1
|
Garrote Achou C, Cantalejo Díez MJ, Diaz Cano J, Molinos Equiza X. Evaluation of Different Nutritional Sources in Lactic Acid Bacteria Fermentation for Sustainable Postbiotic Production. Foods 2025; 14:649. [PMID: 40002092 PMCID: PMC11854014 DOI: 10.3390/foods14040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, interest in postbiotics has grown due to their potential health benefits and applications in food systems. This study evaluated various nutritional sources for lactic acid bacteria (LAB) fermentation to enhance postbiotic production. Three LAB strains were tested: Pediococcus acidilactici CECT 9879 (PA), Weissella cibaria CECT 30731 (WC), and Lactococcus lactis CECT 30734 (LL). Fermentation experiments assessed bacterial growth, pH levels, and antibacterial activity against E. coli using different carbon and nitrogen sources. Fructose and xylose significantly improved growth in WC (9.39 ± 0.16 log CFU/mL) and LL (9.37 ± 0.22 log CFU/mL) compared to glucose. Ribose enhanced antimicrobial activity in PA (41.67 ± 2.89%) and WC (50.00 ± 0.00%) relative to glucose. Additionally, plant-based nitrogen sources, such as soy (LL: 8.93 ± 0.12 log CFU/mL and 81.67 ± 2.89%) and wheat (WC: 9.40 ± 0.17 log CFU/mL and 65.00 ± 0.00%), along with microbial sources like yeast (PA: 9.57 ± 0.12 log CFU/mL and 40.00 ± 0.00%), effectively supported growth and antibacterial activity. These findings highlight the potential of developing animal-free fermentation media that meet nutritional, safety, and sustainability criteria while making a significant contribution to the optimization of postbiotic production.
Collapse
Affiliation(s)
- Chajira Garrote Achou
- Institute for Sustainability & Food Chain Innovation (IS-FOOD), Public University of Navarre (UPNA), Arrosadia Campus, E-31006 Pamplona, Spain;
- Department of Research and Development, PENTABIOL S.L., E-31191 Esquiroz, Spain; (J.D.C.); (X.M.E.)
| | - María J. Cantalejo Díez
- Institute for Sustainability & Food Chain Innovation (IS-FOOD), Public University of Navarre (UPNA), Arrosadia Campus, E-31006 Pamplona, Spain;
| | - Jesús Diaz Cano
- Department of Research and Development, PENTABIOL S.L., E-31191 Esquiroz, Spain; (J.D.C.); (X.M.E.)
| | - Xabier Molinos Equiza
- Department of Research and Development, PENTABIOL S.L., E-31191 Esquiroz, Spain; (J.D.C.); (X.M.E.)
| |
Collapse
|
2
|
Rajão A, Silva JPN, Almeida-Nunes DL, Rompante P, Rodrigues CF, Andrade JC. Limosilactobacillus reuteri AJCR4: A Potential Probiotic in the Fight Against Oral Candida spp. Biofilms. Int J Mol Sci 2025; 26:638. [PMID: 39859352 PMCID: PMC11766303 DOI: 10.3390/ijms26020638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Oral candidiasis is one of the most common infections in the immunocompromised. Biofilms of Candida species can make treatments difficult, leading to oral infection recurrence. This research aimed to isolate a Lactobacillus with anti-Candida effects from the oral cavity. An oral Lactobacillus was isolated in caries-free individuals. The best isolate was evaluated against Candida spp. planktonic and biofilm forms. The bacterial impacts on Candida biofilms' adhesion to acrylic discs were analyzed through an in vitro test. L. reuteri AJCR4 had the best anti-Candida activity in the preliminary screening. Results were promising in both planktonic and biofilms, particularly with C. albicans SC5314 and C. tropicalis ATCC750, where no viable cells were detected when using the cell-free supernatant (undiluted). In C. glabrata ATCC2001 and C. parapsilosis ATCC22019 biofilms, reductions of 3 Log10 and more than 2 Log10, respectively, were noted when using a cell suspension of L. reuteri ACJR4 (108 CFU/mL). On polymethyl methacrylate acrylic discs, the cell-free supernatant reduced Candida adhesion, resulting in no viable cell detection on the surface. In conclusion, L. reuteri AJCR4 demonstrated notable antifungal activity against Candida biofilms. This oral isolate and its postbiotic can be a potential alternative strategy to oral candidiasis, especially to treat recalcitrant infections.
Collapse
Affiliation(s)
- António Rajão
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.R.); (D.L.A.-N.); (J.C.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Diana L. Almeida-Nunes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.R.); (D.L.A.-N.); (J.C.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
| | - Paulo Rompante
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Célia Fortuna Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.R.); (D.L.A.-N.); (J.C.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - José Carlos Andrade
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal; (A.R.); (D.L.A.-N.); (J.C.A.)
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
3
|
Myo NZ, Kamwa R, Jamnong T, Swasdipisal B, Somrak P, Rattanamalakorn P, Neatsawang V, Apiwatsiri P, Yata T, Hampson DJ, Prapasarakul N. Metabolomic profiling and antibacterial efficacy of probiotic-derived cell-free supernatant encapsulated in nanostructured lipid carriers against canine multidrug-resistant bacteria. Front Vet Sci 2025; 11:1525897. [PMID: 39830167 PMCID: PMC11739306 DOI: 10.3389/fvets.2024.1525897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Aim This study aimed to investigate the antibacterial efficacy of probiotic-derived cell-free supernatants (CFS) encapsulated within nanostructured lipid carriers (NLCs) against multidrug-resistant Pseudomonas aeruginosa and Staphylococcus pseudintermedius. Additionally, it aimed to identify specific bioactive compounds that contribute to the reported antibacterial properties by characterizing the metabolite substances present in the CFS using a metabolomic analysis technique. Methods Eight strains of lactic acid bacteria including Lactiplantibacillus plantarum (L22F and L25F), Pediococcus acidilactici (P72N, BF9, BF 14, BYF 20 and BYF 26) and Ligilactobacillus salivarius (BF 12) were selected as probiotic candidates. The inhibitory activity of their cell free supernatant (CFS) was tested against clinical strains of P. aeruginosa and S. pseudintermedius isolated from skin wounds of dogs and cats. An untargeted metabolomic approach based on liquid chromatography-mass spectrometry (LC-MS) identified potential antibacterial metabolites in the CFS. Cell-Free Supernatants-Nanostructured Lipid Carriers (CFS-NLCs) were developed, and their antibacterial activity and minimum bactericidal concentration (MBC) were analysed. Results Despite the strong multidrug-resistant nature of the pathogens, CFS displayed a moderate antibacterial activity against most tested strains. The acidic nature of the CFS, combined with bioactive antibacterial metabolites like Kanzonol V and 1-Hexanol, likely contributed to its inhibitory effects against pathogenic bacteria; notably, Kanzonol V was abundant in the CFS of L22F, BF12 and BYF26 (L22F_CFS, BF12_CFS and BYF26_CFS), while 1-Hexanol was particularly enriched in CFS of P72N (P72N_CFS), with both compounds effectively targeting bacterial cell membranes to disrupt cell integrity, leading to bacterial cell death. Other beneficial compounds such as Pyroglutamylleucine, Trigoneoside VIII and 18-Nor-4(19),8,11,13-abietatetraene which are likely to have anti-inflammatory, antimicrobial and antioxidant activities, were also detected in the CFS. The CFS-NLCs maintained their antibacterial activity and 30-60% dilutions of product completely inhibited the growth of pathogen strains even after three-months storage at room temperature. Conclusion These findings suggest that CFS-NLCs could be a promising biotic therapy for treating hospital infections such as canine dermatitis and otitis caused by multidrug-resistant P. aeruginosa and S. pseudintermedius.
