1
|
Gómez-Gras D, Linares C, Viladrich N, Zentner Y, Grinyó J, Gori A, McFadden CS, Fabricius KE, Madin JS. The Octocoral Trait Database: a global database of trait information for octocoral species. Sci Data 2025; 12:82. [PMID: 39814778 PMCID: PMC11735844 DOI: 10.1038/s41597-024-04307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Trait-based approaches are revolutionizing our understanding of high-diversity ecosystems by providing insights into the principles underlying key ecological processes, such as community assembly, species distribution, resilience, and the relationship between biodiversity and ecosystem functioning. In 2016, the Coral Trait Database advanced coral reef science by centralizing trait information for stony corals (i.e., Subphylum Anthozoa, Class Hexacorallia, Order Scleractinia). However, the absence of trait data for soft corals, gorgonians, and sea pens (i.e., Class Octocorallia) limits our understanding of ecosystems where these organisms are significant members and play pivotal roles. To address this gap, we introduce the Octocoral Trait Database, a global, open-source database of curated trait data for octocorals. This database houses species- and individual-level data, complemented by contextual information that provides a relevant framework for analyses. The inaugural dataset, OctocoralTraits v2.2, contains over 97,500 global trait observations across 98 traits and over 3,500 species. The database aims to evolve into a steadily growing, community-led resource that advances future marine science, with a particular emphasis on coral reef research.
Collapse
Affiliation(s)
- D Gómez-Gras
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA.
- Departament Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona (UB), Barcelona, Spain.
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - C Linares
- Departament Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - N Viladrich
- Departament Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Y Zentner
- Departament Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - J Grinyó
- Institut de Ciències Del Mar (ICM-CSIC), Barcelona, Spain
- Department of Ocean System Sciences, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, the Netherlands
| | - A Gori
- Departament Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - C S McFadden
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - K E Fabricius
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - J S Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
2
|
Ip JCH, Ho MH, Chan BKK, Qiu JW. A draft genome assembly of reef-building octocoral Heliopora coerulea. Sci Data 2023; 10:381. [PMID: 37316548 DOI: 10.1038/s41597-023-02291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Coral reefs are under existential threat from climate change and anthropogenic impacts. Genomic studies have enhanced our knowledge of resilience and responses of some coral species to environmental stress, but reference genomes are lacking for many coral species. The blue coral Heliopora is the only reef-building octocoral genus and exhibits optimal growth at a temperature close to the bleaching threshold of scleractinian corals. Local and high-latitude expansions of Heliopora coerulea were reported in the last decade, but little is known about the molecular mechanisms underlying its thermal resistance. We generated a draft genome of H. coerulea with an assembled size of 429.9 Mb, scaffold N50 of 1.42 Mb and BUSCO completeness of 94.9%. The genome contains 239.1 Mb repetitive sequences, 27,108 protein coding genes, 6,225 lncRNAs, and 79 miRNAs. This reference genome provides a valuable resource for in-depth studies on the adaptive mechanisms of corals under climate change and the evolution of skeleton in cnidarian.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Ming-Hay Ho
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
3
|
Reverter M, Helber SB, Rohde S, de Goeij JM, Schupp PJ. Coral reef benthic community changes in the Anthropocene: Biogeographic heterogeneity, overlooked configurations, and methodology. GLOBAL CHANGE BIOLOGY 2022; 28:1956-1971. [PMID: 34951504 DOI: 10.1111/gcb.16034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Non-random community changes are becoming more frequent in many ecosystems. In coral reefs, changes towards communities dominated by other than hard corals are increasing in frequency, with severe impacts on ecosystem functioning and provision of ecosystem services. Although new research suggests that a variety of alternative communities (i.e. not dominated by hard corals) exist, knowledge on the global diversity and functioning of alternative coral reef benthic communities, especially those not dominated by algae, remains scattered. In this systematic review and meta-analysis of 523 articles, we analyse the different coral reef benthic community changes reported to date and discuss the advantages and limitations of the methods used to study these changes. Furthermore, we used field cover data (1116 reefs from the ReefCheck database) to explore the biogeographic and latitudinal patterns in dominant benthic organisms. We found a mismatch between literature focus on coral-algal changes (over half of the studies analysed) and observed global natural patterns. We identified strong biogeographic patterns, with the largest and most biodiverse biogeographic regions (Western and Central Indo-Pacific) presenting previously overlooked soft-coral-dominated communities as the most abundant alternative community. Finally, we discuss the potential biases associated with methods that overlook ecologically important cryptobenthic communities and the potential of new technological advances in improving monitoring efforts. As coral reef communities inevitably and swiftly change under changing ocean conditions, there is an urgent need to better understand the distribution, dynamics as well as the ecological and societal impacts of these new communities.
