recorded at a height of 1.5 m, while the smallest one was recorded at a height of 7.5 m. The minimum number of specimens was recorded at a height of 12 m. The largest differences in the Jaccard similarity index were obtained between samples from a height of 1.5 and 12 m. The Shannon’s diversity index was higher near the ground than in the tree crowns (at heights of 7.5 and 12 m), and the Simpson index had the opposite tendency. Glischrochilus hortensis and to a lesser extent Cychramus luteus preferred to live in the lowest layers of deciduous forest (1.5 m). Cryptarcha strigata was mainly found with relatively high numbers at heights of 3.5 m and 7.5 m. The abundance and occurrence of Protaetia marmorata and Quedius dilatatus were higher in the uppermost layers of the crowns. The number of saproxylic beetle species at heights of 3.5–12 m was almost the same, while in the surface layer it decreased. The number of anthophilic beetle species was also lower at a low altitude. Our data confirm the relevance of sampling in forest ecosystems at different altitudes while studying arthropod biodiversity.
Collapse
|
5
|
A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): new insights into the evolution of a pest-rich genus. Mol Phylogenet Evol 2021; 161:107161. [PMID: 33794395 DOI: 10.1016/j.ympev.2021.107161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 02/03/2023]
Abstract
The noctuid genus Spodoptera currently consists of 31 species with varied host plant breadths, ranging from monophagous and oligophagous non-pest species to polyphagous pests of economic importance. Several of these pest species have become major invaders, colonizing multiple continents outside their native range. Such is the case of the infamous fall armyworm, Spodoptera frugiperda (J.E. Smith), which includes two recognized host strains that have not been treated as separate species. Following its accidental introduction to Africa in 2016, it quickly spread through Africa and Asia to Australia. Given that half the described Spodoptera species cause major crop losses, comparative genomics studies of several Spodoptera species have highlighted major adaptive changes in genetic architecture, possibly relating to their pest status. Several recent population genomics studies conducted on two species enable a more refined understanding of their population structures, migration patterns and invasion processes. Despite growing interest in the genus, the taxonomic status of several Spodoptera species remains unstable and evolutionary studies suffer from the absence of a robust and comprehensive dated phylogenetic framework. We generated mitogenomic data for 14 Spodoptera taxa, which are combined with data from 15 noctuoid outgroups to generate a resolved mitogenomic backbone phylogeny using both concatenation and multi-species coalescent approaches. We combine this backbone with additional mitochondrial and nuclear data to improve our understanding of the evolutionary history of the genus. We also carry out comprehensive dating analyses, which implement three distinct calibration strategies based on either primary or secondary fossil calibrations. Our results provide an updated phylogenetic framework for 28 Spodoptera species, identifying two well-supported ecologically diverse clades that are recovered for the first time. Well-studied larvae in each of these clades are characterized by differences in mandibular shape, with one clade's being more specialized on silica-rich C4 grasses. Interestingly, the inferred timeframe for the genus suggests an earlier origin than previously thought for the genus: about 17-18 million years ago.
Collapse
|
6
|
Marquina D, Buczek M, Ronquist F, Łukasik P. The effect of ethanol concentration on the morphological and molecular preservation of insects for biodiversity studies. PeerJ 2021; 9:e10799. [PMID: 33614282 PMCID: PMC7883690 DOI: 10.7717/peerj.10799] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Traditionally, insects collected for scientific purposes have been dried and pinned, or preserved in 70% ethanol. Both methods preserve taxonomically informative exoskeletal structures well but are suboptimal for preserving DNA for molecular biology. Highly concentrated ethanol (95–100%), preferred as a DNA preservative, has generally been assumed to make specimens brittle and prone to breaking. However, systematic studies on the correlation between ethanol concentration and specimen preservation are lacking. Here, we tested how preservative ethanol concentration in combination with different sample handling regimes affect the integrity of seven insect species representing four orders, and differing substantially in the level of sclerotization. After preservation and treatments (various levels of disturbance), we counted the number of appendages (legs, wings, antennae, or heads) that each specimen had lost. Additionally, we assessed the preservation of DNA after long-term storage by comparing the ratio of PCR amplicon copy numbers to an added artificial standard. We found that high ethanol concentrations indeed induce brittleness in insects. However, the magnitude and nature of the effect varied strikingly among species. In general, ethanol concentrations at or above 90% made the insects more brittle, but for species with robust, thicker exoskeletons, this did not translate to an increased loss of appendages. Neither freezing the samples nor drying the insects after immersion in ethanol had a negative effect on the retention of appendages. However, the morphology of the insects was severely damaged if they were allowed to dry. We also found that DNA preserves less well at lower ethanol concentrations when stored at room temperature for an extended period. However, the magnitude of the effect varies among species; the concentrations at which the number of COI amplicon copies relative to the standard was significantly decreased compared to 95% ethanol ranged from 90% to as low as 50%. While higher ethanol concentrations positively affect long-term DNA preservation, there is a clear trade-off between preserving insects for morphological examination and genetic analysis. The optimal ethanol concentration for the latter is detrimental for the former, and vice versa. These trade-offs need to be considered in large insect biodiversity surveys and other projects aiming to combine molecular work with traditional morphology-based characterization of collected specimens.