Collapse
Affiliation(s)
- Nay Zin Myo
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ratchnida Kamwa
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thitirat Jamnong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Busaba Swasdipisal
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Papavarin Somrak
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Phanchompoo Rattanamalakorn
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Vipada Neatsawang
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Apiwatsiri
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Yata
- Department of Veterinary Biochemistry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - David J. Hampson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Diagnostic and Monitoring of Animal Pathogens, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Park JM, Moon JW, Zhang BZ, An BK. Antioxidant Activity and Other Characteristics of Lactic Acid Bacteria Isolated from Korean Traditional Sweet Potato Stalk Kimchi. Foods 2024; 13:3261. [PMID: 39456323 PMCID: PMC11507834 DOI: 10.3390/foods13203261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to examine the biological activity and probiotic properties of lactic acid bacteria (LAB) isolated from sweet potato stalk kimchi (SPK). Various LAB and Bacillus spp. are active in the early stages of the fermentation of kimchi made from sweet potato stalk. Four strains of LAB were identified, including SPK2 (Levilactobacillus brevis ATCC 14869), SPK3 (Latilactobacillus sakei NBRC 15893), SPK8 and SPK9 (Leuconostoc mesenteroides subsp. dextranicum NCFB 529). SPK2, SPK3, SPK8, and SPK9 showed 64.64-94.23% bile acid resistance and 78.66-82.61% pH resistance. We identified over 106 CFU/mL after heat treatment at 75 °C. Four strains showed high antimicrobial activity to Escherichia coli and Salmonella Typhimurium with a clear zone of >11 mm. SPK2 had the highest antioxidative potentials, higher than the other three bacteria, with 44.96 μg of gallic acid equivalent/mg and 63.57% DPPH scavenging activity. These results demonstrate that the four strains isolated from sweet potato kimchi stalk show potential as probiotics with excellent antibacterial effects and may be useful in developing health-promoting products.
Collapse
Affiliation(s)
- Jung-Min Park
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Ji-Woon Moon
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Bo-Zheng Zhang
- Department of Food Marketing and Safety, Konkuk University, Seoul 05029, Republic of Korea; (J.-M.P.); (J.-W.M.); (B.-Z.Z.)
| | - Byoung-Ki An
- Animal Resources Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Vibriocidal efficacy of Bifidobacterium bifidum and Lactobacillus acidophilus cell-free supernatants encapsulated in chitosan nanoparticles against multi-drug resistant Vibrio cholerae O1 El Tor. BMC Infect Dis 2024; 24:905. [PMID: 39223499 PMCID: PMC11367852 DOI: 10.1186/s12879-024-09810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cholera is a diarrheal disease recognized for being caused by toxin-producing Vibrio (V.) cholerae. This study aims to assess the vibriocidal and immunomodulatory properties of derived cell-free supernatants (CFSs) of Bifidobacterium (B.) bifidum and Lactobacillus (L.) acidophilus encapsulated in chitosan nanoparticles (CFSb-CsNPs and CFSa-CsNPs) against clinical multi-drug resistance (MDR) isolates of V. cholerae O1 El Tor. METHODS We synthesized CFSb-CsNPs and CFSa-CsNPs using the ionic gelation technique. The newly nanostructures were characterized for size, surface zeta potential, morphology, encapsulation efficacy (EE), stability in different pH values and temperatures, release profile, and in vitro cytotoxicity. The antimicrobial and antibiofilm effects of the obtained nanocomposites on clinical MDR isolates (N = 5) of V. cholerae E1 Tor O1 were investigated by microbroth dilution assay and crystal violet staining, respectively. We conducted quantitative real-time PCR (qRT-PCR) to analyze the relative gene expressions of Bap, Rbmc, CTXAB, and TCP in response to CFSb-CsNPs and CFSa-CsNPs. Additionally, the immunomodulatory effects of formulated structures on the expression of TLR2 and TLR4 genes in human colorectal adenocarcinoma cells (Caco-2) were studied. RESULTS Nano-characterization analyses indicated that CFSb-CsNPs and CFSa-CsNPs exhibit spherical shapes under scanning electron microscopy (SEM) imaging, with mean diameters of 98.16 ± 0.763 nm and 83.90 ± 0.854 nm, respectively. Both types of nanoparticles possess positive surface charges. The EE% of CFSb-CsNPs was 77 ± 4.28%, whereas that of CFSa-CsNPs was 62.5 ± 7.33%. Chitosan (Cs) encapsulation leads to increased stability of CFSs in simulated pH conditions of the gastrointestinal tract in which the release rates for CFSb-CsNPs and CFSa-CsNPs were reached at 58.00 ± 1.24% and 55.01 ± 1.73%, respectively at pH = 7.4. The synergistic vibriocidal effects observed from the co-administration of both CFSb-CsNPs and CFSa-CsNPs, as evidenced by a fractional inhibitory concentration (FIC) index of 0.57, resulting in a significantly lower MIC of 2.5 ± 0.05 mg/mL (p < 0.0001) compare to individual administration. The combined antibacterial effect of CFSb-CsNPs and CFSa-CsNPs on Bap (0.14 ± 0.05), Rbmc (0.24 ± 0.01), CTXAB (0.30 ± 0.09), and TCP (0.38 ± 0.01) gene expression was significant (p < 0.001). Furthermore, co-administration of CFSb-CsNPs and CFSa-CsNPs also demonstrated the potency of suppressing TLR 2/4 (0.20 ± 0.01 and 0.12 ± 0.02, respectively) gene expression (p = 0.0019) and reduced Caco-2 cells attached bacteria to 526,000 ± 51,46 colony-forming units/mL (11.19%) (p < 0.0001). CONCLUSION Our study revealed that encapsulating CFSs within CsNPs enhances their vibriocidal activity by improving stability and enabling a controlled release mechanism at the site of interaction between the host and bacteria. Additionally, the simultaneous use of CFSb-CsNPs and CFSa-CsNPs exhibited superior vibriocidal potency against MDR V. cholerae O1 El Tor strains, indicating these combinations as a potential new approach against MDR bacteria.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Aliakbar Rasekhi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Chiba M, Miri S, Yousuf B, Esmail GA, Leao L, Li Y, Hincke M, Minic Z, Mottawea W, Hammami R. Dual bacteriocin and extracellular vesicle-mediated inhibition of Campylobacter jejuni by the potential probiotic candidate Ligilactobacillus salivarius UO.C249. Appl Environ Microbiol 2024; 90:e0084524. [PMID: 39078127 PMCID: PMC11337818 DOI: 10.1128/aem.