1
|
Chan CK, Lim KS, Chan CY, Kumar TS, Audrey C, Narayanan V, Fong SL, Ng CC. A review of epilepsy syndromes and epileptogenic mechanism affiliated with brain tumor related genes. Gene 2025; 962:149531. [PMID: 40294709 DOI: 10.1016/j.gene.2025.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is one of the comorbidities often manifested by patients with brain tumors. While there are reviews commenting on the epileptogenicity of brain-tumor-related genes, the reviews are commonly restricted to BRAF, IDH and PIK3CA. According to World Health Organization (WHO), at least 50 genes have been proposed as brain-tumor-related genes. Hence, we aimed to provide a more comprehensive review of the epileptogenicity of the brain-tumor-related genes. We performed an extensive literature search on PubMed, classified the studies, and provided an overview of the associated epilepsy phenotype and epileptogenic mechanism of the brain-tumor-related genes advocated by WHO. Through our analysis, we found a minor overlap between brain-tumor-related genes and epilepsy-associated genes, as some brain-tumor-related genes have been classified as epilepsy-associated genes in earlier studies. Besides reviewing the well-studied genes like TSC1 and TSC2, we identified several under-discovered brain-tumor-related genes, including TP53, CIC, IDH1 and NOTCH1, that warrant future exploration due to the existence of clinical or in vivo evidence substantiating their pathogenic role in epileptogenesis. We also propounded some methodologies that can be applied in future research to enhance the study of the epileptogenic mechanism of brain-tumor-related genes. To date, this article covers the greatest number of brain-tumor-related genes.
Collapse
Affiliation(s)
- Chung-Kin Chan
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chet-Ying Chan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thinisha Sathis Kumar
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Christine Audrey
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Si-Lei Fong
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ching-Ching Ng
- Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Mujahid, Waqas A, Almazni IA, Zaman G, Alam Q, Eid TM, Alanazi MA, Hamadi A, Afsar T, Razak S, Umair M. A Novel Loss of Function Variant in HCN1 Gene Underlies Early Infantile Epileptic Encephalopathy 24 [EIEE24]. Mol Syndromol 2025; 16:152-164. [PMID: 40176840 PMCID: PMC11961093 DOI: 10.1159/000541117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 01/05/2025] Open
Abstract
Background Early infantile epileptic encephalopathy (EIEE) is a rare neurological condition characterized by frequent seizures in the early stages of life, resulting in severely impaired cognitive and motor development. Although the specific causes of EIEE remain unknown, one of the primary causes is gene pathogenicity (even in the absence of consanguinity). Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) are essential for proper brain function. They are regulated by multiple genes, and mutations in these genes induce channel malfunction, which can result in various severe conditions, including EIEE. Herein, we have reported a patient presenting hallmarks of EIEE. Methods The patient underwent clinical, radiographic, and genetic analysis. A thorough clinical examination and molecular study were conducted utilizing whole exome sequencing and Sanger sequencing. Results Whole exome sequencing of the proband revealed a novel de novo nonsynonymous/nonsense variant (c.1468A>T; (p.Lys490Ter) in exon 6 of the HCN1 gene. This variant may cause channel dysfunction via nonsynonymous/nonsense-mediated decay or aberrant protein, which may be associated with EIEE phenotypes. Conclusions This evidence backs the idea that HCN1 has a vital role in brain development and lose of function can cause a range of debilitating conditions. Still, the functional characterization study of the HCN1 variants will be the fundamental tool for a better understanding of EIEE in the near future.