Collapse
Affiliation(s)
- Daniel Marquina
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mateusz Buczek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Fredrik Ronquist
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Piotr Łukasik
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Weigand AM, Desquiotz N, Weigand H, Szucsich N. Application of propylene glycol in DNA-based studies of invertebrates. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.57278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
High-throughput sequencing (HTS) studies on invertebrates commonly use ethanol as the main sample fixative (upon collection) and preservative (for storage and curation). However, alternative agents exists, which should not be automatically neglected when studies are newly designed. This review provides an overview of the application of propylene glycol (PG) in DNA-based studies of invertebrates, thus to stimulate an evidence-based discussion.
The use of PG in DNA-based studies of invertebrates is still limited (n = 79), but a steady increase has been visible since 2011. Most studies used PG as a fixative for passive trapping (73%) and performed Sanger sequencing (66%; e.g. DNA barcoding). More recently, HTS setups joined the field (11%). Terrestrial Coleoptera (30%) and Diptera (20%) were the most studied groups. Very often, information on the grade of PG used (75%) or storage conditions (duration, temperature) were lacking. This rendered direct comparisons of study results difficult, and highlight the need for further systematic studies on these subjects.
When compared to absolute ethanol, PG can be more widely and cheaply acquired (e.g. as an antifreeze, 13% of studies). It also enables longer trapping intervals, being especially relevant at remote or hard-to-reach places. Shipping of PG-conserved samples is regarded as risk-free and is authorised, pinpointing its potential for larger trapping programs or citizen science projects. Its property to retain flexibility of morphological characters as well as to lead to a reduced shrinkage effect was especially appraised by integrative study designs. Finally, the so far limited application of PG in the context of HTS showed promising results for short read amplicon sequencing and reduced representation methods. Knowledge of the influence of PG fixation and storage for long(er) read HTS setups is currently unavailable.
Given our review results and taking difficulties of direct methodological comparisons into account, future DNA-based studies of invertebrates should on a case-by-case basis critically scrutinise if the application of PG in their anticipated study design can be of benefit.
Collapse
|
8
|
Zenker MM, Specht A, Fonseca VG. Assessing insect biodiversity with automatic light traps in Brazil: Pearls and pitfalls of metabarcoding samples in preservative ethanol. Ecol Evol 2020; 10:2352-2366. [PMID: 32184986 PMCID: PMC7069332 DOI: 10.1002/ece3.6042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022] Open
Abstract
Automated species identification based on data produced with metabarcoding offers an alternative for assessing biodiversity of bulk insect samples obtained with traps. We used a standard two-step PCR approach to amplify a 313 bp fragment of the barcoding region of the mitochondrial COI gene. The PCR products were sequenced on an Illumina MiSeq platform, and the OTUs production and taxonomic identifications were performed with a customized pipeline and database. The DNA used in the PCR procedures was extracted directly from the preservative ethanol of bulk insect samples obtained with automatic light traps in 12 sampling areas located in different biomes of Brazil, during wet and dry seasons. Agricultural field and forest edge habitats were collected for all sampling areas. A total of 119 insect OTUs and nine additional OTUs assigned to other arthropod taxa were obtained at a ≥97% sequence similarity level. The alpha and beta diversity analyses comparing biomes, habitats, and seasons were mostly inconclusive, except for a significant difference in beta diversity between biomes. In this study, we were able to metabarcode and HTS adult insects from their preservative medium. Notwithstanding, our results underrepresent the true magnitude of insect diversity expected from samples obtained with automatic light traps in Brazil. Although biological and technical factors might have impacted our results, measures to optimize and standardize eDNA HTS should be in place to improve taxonomic coverage of samples of unknown diversity and stored in suboptimal conditions, which is the case of most eDNA samples.
Collapse
Affiliation(s)
- Mauricio M. Zenker
- Zoological Research Museum Alexander KoenigBonnGermany
- Present address:
Rua Eulo MaroniSão PauloBrazil
| | - Alexandre Specht
- Embrapa CerradosBrasiliaBrazil
- Present address:
Embrapa CerradosPlanaltinaFederal DistrictBrazil
| | - Vera G. Fonseca
- Zoological Research Museum Alexander KoenigBonnGermany
- Present address:
Centre for EnvironmentFisheries and Aquaculture Science (Cefas)WeymouthUK
| |
Collapse
|
9
|
Andermann T, Torres Jiménez MF, Matos-Maraví P, Batista R, Blanco-Pastor JL, Gustafsson ALS, Kistler L, Liberal IM, Oxelman B, Bacon CD, Antonelli A. A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project. Front Genet 2020; 10:1407. [PMID: 32153629 PMCID: PMC7047930 DOI: 10.3389/fgene.2019.01407] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Maria Fernanda Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Romina Batista
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, PPG GCBEv–Instituto Nacional de Pesquisas da Amazônia—INPA Campus II, Manaus, Brazil
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - José L. Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Isabel M. Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond-Surrey, United Kingdom
| |
Collapse
|
10
|
Bakker FT, Antonelli A, Clarke JA, Cook JA, Edwards SV, Ericson PGP, Faurby S, Ferrand N, Gelang M, Gillespie RG, Irestedt M, Lundin K, Larsson E, Matos-Maraví P, Müller J, von Proschwitz T, Roderick GK, Schliep A, Wahlberg N, Wiedenhoeft J, Källersjö M. The Global Museum: natural history collections and the future of evolutionary science and public education. PeerJ 2020; 8:e8225. [PMID: 32025365 PMCID: PMC6993751 DOI: 10.7717/peerj.8225] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the ‘Global Museum’) is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow’s technologies and hence further increasing the relevance of natural history museums.