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most common causes of foodborne infections worldwide and a major contributor to diarrheal diseases. This study aimed to explore the ability of commensal gut bacteria to control C. jejuni infection. Bacterial strains from the intestinal mucosa of broilers were screened in vitro against C. jejuni ATCC BAA1153. The cell-free supernatant (CFS) of Ligilactobacillus salivarius UO.C249 showed potent dose-dependent antimicrobial activity against the pathogen, likely due to the presence of bacteriocin-like moieties, as confirmed by protease treatment. Genome and exoproteome analyses revealed the presence of known bacteriocins, including Abp118. The genome of Lg. salivarius UO.C249 harbors a 1.8-Mb chromosome and a 203-kb megaplasmid. The strain was susceptible to several antibiotics and had a high survival rate in the simulated chicken gastrointestinal tract (GIT). Post-protease treatment revealed residual inhibitory activity, suggesting alternative antimicrobial mechanisms. Short-chain fatty acid (SCFA) quantification confirmed non-inhibitory levels of acetic (24.4 ± 1.2 mM), isovaleric (34 ± 1.0 µM), and butyric (32 ± 2.5 µM) acids. Interestingly, extracellular vesicles (EVs) isolated from the CFS of Lg. salivarius UO.C249 were found to inhibit C. jejuni ATCC BAA-1153. Proteome profiling of these EVs revealed the presence of unique proteins distinct from bacteriocins identified in CFS. The majority of the identified proteins in EVs are located in the membrane and play roles in transmembrane transport and peptidoglycan degradation, peptidase, proteolysis, and hydrolysis. These findings suggest that although bacteriocins are a primary antimicrobial mechanism, EV production also contributes to the inhibitory activity of Lg. salivarius UO.C249 against C. jejuni. IMPORTANCE Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and a global public health concern. The increasing antibiotic resistance and lack of effective alternatives in livestock production pose serious challenges for controlling C. jejuni infections. Therefore, alternative strategies are needed to control this pathogen, especially in the poultry industry where it is prevalent and can be transmitted to humans through contaminated food products. In this study, Ligilactobacillus salivarius UO.C249 isolated from broiler intestinal mucosa inhibited C. jejuni and exhibited important probiotic features. Beyond bacteriocins, Lg. salivarius UO.C249 secretes antimicrobial extracellular vesicles (EVs) with a unique protein set distinct from bacteriocins that are involved in transmembrane transport and peptidoglycan degradation. Our findings suggest that beyond bacteriocins, EV production is also a distinct inhibitory signaling mechanism used by Lg. salivarius UO.C249 to control C. jejuni. These findings hold promise for the application of probiotic EVs for pathogen control.
Collapse
Affiliation(s)
- Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Mitchaleaw M, Juntrapirom S, Bunrod A, Kanjanakawinkul W, Yawootti A, Charoensup W, Sirilun S, Chaiyana W. Antimicrobial Properties Related to Anti-Acne and Deodorant Efficacy of Hedychium coronarium J. Koenig Extracts from Pulsed Electric Field Extraction. Antibiotics (Basel) 2024; 13:108. [PMID: 38275337 PMCID: PMC10812461 DOI: 10.3390/antibiotics13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This study investigated the potential of pulsed electric field (PEF) extraction in enhancing the antimicrobial properties related to anti-acne and deodorant properties of Hedychium coronarium extract. The dried leaf and rhizome of H. coronarium were extracted using 95% v/v ethanol through both conventional solvent extraction and PEF extraction techniques (10, 14, and 20 kV/cm). The chemical composition of the extracts was analyzed. The antimicrobial activities, specifically in relation to acne treatment against Cutibacterium acnes and deodorant properties against Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, and Escherichia coli, were determined. The irritation profile of was evaluated using the hen's egg chorioallantoic membrane test. The results showed that PEF extraction increased the extract yield, particularly at an electric field strength of 20 kV/cm. Furthermore, PEF extraction significantly enhanced the ellagic acid content, particularly in the leaf extract. Furthermore, the leaf extract demonstrated stronger inhibitory effects against microorganisms associated with body odor and acne compared to the rhizome extract. Notably, all extracts exhibited no signs of irritation, indicating their safety. Overall, the findings suggest that PEF extraction from H. coronarium enhances yield, bioactive compound content, and antimicrobial effects. This indicates the potential of the extract for acne treatment and deodorant use.
Collapse
Affiliation(s)
- Manasanan Mitchaleaw
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand;
| | - Wannaree Charoensup
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Mitropoulou G, Kompoura V, Nelios G, Kourkoutas Y. Pathogenic Biofilm Removal Potential of Wild-Type Lacticaseibacillus rhamnosus Strains. Pathogens 2023; 12:1449. [PMID: 38133332 PMCID: PMC10748307 DOI: 10.3390/pathogens12121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The emergence of antimicrobial resistance remains one of the greatest public health concerns. Biofilm formation has been postulated as a mechanism of microbial pathogens to resist antimicrobial agents. Lactic Acid Bacteria (LAB) and their metabolites have been proposed to combat bacterial biofilms due to their antimicrobial activity. In this vein, the aim of the present study was to investigate the biofilm removal potential of cell-free supernatants (CFSs) of five wild-type Lacticaseibacillus rhamnosus strains, isolated from Greek natural products, in comparison to the commercially available L. rhamnosus GG strain, against biofilms formed by common foodborne pathogens (Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus). The biofilm removal activity of LAB was assessed on a two-day-old mature biofilm using a microtiter plate-based procedure. Both non-neutralized and neutralized CFSs removed biofilms in a concentration-dependent manner. The biofilm removal activity of the non-neutralized CFSs was significantly higher compared to the neutralized CFSs, as expected, with ranges of 60-89% and 30-80%, respectively. The biofilm removal efficiency of L. rhamnosus OLXAL-3 was significantly higher among the wild-type L. rhamnosus strains tested (20-100% v/v). In conclusion, our results suggest the great potential of the application of wild-type L. rhamnosus strain' CFSs as effective natural agents against pathogenic bacterial biofilms.
