1
|
An L, Wang Z, Cui Y, Bai Y, Yao Y, Yao X, Wu K. Comparative Analysis of Hulless Barley Transcriptomes to Regulatory Effects of Phosphorous Deficiency. Life (Basel) 2024; 14:904. [PMID: 39063656 PMCID: PMC11278117 DOI: 10.3390/life14070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hulless barley is a cold-resistant crop widely planted in the northwest plateau of China. It is also the main food crop in this region. Phosphorus (P), as one of the important essential nutrient elements, regulates plant growth and defense. This study aimed to analyze the development and related molecular mechanisms of hulless barley under P deficiency and explore the regulatory genes so as to provide a basis for subsequent molecular breeding research. Transcriptome analysis was performed on the root and leaf samples of hulless barley cultured with different concentrations of KH2PO4 (1 mM and 10 μM) Hoagland solution. A total of 46,439 genes were finally obtained by the combined analysis of leaf and root samples. Among them, 325 and 453 genes had more than twofold differences in expression. These differentially expressed genes (DEGs) mainly participated in the abiotic stress biosynthetic process through Gene Ontology prediction. Moreover, the Kyoto Encyclopedia of Genes and Genomes showed that DEGs were mainly involved in photosynthesis, plant hormone signal transduction, glycolysis, phenylpropanoid biosynthesis, and synthesis of metabolites. These pathways also appeared in other abiotic stresses. Plants initiated multiple hormone synergistic regulatory mechanisms to maintain growth under P-deficient conditions. Transcription factors (TFs) also proved these predictions. The enrichment of ARR-B TFs, which positively regulated the phosphorelay-mediated cytokinin signal transduction, and some other TFs (AP2, GRAS, and ARF) was related to plant hormone regulation. Some DEGs showed different values in their FPKM (fragment per kilobase of transcript per million mapped reads), but the expression trends of genes responding to stress and phosphorylation remained highly consistent. Therefore, in the case of P deficiency, the first response of plants was the expression of stress-related genes. The effects of this stress on plant metabolites need to be further studied to improve the relevant regulatory mechanisms so as to further understand the importance of P in the development and stress resistance of hulless barley.
Collapse
Affiliation(s)
- Likun An
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Ziao Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Yongmei Cui
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Yixiong Bai
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Youhua Yao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Xiaohua Yao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| | - Kunlun Wu
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China; (L.A.); (Z.W.); (Y.C.); (Y.B.); (Y.Y.); (X.Y.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining 810016, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining 810016, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining 810016, China
| |
Collapse
|
2
|
Angelakakis G, Varkhedi M, Dabkowski TR, Diaz MJ, Yeagley M, Blanck G. B-cell ALL with SOX11 gene amplification associates with a worse outcome. Cell Cycle 2024; 23:36-42. [PMID: 38350028 PMCID: PMC11005798 DOI: 10.1080/15384101.2024.2306756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Copy number variation (CNV) of certain genes in pediatric Acute Lymphoblastic Leukemia (ALL) impacts gene expression levels. Here, we aimed to investigate the potential prognostic utility of CNVs in pediatric B-ALL and T-ALL. Using genomics files representing cases from the TARGET-ALL-P2 dataset, genes commonly involved in ALL development were analyzed for CNVs. Case IDs representing increased copy numbers for SOX11, PDGFRB, and MDK represented a worse overall survival probability specifically for B-ALL (logrank p=0.021, p=0.0052, p=0.019, respectively). These data support the continued investigation of using CNVs for clinical prognostic biomarkers for pediatric B-ALL.