Collapse
Affiliation(s)
- Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Julia A Clarke
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States of America
| | - Joseph A Cook
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, United States of America
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America.,Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Søren Faurby
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Nuno Ferrand
- Museu de História Natural e da Ciência, Universidade do Porto, Porto, Portugal
| | - Magnus Gelang
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Rosemary G Gillespie
- Essig Museum of Entomology, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States of America
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Kennet Lundin
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Ellen Larsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Johannes Müller
- Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| | - Ted von Proschwitz
- Department of Zoology, Gothenburg Natural History Museum, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - George K Roderick
- Essig Museum of Entomology, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States of America
| | - Alexander Schliep
- Department of Computer Science and Engineering, University of Gothenburg, Göteborg, Sweden
| | | | - John Wiedenhoeft
- Department of Computer Science and Engineering, University of Gothenburg, Göteborg, Sweden
| | - Mari Källersjö
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden.,Gothenburg Botanical Garden, Göteborg, Sweden
| |
Collapse
|
11
|
Saunders ME, Janes JK, O’Hanlon JC. Moving On from the Insect Apocalypse Narrative: Engaging with Evidence-Based Insect Conservation. Bioscience 2019. [DOI: 10.1093/biosci/biz143] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Recent studies showing temporal changes in local and regional insect populations received exaggerated global media coverage. Confusing and inaccurate science communication on this important issue could have counterproductive effects on public support for insect conservation. The insect apocalypse narrative is fuelled by a limited number of studies that are restricted geographically (predominantly the United Kingdom, Europe, the United States) and taxonomically (predominantly some bees, macrolepidoptera, and ground beetles). Biases in sampling and analytical methods (e.g., categorical versus continuous time series, different diversity metrics) limit the relevance of these studies as evidence of generalized global insect decline. Rather, the value of this research lies in highlighting important areas for priority investment. We summarize research, communication, and policy priorities for evidence-based insect conservation, including key areas of knowledge to increase understanding of insect population dynamics. Importantly, we advocate for a balanced perspective in science communication to better serve both public and scientific interests.
Collapse
Affiliation(s)
| | - Jasmine K Janes
- University of New England, Armidale, Australia
- Vancouver Island University, Vancouver, British Columbia, Canada
| | | |
Collapse
|
12
|
Trevisan B, Alcantara DM, Machado DJ, Marques FP, Lahr DJ. Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ 2019; 7:e7543. [PMID: 31565556 PMCID: PMC6746217 DOI: 10.7717/peerj.7543] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Global loss of biodiversity is an ongoing process that concerns both local and global authorities. Studies of biodiversity mainly involve traditional methods using morphological characters and molecular protocols. However, conventional methods are a time consuming and resource demanding task. The development of high-throughput sequencing (HTS) techniques has reshaped the way we explore biodiversity and opened a path to new questions and novel empirical approaches. With the emergence of HTS, sequencing the complete mitochondrial genome became more accessible, and the number of genome sequences published has increased exponentially during the last decades. Despite the current state of knowledge about the potential of mitogenomics in phylogenetics, this is still a relatively under-explored area for a multitude of taxonomic groups, especially for those without commercial relevance, non-models organisms and with preserved DNA. Here we take the first step to assemble and annotate the genomes from HTS data using a new protocol of genome skimming which will offer an opportunity to extend the field of mitogenomics to under-studied organisms. We extracted genomic DNA from specimens preserved in ethanol. We used Nextera XT DNA to prepare indexed paired-end libraries since it is a powerful tool for working with diverse samples, requiring a low amount of input DNA. We sequenced the samples in two different Illumina platform (MiSeq or NextSeq 550). We trimmed raw reads, filtered and had their quality tested accordingly. We performed the assembly using a baiting and iterative mapping strategy, and the annotated the putative mitochondrion through a semi-automatic procedure. We applied the contiguity index to access the completeness of each new mitogenome. Our results reveal the efficiency of the proposed method to recover the whole mitogenomes of preserved DNA from non-model organisms even if there are gene rearrangement in the specimens. Our findings suggest the potential of combining the adequate platform and library to the genome skimming as an innovative approach, which opens a new range of possibilities of its use to obtain molecular data from organisms with different levels of preservation.
Collapse
Affiliation(s)
- Bruna Trevisan
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel M.C. Alcantara
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Denis Jacob Machado
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Bioinformatics and Genomics / College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Fernando P.L. Marques
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel J.G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|