Collapse
Affiliation(s)
| | | | | | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.M.); (V.K.); (G.N.)
| |
Collapse
|
9
|
Pelyuntha W, Vongkamjan K. Control of Salmonella in Chicken Meat by a Phage Cocktail in Combination with Propionic Acid and Modified Atmosphere Packaging. Foods 2023; 12:4181. [PMID: 38002238 PMCID: PMC10670840 DOI: 10.3390/foods12224181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Salmonella contamination in poultry meat is an important food safety issue as this pathogen can lead to serious illness and economic losses worldwide. In poultry meat processing, a variety of strong bacteriostatic agents has been introduced for controlling Salmonella including bacteriophages (phages), organic acids, and modified atmosphere packaging (MAP). In our study, two selected phages including vB_SenM_P7 and vB_SenP_P32 were used in combination with propionic acid (PA) and MAP for controlling Salmonella of multiple serovars on chicken meat under storage at 4 °C. The two phages showed strong lytic activity against over 72 serovars of Salmonella tested (25.0 to 80.6%). Phages, vB_SenM_P7 and vB_SenP_P32 showed 40% and 60% survival rates, respectively, after the exposure to temperatures up to 70 °C. Both phages remained active, with nearly 100% survival at a wide range of pH (2 to 12) and 15% NaCl (w/v). The available chlorine up to 0.3% (v/v) led to a phage survival rate of 80-100%. A combination of Salmonella phage cocktail and 0.5% PA could reduce Salmonella counts in vitro by 4 log CFU/mL on day 3 whereas a phage cocktail and 0.25% PA showed a 4-log reduction on day 5 during storage at 4 °C. For the phage treatment alone, a 0.3-log reduction of Salmonella was observed on day 1 of storage at 4 °C. In the chicken meat model, treatment by a phage cocktail and PA at both concentrations in MAP conditions resulted in a complete reduction of Salmonella cells (4-5 log unit/g) on day 2 of storage whereas each single treatment under MAP conditions showed a complete cell reduction on day 4. For the meat sensory evaluation, chicken meat treated with a phage cocktail-PA (0.5%) in MAP condition showed the highest preference scores, suggesting highly acceptability and satisfactory. These findings suggest that a combined treatment using a phage cocktail and PA in MAP conditions effectively control Salmonella in poultry meat during storage at low temperature to improve the quality and safety of food.
Collapse
Affiliation(s)
| | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
10
|
Pang X, Hu X, Du X, Lv C, Yuk HG. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp. Food Sci Biotechnol 2023; 32:1703-1718. [PMID: 37780596 PMCID: PMC10533767 DOI: 10.1007/s10068-023-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella is one of the pathogens that cause many foodborne outbreaks throughout the world, representing an important global public health problem. Salmonella strains with biofilm-forming abilities have been frequently isolated from different food processing plants, especially in poultry industry. Biofilm formation of Salmonella on various surfaces can increase their viability, contributing to their persistence in food processing environments and cross-contamination of food products. In recent years, increasing concerns arise about the antimicrobial resistant and disinfectant tolerant Salmonella, while adaptation of Salmonella in biofilms to disinfectants exacerbate this problem. Facing difficulties to inhibit or remove Salmonella biofilms in food industry, eco-friendly and effective strategies based on chemical, biotechnological and physical methods are in urgent need. This review discusses biofilm formation of Salmonella in food industries, with emphasis on the current available knowledge related to antimicrobial resistance, together with an overview of promising antibiofilm strategies for controlling Salmonella in food production environments.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xin Hu
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xueying Du
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Chenglong Lv
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, National University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909 Republic of Korea
| |
Collapse
|
11
|
Keeratikunakorn K, Kaewchomphunuch T, Kaeoket K, Ngamwongsatit N. Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen. Sci Rep 2023; 13:5995. [PMID: 37046067 PMCID: PMC10097705 DOI: 10.1038/s41598-023-33062-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
The use of antibiotics with semen extender appears to be a practical solution to minimise bacterial growth in fresh boar semen preservation. Unfortunately, the excessive use of antibiotics promotes antimicrobial resistance (AMR). This becomes a worldwide concern due to the antimicrobial resistance genes transmitted to animals, environment, and humans. Probiotics are one of the alternative methods to reduce antibiotic use. They could inhibit pathogenic bacteria by producing antimicrobial substances in cell free supernatants (CFS). Nevertheless, there is no comprehensive study undertaken on inhibitory activity against pathogenic bacteria isolated from boar semen origin. Our study investigated the efficacy of CFS produced from selected probiotics: Bacillus spp., Enterococcus spp., Weissella spp., Lactobacillus spp., and Pediococcus spp. inhibiting pathogenic bacteria isolated from fresh boar semen. Besides, the semen-origin pathogenic bacteria are subjected to identification, antimicrobial resistance genes detection, and antibiotic susceptibility test (AST). Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis are the most common pathogens identified in boar semen with resistance to numerous antibiotics used in pig industry. The CFS with its antimicrobial peptides and/or bacteriocin constituent derived from selected probiotics could inhibit the growth of pathogenic bacteria carrying antimicrobial resistance genes (mcr-3 and int1 genes). The inhibition zones for Pseudomonas aeruginosa, Escherichia coli, and Proteus mirabilis provided more efficient results in the CFS derived from Lactobacillus spp. and Pediococcus spp. than those of the CFS produced from Enterococcus spp., Weissella spp. and Bacillus spp., respectively. It is worth noted that as the incubation time increased, the antibacterial activity decreased conversely. Our results on CFS with its antimicrobial peptides and/or bacteriocin constituent inhibits semen-origin pathogenic bacteria guide the direction as a promising alternative method used in the semen extender preservation of the pig industry.