Collapse
Affiliation(s)
- Mujahid
- Center of Animal Nutrition, Directorate General of Livestock & Dairy Development, Peshawar, Pakistan
| | - Ahmed Waqas
- Department of Zoology, Emerson University, Multan, Pakistan
| | - Ibrahim A. Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Gohar Zaman
- Department of Computer Science, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Qamre Alam
- Molecular Genomics and Precision Department, ExpressMed Diagnostics and Research, Zinj, Bahrain
| | - Thamir M. Eid
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A. Alanazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Tayyaba Afsar
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Umair
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
3
|
D’Gama AM, Phillips HW, Wang Y, Chiu MY, Chahine Y, Swanson AC, Smith RS, Pearl PL, Tsuboyama M, Madsen JR, Lidov H, Lee EA, Prabhu SP, Huang AY, Stone SSD, Walsh CA, Poduri A. Analysis of DNA from brain tissue on stereo-EEG electrodes reveals mosaic epilepsy-related variants. Brain Commun 2025; 7:fcaf113. [PMID: 40177531 PMCID: PMC11961356 DOI: 10.1093/braincomms/fcaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/26/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Somatic mosaic variants contribute to focal epilepsy, with variants often present only in brain tissue and not in blood or other samples typically assayed for genetic testing. Thus, genetic analysis for mosaic variants in focal epilepsy has been limited to patients with drug-resistant epilepsy who undergo surgical resection and have resected brain tissue samples available. Stereo-EEG (sEEG) has become part of the evaluation for many patients with focal drug-resistant epilepsy, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of deleterious mosaic variants in epilepsy-associated genes in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of 10 paediatric patients with drug-resistant epilepsy who had sEEG electrodes implanted for invasive monitoring. We extracted unamplified DNA and in parallel performed whole-genome amplification from trace brain tissue on each sEEG electrode. We also extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep sequencing (panel and exome) and analysis for candidate germline and mosaic variants. We validated candidate mosaic variants and assessed the variant allele fraction in amplified and unamplified electrode-derived DNA and across electrodes. We extracted unamplified DNA and performed whole-genome amplification from >150 individual electrodes from 10 individuals. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified DNA samples but significantly more potential mosaic variants in amplified samples. We validated four deleterious mosaic variants in epilepsy-associated genes in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. Three of the four variants were detected in both amplified and unamplified electrode-derived DNA, with higher variant allele fraction observed in DNA from electrodes in closest proximity to the electrical seizure focus in one case. We demonstrate that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy, from both unamplified and amplified electrode-derived DNA. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with drug-resistant epilepsy as part of the surgical evaluation.
Collapse
Affiliation(s)
- Alissa M D’Gama
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - H Westley Phillips
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yilan Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle Y Chiu
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yasmine Chahine
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amanda C Swanson
- Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Richard S Smith
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hart Lidov
- Division of Neuropathology, Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eunjung Alice Lee
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sanjay P Prabhu
- Department of Radiology, Division of Neuroradiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - August Yue Huang
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Scellig S D Stone
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher A Walsh
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Han Z, Xie L, Liu X, Yang J, Luo H, Ding R, Chen H, Cheng L, Fang Z, Jiang L. Characterization of the phenotype and functional alternations of three HCN1 variants in Chinese epilepsy patients. Epilepsy Res 2025; 211:107521. [PMID: 39952090 DOI: 10.1016/j.eplepsyres.2025.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE To evaluate the electrophysiological properties of three HCN1 variant sites found in Chinese epileptic patients and to explore the potential relationship between genotype and phenotype. METHODS We correlated clinical severity of three patients with HCN1 variants with whole-cell patch-clamp measurements of channel activity, channel expression detected by Western blot, and bioinformatics prediction of the damaging effects of each variant. RESULTS Three patients with the variants p.L400P, p.D534H and p.M243delinsTL, showed different phenotypes, ranging from mild epilepsy to severe epileptic encephalopathy. Variants L400P and D534H were classified as pathogenic by all bioinformatics tools, and variant M243delinsTL was classified as a polymorphism by MutationTaster. The L400P and D534H variants showed significantly reduced current compared with that of the wild-type (WT), while the current density of M243delinsTL was similar to WT. The half-activation voltage (V1/2) of M243delinsTL variant was shifted in the hyperpolarizing direction when compared to the WT, and the slope factor (k) of activation of the M243delinsTL variant was significantly lower than that of the WT. The L400P variant was associated with a significantly higher activation time constant compared with that of the WT. In addition, quantitative detection of the FLAG-tagged HCN1 channel revealed that the expression level of the L400P variant was significantly decreased compared to WT. CONCLUSIONS Elucidation of the type and location of variant sites combined with the use of bioinformatics tools and patch-clamp techniques can improve our understanding of the clinical phenotype of epilepsy associated with HCN1 variants.