Collapse
Affiliation(s)
- George Angelakakis
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mallika Varkhedi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Toriana R. Dabkowski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael J. Diaz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
3
|
Rao R, Shen H. Onchidium reevesii may be able to distinguish low-frequency sound to discriminate the state of tides. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2065439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rongcheng Rao
- National Experimental Teaching Demonstration Center, Shanghai Key Laboratory of Systematic Classification and Evolution of Marine Animals, Shanghai Ocean University, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, People’s Republic of China
| | - Heding Shen
- National Experimental Teaching Demonstration Center, Shanghai Key Laboratory of Systematic Classification and Evolution of Marine Animals, Shanghai Ocean University, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Zhang L, Cai Y, Zhang M, Du G, Wang J. Selection and Evaluation of Candidate Reference Genes for Quantitative Real-Time PCR in Aboveground Tissues and Drought Conditions in Rhododendron Delavayi. Front Genet 2022; 13:876482. [PMID: 35495151 PMCID: PMC9046656 DOI: 10.3389/fgene.2022.876482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
There has been no systematic identification and screening of candidate reference genes for normalization of quantitative real-time PCR (qRT-PCR) results in Rhododendron delavayi to date. Therefore, the present study used GAPDH, Act, EF1, Tub-, Tub-5, UEC1, TATA, TATA-2, UEP, TIP41, and Ubiquitin to predict their stabilities on different aboveground tissues (matured leaves (ML), stem tips (STM), and flower buds (FB)) at different developmental stages (young and adult plants) using five statistical algorithms: Delta Ct method, BestKeeper, geNorm, Normfinder, and RefFinder. The findings were confirmed using ML obtained from plants that had been stressed by drought. By using RefFinder with ML samples collected under drought conditions, it was determined that the top five most stable reference genes were GAPDH > UEC1 > Actin > Tubulin- > Tubulin—5, whereas the least stable reference gene was Ubiquitin. In addition, under control conditions, UEC1, UEC2, Actin, and GAPDH were selected as the highest stable potential reference genes at the juvenile stage of R. delavayi with ML and STM. When ML and STM were combined with drought-stressed samples, TIP41, GAPDH, or their combination proved to be the most effective qRT-PCR primers. The findings will aid in the improvement of the precision and reliability of qRT-PCR data and laying the groundwork for future gene functional studies in R. delavayi.
Collapse
Affiliation(s)
- Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Yanfei Cai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Mingchao Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming, China
- *Correspondence: Guanghui Du, ; Jihua Wang,
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
- *Correspondence: Guanghui Du, ; Jihua Wang,
| |
Collapse
|
5
|
Liao Z, Sun Z, Bi Q, Gong Q, Sun B, Wei Y, Liang M, Xu H. Screening of reference genes in tiger puffer (Takifugu rubripes) across tissues and under different nutritional conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1739-1758. [PMID: 34482494 DOI: 10.1007/s10695-021-01012-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The present study was aimed at screening suitable reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) in tiger puffer (Takifugu rubripes), an important aquaculture species in Asia and also a good model species for lipid research. Specifically, this reference gene screening was targeted at standardization of gene expression in different tissues (liver, muscle, brain, intestine, heart, eye, skin, and spleen) or under different nutritional conditions (starvation and different dietary lipid levels). Eight candidate reference genes (ribosomal protein L19 and L13 (RPL19 and RPL13), elongation factor-1 alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine guanine phosphoribosyl transferase1 (HPRT1), beta-2-Microglobulin (B2M), 18S ribosomal RNA (18SrRNA), and beta actin (ACTB)) were evaluated with four algorithms (geNorm, NormFinder, BestKeeper, and comparative ΔCt method). The results showed that different algorithms generated inconsistent results. Based on these findings, RPL19, EF1α, 18SrRNA, and RPL13 were relatively stable in different tissues of tiger puffer. During starvation conditions, ACTB/RPL19 was the best reference gene combination. Under different dietary lipid levels, ACTB/RPL13 was the most suitable reference gene combination. The present results will help researchers to obtain more accurate results in future qRT-PCR analysis in tiger puffer.
Collapse
Affiliation(s)
- Zhangbin Liao
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Zhiyuan Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Qingli Gong
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Bo Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
6
|
Identification and selection of reference genes for gene expression analysis by quantitative real-time PCR in Suaeda glauca's response to salinity. Sci Rep 2021; 11:8569. [PMID: 33883657 PMCID: PMC8060425 DOI: 10.1038/s41598-021-88151-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (qPCR) using a stable reference gene is widely used for gene expression research. Suaeda glauca L. is a succulent halophyte and medicinal plant that is extensively used for phytoremediation and extraction of medicinal compounds. It thrives under high-salt conditions, which promote the accumulation of high-value secondary metabolites. However, a suitable reference gene has not been identified for gene expression standardization in S. glauca under saline conditions. Here, 10 candidate reference genes, ACT7, ACT11, CCD1, TUA5, UPL1, PP2A, DREB1D, V-H+-ATPase, MPK6, and PHT4;5, were selected from S. glauca transcriptome data. Five statistical algorithms (ΔCq, geNorm, NormFinder, BestKeeper, and RefFinder) were applied to determine the expression stabilities of these genes in 72 samples at different salt concentrations in different tissues. PP2A and TUA5 were the most stable reference genes in different tissues and salt treatments, whereas DREB1D was the least stable. The two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with MYB and AP2 in germinating seeds of S. glauca exposed to different NaCl concentrations. Our study provides a foundational framework for standardizing qPCR analyses, enabling accurate gene expression profiling in S. glauca.
Collapse
|