Collapse
Affiliation(s)
- Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Thotsapol Kaewchomphunuch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
12
|
Salman MK, Abuqwider J, Mauriello G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms 2023; 11:microorganisms11030793. [PMID: 36985366 PMCID: PMC10056907 DOI: 10.3390/microorganisms11030793] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Background: Quorum sensing (QS) is a cell-to-cell communication mechanism that occurs between inter- and intra-bacterial species and is regulated by signaling molecules called autoinducers (AIs). It has been suggested that probiotics can exert a QS inhibitory effect through their metabolites. Purpose: To provide an overview of (1) the anti-QS activity of probiotics and its mechanism against foodborne pathogenic and spoilage bacteria; (2) the potential role of the QS of probiotics in gut health; and (3) the impact of microencapsulation on QS. Results: Lactobacillus species have been extensively studied for their anti-QS activity and have been found to effectively disrupt QS in vitro. However, their effectiveness in a food matrix is yet to be determined as they interfere with the AI receptor or its synthesis. QS plays an important role in both the biofilm formation of probiotics and pathogenic bacteria. Moreover, in vitro and animal studies have shown that QS molecules can modulate cytokine responses and gut dysbiosis and maintain intestinal barrier function. In this scenario, microencapsulation was found to enhance AI activity. However, its impact on the anti-QS activity of probiotics and its underlying mechanism remains unclear. Conclusions: Probiotics are potential candidates to block QS activity in foodborne pathogenic and food spoilage bacteria. Microencapsulation increases QS efficacy. However, more research is still needed for the identification of the QS inhibitory metabolites from probiotics and for the elucidation of the anti-QS mechanism of probiotics (microcapsules and free cells) in food and the human gut.
Collapse
|
13
|
Pelyuntha W, Yafa A, Charoenwong B, Vongkamjan K. Effectiveness of the Organic Acid-Based Antimicrobial Agent to Prevent Bacterial Contamination in Fish Meal. Animals (Basel) 2022; 12:3367. [PMID: 36496886 PMCID: PMC9741115 DOI: 10.3390/ani12233367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Animal feed production is an important step of the food animal production chain in a farm-to-table model. The contamination of raw ingredients with foodborne pathogens in feed production remains as an important safety issue where pathogens may spread into food animals to cause illnesses in humans when affected food animals are consumed. In the present study, we aimed to examine the quality and microbial contamination of fish meal and to investigate the effectiveness of the organic acid-based antimicrobial agent SALTEC 514TM against Salmonella to prevent bacterial contamination in fish meal. Fish meal samples (n = 4) collected from feed mills at different locations were analyzed for protein and total volatile basic nitrogen (TVBN) content to assess their nutritional value and freshness, and its microbiological quality. The protein and TVBN content ranged from 53.2 ± 3.1 to 67.5 ± 2.3 g/100 g and 73.8 ± 4.5 to 100.4 ± 11.2 mg/100 g meal, respectively. Total plate count of the fish meal samples ranged from 2.0 ± 0.3 to 4.5 ± 0.5 log units, whereas suspected foodborne bacteria, Escherichia coli and Salmonella, were not detected in all samples. Fish meal samples were artificially contaminated (day 0) and re-challenged (day 30 and 90) with Salmonella Enteritidis (3 log CFU/g) to test for the effectiveness of SALTEC 514TM, an organic acid-based antimicrobial formulation, in preventing Salmonella contamination and recontamination during storage. SALTEC 514TM, when applied at three different doses, was found to reduce the number of Salmonella in monitored samples after one day of storage. A low dose of 0.5 kg/ton SALTEC 514TM prevented Salmonella recontamination from occurring in fish meal samples stored for 37 days. In medium (1.0 kg/ton) and high doses (3.0 kg/ton), applications of SALTEC 514TM prevented the Salmonella recontamination for a maximum storage duration of 97 days. The application of SALTEC 514TM in fish meal and/or other feed ingredients may prove to be a safe alternative to reduce the microbial load, especially of foodborne-related microorganisms, to contribute to feed and food safety.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univeristy, Bangkok 10900, Thailand
| | - Ananya Yafa
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univeristy, Bangkok 10900, Thailand
| | | | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart Univeristy, Bangkok 10900, Thailand
| |
Collapse
|
14
|
Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CGM, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol 2022; 13:1002185. [PMID: 36504831 PMCID: PMC9733432 DOI: 10.3389/fmicb.2022.1002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut and food microbiomes interact during digestion. The outcome of these interactions influences the taxonomical composition and functional capacity of the resident human gut microbiome, with potential consequential impacts on health and disease. Microbe-microbe interactions between the resident and introduced microbiomes, which likely influence host colonisation, are orchestrated by environmental conditions, elements of the food matrix, host-associated factors as well as social cues from other microorganisms. Quorum sensing is one example of a social cue that allows bacterial communities to regulate genetic expression based on their respective population density and has emerged as an attractive target for therapeutic intervention. By interfering with bacterial quorum sensing, for instance, enzymatic degradation of signalling molecules (quorum quenching) or the application of quorum sensing inhibitory compounds, it may be possible to modulate the microbial composition of communities of interest without incurring negative effects associated with traditional antimicrobial approaches. In this review, we summarise and critically discuss the literature relating to quorum sensing from the perspective of the interactions between the food and human gut microbiome, providing a general overview of the current understanding of the prevalence and influence of quorum sensing in this context, and assessing the potential for therapeutic targeting of quorum sensing mechanisms.
Collapse
Affiliation(s)
- A. Kate Falà
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland,*Correspondence: Paul D. Cotter,
| |
Collapse
|
15
|
Zhang X, Liu B, Ding X, Bin P, Yang Y, Zhu G. Regulatory Mechanisms between Quorum Sensing and Virulence in Salmonella. Microorganisms 2022; 10:2211. [PMID: 36363803 PMCID: PMC9693372 DOI: 10.3390/microorganisms10112211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 08/28/2023] Open
Abstract
Salmonella is a foodborne pathogen that causes enterogastritis among humans, livestock and poultry, and it not only causes huge economic losses for the feed industry but also endangers public health around the world. However, the prevention and treatment of Salmonella infection has remained poorly developed because of its antibiotic resistance. Bacterial quorum sensing (QS) system is an intercellular cell-cell communication mechanism involving multiple cellular processes, especially bacterial virulence, such as biofilm formation, motility, adherence, and invasion. Therefore, blocking the QS system may be a new strategy for Salmonella infection independent of antibiotic treatment. Here, we have reviewed the central role of the QS system in virulence regulation of Salmonella and summarized the most recent advances about quorum quenching (QQ) in virulence attenuation during Salmonella infection. Unraveling the complex relationship between QS and bacterial virulence may provide new insight into the therapy of pathogen infection.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Baobao Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyan Ding
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Peng Bin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yang Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Honeybee-associated lactic acid bacteria and their probiotic potential for human use. World J Microbiol Biotechnol 2022; 39:2. [PMID: 36344753 DOI: 10.1007/s11274-022-03427-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
This study aims to identify lactic acid bacteria (LAB) isolated from honeybees (Apis mellifera workers and larvae) in detail and to determine their functional probiotic properties. A total of 11 strains were classified based on morphological and biochemical characteristics. Preliminary probiotic properties of strains, that were molecularly identified using 16 S rRNA, such as antimicrobial activity, tolerance to digestive conditions, aggregation ability, were investigated. The antimicrobial properties of strains were tested against a wide range of human pathogens. All strains that showed γ-hemolysis and did not contain bacteriophages were considered safe. The strains' survivability checked for 0.3% bile and 3.0-7.8 pH contents was promising. The highest autoaggregation ranged from 14.7 to 30.76% after 4 h. Tested LAB strains markedly exhibited coaggregation with Listeria monocytogenes and Escherichia coli. According to the results, tested bacteria showed significant antagonistic effects against pathogens, and positive probiotic characteristics compatible with in vitro gastrointestinal tract conditions. The results suggest that Apis mellifera LAB symbionts may have a probiotic potential, and be effective and safe candidates for human use. This study provides an addition to the development of the current knowledge by defining in detail honeybee-associated bacteria and determining their probiotic potential.
