1
|
Soliman SA, Abd-Elhafeez HH, Mohamed NE, Alrashdi BM, Alghamdi AAA, Elmansi A, Salah AS, El-Gendy SAA, Rutland CS, Massoud D. Morphological and cytochemical characteristics of Varanus niloticus (Squamata, Varanidae) blood cells. Microsc Res Tech 2023; 86:600-613. [PMID: 36722417 DOI: 10.1002/jemt.24298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Varanus niloticus is a lizard residing within the Varanidae family. To date no studies detailing its blood morphology and characteristics have been conducted. This study used histologically stained blood and bone marrow samples to visualize the cells and their characteristics. The erythrocytes were nucleated, these nuclei were located in the middle of the elliptical cells. Hemoglobin filled the erythrocyte cytoplasm. Eosinophils were large cells with lobed nuclei and spherical acidophilic granules. Large granulocytes called heterophils were present and characterized by their fusiform/pleomorphic cytoplasmic granules. Small spherical granulocytes, known as basophils, presented with round, deeply stained metachromatic granules that gave the cytoplasm a dusty or cobblestoned appearance which was able to cover the nucleus, which in turn had an unusual shape. Thrombocytes ranged in shape from ellipsoidal to fusiform. They featured an elliptical, centrally located nucleus and a pale cytoplasm, with small vacuoles, and fine acidophilic granulation. The smallest variety of non-granular leukocytes was the lymphocytes. Their cytoplasm was sparse, finely granular, light blue, had tiny cytoplasmic projections, featuring a high nucleus: cytoplasm ratio. Larger and smaller sized populations of lymphocytes were distinguished, with the larger cells similar in size to azurophils. In general, the pleomorphic monocytes were the biggest mononuclear leucocytes, displaying cytoplasmic projections. Their nuclei were ovoid, kidney- or bean-shaped, with vacuolated and granular cytoplasms. Round cells were common among the monocytic azurophils, and they had a granular cytoplasm, and their nuclei were typically eccentric. The present research identifies the cell types and morphologies within the Varanus niloticus. HIGHLIGHTS: H&E, PAS, toluidine blue, methylene blue, and Safranin O stains provided morphological and morphometric descriptions of Varanus niloticus blood cells from blood smears and bone marrow. The Varanus niloticus had nucleated erythrocytes and white blood cells, mostly granulocytes (heterophils, eosinophils, and basophils) and mononuclear cells (azurophils, lymphocytes, and monocytes). Aquatic vertebrate Varanus niloticus had larger erythrocytes than terrestrial counterparts. Blood cell morphological and cytochemical features were similar to other reptilian species, with some species-specific differences, which likely accommodate differing environmental conditions. These results may help clinical researchers track the pathological conditions and support conservation of these wild animals.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nor-Elhoda Mohamed
- Faculty of Science, Biomedicine Branch, University of Science & Technology in Zewail City, Cairo, Egypt
| | - Barakat M Alrashdi
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ahmed Elmansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt.,Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Samir A A El-Gendy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Science, University of Nottingham, Nottingham, UK
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia.,Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| |
Collapse
|
2
|
Gutarra S, Stubbs TL, Moon BC, Palmer C, Benton MJ. Large size in aquatic tetrapods compensates for high drag caused by extreme body proportions. Commun Biol 2022; 5:380. [PMID: 35484197 PMCID: PMC9051157 DOI: 10.1038/s42003-022-03322-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Various Mesozoic marine reptile lineages evolved streamlined bodies and efficient lift-based swimming, as seen in modern aquatic mammals. Ichthyosaurs had low-drag bodies, akin to modern dolphins, but plesiosaurs were strikingly different, with long hydrofoil-like limbs and greatly variable neck and trunk proportions. Using computational fluid dynamics, we explore the effect of this extreme morphological variation. We find that, independently of their body fineness ratio, plesiosaurs produced more drag than ichthyosaurs and modern cetaceans of equal mass due to their large limbs, but these differences were not significant when body size was accounted for. Additionally, necks longer than twice the trunk length can substantially increase the cost of forward swimming, but this effect was cancelled out by the evolution of big trunks. Moreover, fast rates in the evolution of neck proportions in the long-necked elasmosaurs suggest that large trunks might have released the hydrodynamic constraints on necks thus allowing their extreme enlargement.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Thomas L Stubbs
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Benjamin C Moon
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Colin Palmer
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
3
|
Gutarra S, Rahman IA. The locomotion of extinct secondarily aquatic tetrapods. Biol Rev Camb Philos Soc 2021; 97:67-98. [PMID: 34486794 DOI: 10.1111/brv.12790] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The colonisation of freshwater and marine ecosystems by land vertebrates has repeatedly occurred in amphibians, reptiles, birds and mammals over the course of 300 million years. Functional interpretations of the fossil record are crucial to understanding the forces shaping these evolutionary transitions. Secondarily aquatic tetrapods have acquired a suite of anatomical, physiological and behavioural adaptations to locomotion in water. However, much of this information is lost for extinct clades, with fossil evidence often restricted to osteological data and a few extraordinary specimens with soft tissue preservation. Traditionally, functional morphology in fossil secondarily aquatic tetrapods was investigated through comparative anatomy and correlation with living functional analogues. However, in the last two decades, biomechanics in palaeobiology has experienced a remarkable methodological shift. Anatomy-based approaches are increasingly rigorous, informed by quantitative techniques for analysing shape. Moreover, the incorporation of physics-based methods has enabled objective tests of functional hypotheses, revealing the importance of hydrodynamic forces as drivers of evolutionary innovation and adaptation. Here, we present an overview of the latest research on the locomotion of extinct secondarily aquatic tetrapods, with a focus on amniotes, highlighting the state-of-the-art experimental approaches used in this field. We discuss the suitability of these techniques for exploring different aspects of locomotory adaptation, analysing their advantages and limitations and laying out recommendations for their application, with the aim to inform future experimental strategies. Furthermore, we outline some unexplored research avenues that have been successfully deployed in other areas of palaeobiomechanical research, such as the use of dynamic models in feeding mechanics and terrestrial locomotion, thus providing a new methodological synthesis for the field of locomotory biomechanics in extinct secondarily aquatic vertebrates. Advances in imaging technology and three-dimensional modelling software, new developments in robotics, and increased availability and awareness of numerical methods like computational fluid dynamics make this an exciting time for analysing form and function in ancient vertebrates.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.,Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K
| | - Imran A Rahman
- Department of Earth Sciences, the Natural History Museum, Cromwell Road, London, U.K.,Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, U.K
| |
Collapse
|
4
|
Madzia D, Cau A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas. PeerJ 2020; 8:e8941. [PMID: 32322442 PMCID: PMC7164395 DOI: 10.7717/peerj.8941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/30/2022] Open
Abstract
Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species-level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the predators/scavengers and polycotylids as their prey. The first mosasauroids differed from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence suggests that early representatives of Mosasauroidea diversified after competitions with plesiosaurs. Nevertheless, some mosasauroids, such as tylosaurines, might have seized the opportunity and occupied the niche previously inhabited by brachauchenines, around or immediately after they became extinct, and by polycotylids that decreased their phylogenetic diversity and disparity around the time the large-sized tylosaurines started to flourish.
Collapse
Affiliation(s)
- Daniel Madzia
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|