Collapse
Affiliation(s)
- Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| |
Collapse
|
4
|
Reverter M, Jackson M, Rohde S, Moeller M, Bara R, Lasut MT, Segre Reinach M, Schupp PJ. High taxonomic resolution surveys and trait-based analyses reveal multiple benthic regimes in North Sulawesi (Indonesia). Sci Rep 2021; 11:16554. [PMID: 34400684 PMCID: PMC8367970 DOI: 10.1038/s41598-021-95905-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
As coral reef communities change and reorganise in response to increasing disturbances, there is a growing need for understanding species regimes and their contribution to ecosystem processes. Using a case study on coral reefs at the epicentre of tropical marine biodiversity (North Sulawesi, Indonesia), we explored how application of different biodiversity approaches (i.e., use of major taxonomic categories, high taxonomic resolution categories and trait-based approaches) affects the detection of distinct fish and benthic communities. Our results show that using major categories fails to identify distinct coral reef regimes. We also show that monitoring of only scleractinian coral communities is insufficient to detect different benthic regimes, especially communities dominated by non-coral organisms, and that all types of benthic organisms need to be considered. We have implemented the use of a trait-based approach to study the functional diversity of whole coral reef benthic assemblages, which allowed us to detect five different community regimes, only one of which was dominated by scleractinian corals. Furthermore, by the parallel study of benthic and fish communities we provide new insights into key processes and functions that might dominate or be compromised in the different community regimes.
Collapse
Affiliation(s)
- Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany.
| | - Matthew Jackson
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Mareen Moeller
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Robert Bara
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Jl. Kampus UNSRAT Bahu, 95115, Manado, Sulawesi Utara, Indonesia
| | - Markus T Lasut
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Jl. Kampus UNSRAT Bahu, 95115, Manado, Sulawesi Utara, Indonesia
| | | | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM) at the Carl Von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129, Oldenburg, Germany
| |
Collapse
|
5
|
Da-Anoy JP, Cabaitan PC, Conaco C. Warm temperature alters the chemical cue preference of Acropora tenuis and Heliopora coerulea larvae. MARINE POLLUTION BULLETIN 2020; 161:111755. [PMID: 33120034 DOI: 10.1016/j.marpolbul.2020.111755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
Larvae released into the water column rely on chemical cues from the benthos for successful settlement. However, larval preference for substrates may be affected by rising seawater temperature brought about by global climate change. In this study, we examined the effect of elevated temperature on chemical cue preference by larvae of the scleractinian coral, Acropora tenuis, and the octocoral, Heliopora coerulea, collected from northwestern Philippines. At ambient temperature (28 °C), both H. coerulea and A. tenuis larvae showed preference for substrates containing either crustose coralline algae or crude ethanolic extracts from conspecific or congeneric corals. In contrast, at higher temperature (30 °C), greater preference was shown for substrates containing the crude extract from conspecific or congeneric corals. These results demonstrate that elevated temperature can change larval substrate preference, which will have downstream impacts on crucial biological processes, such as larval settlement and recruitment.
Collapse
Affiliation(s)
- Jeric P Da-Anoy
- Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Patrick C Cabaitan
- Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines.
| |
Collapse
|