Collapse
|
17
|
Pattananandecha T, Sirilun S, Apichai S, Ouirungroj T, Uirungroj P, Ogata F, Kawasaki N, Saenjum C. Pharmaceutical Incompatibility of Lubricating Gel Formulation Reduces Antibacterial Activity of Chlorhexidine Gluconate: In Vitro Study in Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12285. [PMID: 36231587 PMCID: PMC9566729 DOI: 10.3390/ijerph191912285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Chlorhexidine gluconate (CHG) is a cationic disinfectant. The positive charge of CHG molecules binds to phospholipid's negative charge in bacterial cell walls, causing membrane disruption. The in vitro kinetic physical, chemical and biological incompatibilities of nine lubricating gels with 1% w/v CHG were investigated. Five containing anionic thickener, two containing nonionic thickener, and two containing cationic thickener were collected from hospitals in northern Thailand. All the anionic and nonionic lubricating gels significantly reduced (p < 0.05) the CHG amount after 5 min of exposure time from 12.54% to 54.99%, respectively. In contrast, the amount of CHG exposed with cationic lubricating gels was maintained. Antibacterial activity was significantly reduced to a 1.17-4.33 log10 reduction for Staphylococcus aureus ATCC25923 and a 1.07-3.52 log10 reduction for Escherichia coli ATCC25922 after 5 min exposure to all anionic and nonionic lubricating gels. In contrast, the two cationic lubricating gels maintained the antibacterial activity of the CHG solution (5.69 ± 0.14 and 5.45 ± 0.17 log10 reduction). The results suggest that anionic and nonionic thickeners in lubricating gel formulations may neutralize the positive charge and reduce the antibacterial activity of CHG, reducing its effectiveness as a disinfectant.
Collapse
Affiliation(s)
- Thanawat Pattananandecha
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sutasinee Apichai
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teerapat Ouirungroj
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Pose Health Care Co., Ltd., 1 Soi Ramintra 107, Ramintra Rd., Kannayao, Bangkok 10230, Thailand
| | - Phisit Uirungroj
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Pose Health Care Co., Ltd., 1 Soi Ramintra 107, Ramintra Rd., Kannayao, Bangkok 10230, Thailand
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Chalermpong Saenjum
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Göksel Ş, Akçelik N, Özdemir C, Akçelik M. The Effects of Lactic Acid Bacteria on Salmonella Biofilms. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Jitpakdee J, Kantachote D, Kanzaki H, Nitoda T. Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Enciso‐Martínez Y, González‐Pérez CJ, Aispuro‐Hernández E, Vargas‐Arispuro IC, Ayala‐Zavala JF, Martínez‐Téllez MA. Antimicrobial effect of chitosan and extracellular metabolites of
Pediococcus pentosaceus
CM175 against
Salmonella
Typhimurium and
Escherichia coli
O157:H7. J Food Saf 2022. [DOI: 10.1111/jfs.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yessica Enciso‐Martínez
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Sonora Mexico
| | - Cristóbal J. González‐Pérez
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Sonora Mexico
| | - Emmanuel Aispuro‐Hernández
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Sonora Mexico
| | - Irasema C. Vargas‐Arispuro
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Sonora Mexico
| | - Jesús F. Ayala‐Zavala
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Sonora Mexico
| | - Miguel A. Martínez‐Téllez
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas Hermosillo Sonora Mexico
| |
Collapse
|
21
|
Pelyuntha W, Vongkamjan K. Combined effects of Salmonella phage cocktail and organic acid for controlling Salmonella Enteritidis in chicken meat. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Kaewchomphunuch T, Charoenpichitnunt T, Thongbaiyai V, Ngamwongsatit N, Kaeoket K. Cell-free culture supernatants of Lactobacillus spp. and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in Thailand. BMC Vet Res 2022; 18:60. [PMID: 35093088 PMCID: PMC8800250 DOI: 10.1186/s12917-022-03140-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pathogenic Escherichia coli (E. coli) is an important causative agent for infectious diseases in pigs and causes significant economic loss. The global concern of antimicrobial resistance of bacteria raises awareness of the alternative ways of using antimicrobial peptides (AMPs). The study was aimed to identify and test the efficacy of AMPs from Lactobacillus spp. against the growth of pathogenic E. coli isolated from pigs in Thailand. Briefly, cell-free culture supernatants (CFCS) from 3 strains of lactic acid bacteria (LAB) consisting of Lactobacillus acidophilus (strain KMP), Lactobacillus plantarum (strain KMP), and Pediococcus pentosaceus (strain KMP) were tested against pathogenic E. coli via agar well diffusion assay in quadruplicates. The presence of a zone of inhibition (ZOI) around wells was evaluated at different incubation time. Acid and bile tolerance test was performed for bacterial viability in acid and bile salt conditions. In addition, LAB cross-streaking assay was evaluated for antagonist activity. RESULTS The study showed that CFCS from L. acidophilus KMP, L. plantarum KMP, and P. pentosaceus KMP could inhibit the growth of pathogenic E. coli isolated from pigs in a time-dependent manner. To exemplify, the ZOI of L. plantarum KMP against E. coli (ETEC) at 8, 10, 12, 14, and 16 h incubation, were 26.6 ± 1.1, 24.9 ± 1.9, 22.5 ± 2.4, 20.3 ± 2.9, and 17.9 ± 3.3 mm, respectively. The ZOI was significantly different between 8, 10, 12, 14 h incubation, and the ZOI of the CFCS from L. plantarum KMP was larger than others (P-value < 0.05). Furthermore, L. acidophilus KMP, L. plantarum KMP, and P. pentosaceus KMP showed viability in pH 3.0, 0.3, and 0.5% (w/v) bile salt concentration. They exhibited no antagonist activity among each other. CONCLUSIONS According to the results, the CFCS from LAB including L. acidophilus KMP, L. plantarum KMP and P. pentosaceus KMP can inhibit the growth of pathogenic E. coli, isolated from pigs in Thailand. The antimicrobial activity observed was incubation time dependent.
