1
|
Yuan JW, Song HX, Chang YW, Yang F, Du YZ. Transcriptome analysis and screening of putative sex-determining genes in the invasive pest, Frankliniella occidentalis (Thysanoptera: Thripidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101008. [PMID: 35752128 DOI: 10.1016/j.cbd.2022.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The invasive insect pest, Frankliniella occidentalis, is a well-known vector that transmits a variety of ornamental and vegetable viruses. The mechanistic basis of sex determination in F. occidentalis is not well understood, and this hinders our ability to deploy sterile insect technology as an integrated pest management strategy. In this study, six cDNA libraries from female and male adults of F. occidentalis (three biological replicates each) were constructed and transcriptomes were sequenced. A total of 6000 differentially-expressed genes were identified in the two sexes including 2355 up- and 3645 down-regulated genes. A total of 149 sex-related genes were identified based on GO enrichment data and included transformer-2 (tra2), fruitless (fru), male-specific lethal (msl) and sex lethal (sxl); several of these exhibited sex-specific and/or sex-biased expression in F. occidentalis. This study contributes to our understanding of the sex-determined cascade in F. occidentalis and other members of the Thysanoptera.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Xia Song
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Yuan JW, Song HX, Chang YW, Yang F, Xie HF, Gong WR, Du YZ. Identification, expression analysis and functional verification of two genes encoding small heat shock proteins in the western flower thrips, Frankliniella occidentalis (Pergande). Int J Biol Macromol 2022; 211:74-84. [PMID: 35561856 DOI: 10.1016/j.ijbiomac.2022.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Small heat shock proteins (sHSPs) help prevent the irreversible aggregation of denatured proteins that occurs in response to organismal stress. In this study, we identified two intron-free genes encoding sHSPs from Frankliniella occidentalis; these were designated FoHSP11.6 and FoHSP28.0 and belonged to an atypical and typical sHSP family, respectively. Both FoHSPs were transcribed in all developmental stages of F. occidentalis with the highest expression levels in pupae and adults and greater expression in males than females. Although the FoHSPs had different temperature-induced expression profiles, they were generally induced by both low and high temperatures and reached maximal expression levels after 0.5-1 h of temperature stress. The FoHSPs expression levels in pupae were induced by drought and high humidity, and higher expression levels were correlated with lower survival rates. The thermotolerance of F. occidentalis decreased when theFoHSPs were silenced by RNA interference. Our results show that FoHSP11.6 and FoHSP28.0 are involved in the response to temperature and drought and may also function in growth and development of F. occidentalis.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Xia Song
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing City, Jiangsu Province, Nanjing 210029, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Yuan JW, Zheng Y, Chang YW, Bai J, Qin J, Du YZ. Differential regulation of antioxidant enzymes in Frankliniella occidentalis (Thysanoptera: Thripidae) exposed to thermal stress. PeerJ 2021; 9:e12089. [PMID: 34532162 PMCID: PMC8404573 DOI: 10.7717/peerj.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022] Open
Abstract
Frankliniella occidentalis is an invasive insect pest that incites damage to ornamental and agronomic crops on a global scale. In this study, the effects of temperature on gene expression and enzyme activity were studied for superoxide dismutase (SOD), peroxidase (POD), and glutathione-S-transferase (GST) in F. occidentalis. SOD, POD and GST enzyme activity increased significantly at 35–37 °C but declined as the temperature increased to 41 °C. In a time course study at 35 °C, SOD, POD and GST activities were significantly elevated at 0.5, 1 and 2 h in comparison to the control at 26 °C. Expression patterns were evaluated for the three antioxidant genes under high and low temperature stress. In a time course study at –4 °C, SOD, POD and GST expression peaked at 1 h and declined at 2 h of exposure. In contrast, when transcription was monitored at 35 °C, expression was lowest at 1 h and increased at 2 h. The results provide data that will be useful in deciphering the role of antioxidant enzymes in the adaptation of F. occidentalis to climate change.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yutao Zheng
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jing Bai
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Jing Qin
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Chang YW, Wang YC, Zhang XX, Iqbal J, Lu MX, Du YZ. Transcriptional regulation of small heat shock protein genes by heat shock factor 1 (HSF1) in Liriomyza trifolii under heat stress. Cell Stress Chaperones 2021; 26:835-843. [PMID: 34337672 PMCID: PMC8492843 DOI: 10.1007/s12192-021-01224-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/26/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones in multiple physiological processes and are active during thermal stress. sHSP expression is controlled by heat shock transcription factor (HSF); however, few studies have been conducted on HSF in agricultural pests. Liriomyza trifolii is an introduced insect pest of horticultural and vegetable crops in China. In this study, the master regulator, HSF1, was cloned and characterized from L. trifolii, and the expression levels of HSF1 and five sHSPs were studied during heat stress. HSF1 expression in L. trifolii generally decreased with rising temperatures, whereas expression of the five sHSPs showed an increasing trend that correlated with elevated temperatures. All five sHSPs and HSF1 showed an upward trend in expression with exposure to 40 ℃ without a recovery period. When a recovery period was incorporated after thermal stress, the expression patterns of HSF1 and sHSPs in L. trifolii exposed to 40 °C was significantly lower than expression with no recovery period. To elucidate potential interactions between HSF1 and sHSPs, double-stranded RNA was synthesized to knock down HSF1 in L. trifolii by RNA interference. The knockdown of HSF1 by RNAi decreased the survival rate and expression of HSP19.5, HSP20.8, and HSP21.3 during high-temperature stress. This study expands our understanding of HSF1-regulated gene expression in L. trifolii exposed to heat stress.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China.
| |
Collapse
|