Collapse
Affiliation(s)
- Thotsapol Kaewchomphunuch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Thunyathorn Charoenpichitnunt
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Varissara Thongbaiyai
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, 999 Phuttamonthon 4 Rd., Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| |
Collapse
|
23
|
Mani-López E, Arrioja-Bretón D, López-Malo A. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr Rev Food Sci Food Saf 2021; 21:604-641. [PMID: 34907656 DOI: 10.1111/1541-4337.12872] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023]
Abstract
Lactic acid bacteria (LAB) are distinguished by their ability to produce lactic acid, among other interesting metabolites with antimicrobial activity. A cell-free supernatant (CFS) is a liquid containing the metabolites resulting from microbial growth and the residual nutrients of the medium used. CFS from LAB can have antimicrobial activity due to organic acids, fatty acids, and proteinaceous compounds, among other compounds. This review aims to summarize the information about CFS production, CFS composition, and the antimicrobial (antibacterial and antifungal) activity of CFS from LAB in vitro, on foods, and in active packaging. In addition, the mechanisms of action of CFS on cells, the stability of CFS during storage, CFS cytotoxicity, and the safety of CFS are reviewed. The main findings are that CFS's antibacterial and antifungal activity in vitro has been widely studied, particularly in members of the genus Lactobacillus. CFS has produced strong inhibition of bacteria and molds on foods when applied directly or in active packaging. In most studies, the compounds responsible for antimicrobial activity are identified. A few studies indicate that CFSs are stable for 1 to 5 months at temperatures ranging from 4 to 35°C. The cytotoxicity of CFS on human cells has not been well studied. However, the studies that have been performed reported no toxicity of CFS. Therefore, it is necessary to investigate novel growth mediums for CFS preparation that are compatible with food sensory properties. More studies into CFS stability and cytotoxic effects are also needed.
Collapse
Affiliation(s)
- Emma Mani-López
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| | - Daniela Arrioja-Bretón
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| | - Aurelio López-Malo
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|
24
|
Anthocyanin Profile, Antioxidant, Anti-Inflammatory, and Antimicrobial against Foodborne Pathogens Activities of Purple Rice Cultivars in Northern Thailand. Molecules 2021; 26:molecules26175234. [PMID: 34500669 PMCID: PMC8433650 DOI: 10.3390/molecules26175234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Five glutinous purple rice cultivars and non-glutinous purple rice cultivated in different altitudes in the north of Thailand were collected. The samples were extracted using ethanol and determined for anthocyanins using HPLC. The total phenolic content (TPC), total flavonoid content (TFC), and the antioxidant, anti-inflammatory, and antimicrobial activities against foodborne pathogens were investigated. The highland glutinous cultivar named Khao’ Gam Luem-Phua (KGLP) extract had significantly high levels of cyanidin 3-O-glucoside, peonidin 3-O-glucoside, delphinidin 3-O-glucoside, TPC, and TFC, as well as exerting a potent antioxidant activity through ABTS assay (524.26 ± 4.63 VCEAC, mg l-ascorbic-ascorbic/g extract), lipid peroxidation (IC50 = 19.70 ± 0.31 µg/mL), superoxide anions (IC50 = 11.20 ± 0.25 µg/mL), nitric oxide (IC50 = 17.12 ± 0.56 µg/mL), a suppression effect on nitric oxide (IC50 = 18.32 ± 0.82 µg/mL), and an inducible nitric oxide synthase production (IC50 = 23.43 ± 1.21 µg/mL) in combined lipopolysaccharide-interferon-γ-activated RAW 264.7 murine macrophage cells. Additionally, KGLP also exhibited antimicrobial activity against foodborne pathogens, Staphylococcus aureus, Escherichia coli, Salmonella Enteritidis, and Vibrio parahaemolyticus. These results indicate that Thai glutinous purple rice cultivated on the highland could be a potent natural source of antioxidants, anti-inflammatories, and antimicrobial agents for use as a natural active pharmaceutical ingredient in functional food and nutraceutical products.
Collapse
|
25
|
Choi SJ, Yang SY, Yoon KS. Lactic acid bacteria starter in combination with sodium chloride controls pathogenic Escherichia coli (EPEC, ETEC, and EHEC) in kimchi. Food Microbiol 2021; 100:103868. [PMID: 34416967 DOI: 10.1016/j.fm.2021.103868] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
Kimchi is one of the primary sources of high sodium content in the Korean diet. Low-sodium kimchi is commercially manufactured to minimize the health effects of high salt. We investigated the influence of lactic acid bacteria (LAB) as starter culture in combination with 1% or 2.5% salt on the survival of pathogenic Escherichia coli and physicochemical properties of kimchi during fermentation at 10 °C and 25 °C. Among ten strains of LAB isolated from kimchi, Leuconostoc mesenteroides (KCTC 13374) and Lactobacillus plantarum (KCTC 33133) exhibited antimicrobial activities against pathogenic E. coli (EPEC, ETEC, and E. coli O157:H7) and strong tolerance to low pH (2 and 3) and 0.3% bile salts. Thus, L. mesenteroides and L. plantarum were used as starter cultures for kimchi that contained 1% and 2.5% salt. All pathogenic E. coli strains survived in kimchi regardless of starter cultures or salt concentration for over 15 days at 10 °C, but they died off within 4 days at 25 °C. Survival of pathogenic E. coli was better in naturally fermented kimchi (titratable acidity:0.65%) than kimchi fermented with starter cultures (titratable acidity:1.0%). At 10 °C, the average delta value of E. coli O157:H7 (16.15 d) was smaller than those of EPEC (20.76 d) and ETEC (20.20 d) in naturally fermented kimchi. Overall, survival ability of E. coli O157:H7 was lower than EPEC and ETEC, although differences were not significant. Reduced salt concentration from 2.5% to 1% in kimchi did not affect the growth of LAB and the fermentation period. Pathogenic E. coli died at a faster rate in kimchi fermented with starter cultures and 1% salt than in naturally fermented kimchi with 2.5% salt.
Collapse
Affiliation(s)
- So Jeong Choi
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - So Young Yang
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ki Sun Yoon
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
26
|
Espinoza-Monje M, Campos J, Alvarez Villamil E, Jerez A, Dentice Maidana S, Elean M, Salva S, Kitazawa H, Villena J, García-Cancino A. Characterization of Weissella viridescens UCO-SMC3 as a Potential Probiotic for the Skin: Its Beneficial Role in the Pathogenesis of Acne Vulgaris. Microorganisms 2021; 9:1486. [PMID: 34361921 PMCID: PMC8307422 DOI: 10.3390/microorganisms9071486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.
Collapse
Affiliation(s)
- Marcela Espinoza-Monje
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Jorge Campos
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Eduardo Alvarez Villamil
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Alonso Jerez
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| |
Collapse
|
27
|
Sheng L, Zhu MJ. Practical in-storage interventions to control foodborne pathogens on fresh produce. Compr Rev Food Sci Food Saf 2021; 20:4584-4611. [PMID: 34190395 DOI: 10.1111/1541-4337.12786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
Although tremendous efforts have been made to ensure fresh produce safety, various foodborne outbreaks and recalls occur annually. Most of the current intervention strategies are evaluated within a short timeframe (less than 1 h), leaving the behavior of the remaining pathogens unknown during subsequent storages. This review summarized outbreak and recall surveillance data from 2009 to 2018 obtained from government agencies in the United States to identify major safety concerns associated with fresh produce, discussed the postharvest handling of fresh produce and the limitations of current antimicrobial interventions, and reviewed the intervention strategies that have the potential to be applied in each storage stage at the commercial scale. One long-term (up to 12 months) prepacking storage (apples, pears, citrus among others) and three short-term (up to 3 months) postpacking storages were identified. During the prepacking storage, continuous application of gaseous ozone at low doses (≤1 ppm) is a feasible option. Proper concentration, adequate circulation, as well as excess gas destruction and ventilation systems are essential to commercial application. At the postpacking storage stages, continuous inhibition can be achieved through controlled release of gaseous chlorine dioxide in packaging, antimicrobial edible coatings, and biocontrol agents. During commercialization, factors that need to be taken into consideration include physicochemical properties of antimicrobials, impacts on fresh produce quality and sensory attributes, recontamination and cross-contamination, cost, and feasibility of large-scale production. To improve fresh produce safety and quality during storage, the collaboration between researchers and the fresh produce industry needs to be improved.
Collapse
Affiliation(s)
- Lina Sheng
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
28
|
Jo DM, Park SK, Khan F, Kang MG, Lee JH, Kim YM. An approach to extend the shelf life of ribbonfish fillet using lactic acid bacteria cell-free culture supernatant. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Shi C, Knøchel S. Sensitivity of Molds From Spoiled Dairy Products Towards Bioprotective Lactic Acid Bacteria Cultures. Front Microbiol 2021; 12:631730. [PMID: 33643260 PMCID: PMC7902714 DOI: 10.3389/fmicb.2021.631730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
Fungal spoilage of dairy products is a major concern due to food waste and economical losses, some fungal metabolites may furthermore have adverse effects on human health. The use of lactic acid bacteria (LAB) is emerging as a potential clean label alternative to chemical preservatives. Here, our aim was to characterize the growth potential at three storage temperatures (5, 16, and 25°C) of a panel of molds (four Mucor and nine Penicillium strains) isolated from dairy products, then investigate the susceptibility of the molds toward 12 LAB cultures. Fungal cell growth and morphology in malt extract broth was monitored using oCelloScope at 25°C for 24 h. Mucor plumbeus 01180036 was the fastest growing and Penicillium roqueforti ISI4 (P. roqueforti ISI4) the slowest of the tested molds. On yogurt-agar plates, all molds grew at 5, 16, and 25°C in a temperature-dependent manner with Mucor strains growing faster than Penicillium strains regardless of temperature. The sensitivity toward 12 LAB cultures was tested using high-throughput overlay method and here all the molds except P. roqueforti ISI4 were strongly inhibited. The antifungal action of these LAB was confirmed when spotting mold spores on agar plates containing live cells of the LAB strains. However, if cells were removed from the fermentates, the inhibitory effects decreased markedly. The antifungal effects of volatiles tested in a plate-on-plate system without direct contact between mold and LAB culture media were modest. Some LAB binary combinations improved the antifungal activity against the growth of several molds beyond that of single cultures in yogurt serum. The role of competitive exclusion due to manganese depletion was examined as a possible antifungal mechanism for six Penicillium and two Mucor strains. It was shown that this mechanism was a major inhibition factor for the molds tested apart from the non-inhibited P. roqueforti ISI4 since addition of manganese with increasing concentrations of up to 0.1 mM resulted in partly or fully restored mold growth in yogurt. These findings help to understand the parameters influencing the mold spoilage of dairy products and the interactions between the contaminating strains, substrate, and bioprotective LAB cultures.
Collapse
Affiliation(s)
- Ce Shi
- Laboratory of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Knøchel
- Laboratory of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
In Vitro Effects of Lactobacillus plantarum LN66 and Antibiotics Used Alone or in Combination on Helicobacter pylori Mature Biofilm. Microorganisms 2021; 9:microorganisms9020424. [PMID: 33670726 PMCID: PMC7923053 DOI: 10.3390/microorganisms9020424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a gastrointestinal pathogen with high prevalence that harms human health. Studies have shown that H. pylori can form antibiotic-tolerant biofilms, which may interfere with the efficacy of clinical antibiotic therapy. Probiotics can antagonize planktonic and biofilm pathogen cells and thus may play an auxiliary role in H. pylori antibiotic therapy. However, the effects of different probiotic strains and antibiotic combinations on H. pylori biofilms need to be further investigated. We determined the cell viability of H. pylori mature biofilms after treatment with Lactobacillus plantarum LN66 cell-free supernatant (CFS), clarithromycin (CLR), and levofloxacin (LVX) alone or in combination by the XTT method. Biofilm cells were observed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Subsequently, protein and polysaccharide concentrations in biofilm extracellular polymeric substances (EPSs) were quantitatively detected by the Bradford method and the phenol-sulfate method. The results showed that LN66 CFS had an eradication effect on mature H. pylori biofilm. When used in combination with CLR, LN66 CFS significantly attenuated the eradication effect of CLR on biofilms; in contrast, when used in combination with LVX, LN66 CFS enhanced the disrupting effect of LVX. We speculate that the different effects of CFS and antibiotic combinations on biofilms may be related to changes in the content of proteins and polysaccharides in EPS and that the combination of CFS and CLR might promote the secretion of EPS, while the combination of CFS and LVX might have the opposite effect. Accordingly, we suggest that supplementation with L. plantarum LN66 may provide additional help when therapy involving LVX is used for clinical H. pylori biofilm eradication, whereas it may impair CLR efficacy when therapy involving CLR is used.
Collapse
|