Collapse
Affiliation(s)
- Ziyao Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Lingling Xie
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiaorui Liu
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jiaxin Yang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Hanyu Luo
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhixu Fang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| |
Collapse
|
5
|
Bleakley LE, Reid CA. HCN1 epilepsy: From genetics and mechanisms to precision therapies. J Neurochem 2024; 168:3891-3910. [PMID: 37565989 DOI: 10.1111/jnc.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
Pathogenic variation in HCN1 is now an established cause of epilepsy and intellectual disability. Variation in HCN1 causes a spectrum of disease with a genotype-phenotype relationship emerging. De novo pathogenic variants that occur in the transmembrane domains of the channel typically cause a cation 'leak' that associates with severe developmental and epileptic encephalopathy (DEE). Genotype-phenotype associations for variants that fall outside of the transmembrane domains are less well established but do include milder forms of epilepsy that can be either de novo or inherited. HCN1 DEE mouse models have been generated which recapitulate the seizures and learning difficulties seen in human patients. These mice have also acted as powerful preclinical models which share pharmacoresponsiveness with human HCN1 DEE patients. Data from these mouse models support the conclusion that anti-seizure medications with sodium channel block as their primary mechanism of action should be used with caution in HCN1 DEE. Other comorbidities of HCN1 DEE including retinal dysfunction have also been modelled in HCN1 DEE mice, suggesting HCN1 variants can cause a dramatically reduced sensitivity to light with limited ability to process temporal information. Our understanding of the genetics and pathophysiological mechanisms underlying HCN1 epilepsy has progressed significantly and is already influencing therapy. However, more research effort is needed to fully understand the natural histories of HCN1 epilepsies and to develop precision therapeutic approaches.
Collapse
Affiliation(s)
- Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
D'Gama AM, Phillips HW, Wang Y, Chiu MY, Chahine Y, Swanson AC, Smith RS, Pearl PL, Tsuboyama M, Madsen JR, Lidov H, Lee EA, Prabhu SP, Huang AY, Stone SSD, Walsh CA, Poduri A. Analysis of DNA from brain tissue on stereo-EEG electrodes reveals mosaic epilepsy-related variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.21.24310779. [PMID: 39108522 PMCID: PMC11302611 DOI: 10.1101/2024.07.21.24310779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes. We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases. This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.
Collapse
|
7
|
Nagy ZF, Sonkodi B, Pál M, Klivényi P, Széll M. Likely Pathogenic Variants of Ca v1.3 and Na v1.1 Encoding Genes in Amyotrophic Lateral Sclerosis Could Elucidate the Dysregulated Pain Pathways. Biomedicines 2023; 11:933. [PMID: 36979911 PMCID: PMC10046311 DOI: 10.3390/biomedicines11030933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal multisystem neurodegenerative disease associated with progressive loss of motor neurons, leading to death. Not only is the clinical picture of ALS heterogenous, but also the pain sensation due to different types of pain involvement. ALS used to be considered a painless disease, but research has been emerging and depicting a more complex pain representation in ALS. Pain has been detected even a couple years before the symptomatic stage of ALS, referring to primary pain associated with muscle denervation, although secondary pain due to nociceptive causes is also a part of the clinical picture. A new non-contact dying-back injury mechanism theory of ALS recently postulated that the irreversible intrafusal proprioceptive Piezo2 microinjury could be the primary damage, with underlying genetic and environmental risk factors. Moreover, this Piezo2 primary damage is also proposed to dysregulate the primary pain pathways in the spinal dorsal horn in ALS due to the lost imbalanced subthreshold Ca2+ currents, NMDA activation and lost L-type Ca2+ currents, leading to the lost activation of wide dynamic range neurons. Our investigation is the first to show that the likely pathogenic variants of the Cav1.3 encoding CACNA1D gene may play a role in ALS pathology and the associated dysregulation or loss of the pain sensation. Furthermore, our reanalysis also shows that the SCN1A gene might also contribute to the dysregulated pain sensation in ALS. Finally, the absence of pathogenic variants of Piezo2 points toward the new non-contact dying-back injury mechanism theory of ALS. However, molecular and genetic investigations are needed to identify the functionally diverse features of this proposed novel critical pathway.
Collapse
Affiliation(s)
- Zsófia Flóra Nagy
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Margit Pál
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, 6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, 6720 Szeged, Hungary
| |
Collapse
|
8
|
Bleakley LE, McKenzie CE, Reid CA. Efficacy of antiseizure medication in a mouse model of HCN1 developmental and epileptic encephalopathy. Epilepsia 2023; 64:e1-e8. [PMID: 36300716 PMCID: PMC10953365 DOI: 10.1111/epi.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/21/2023]
Abstract
Acquisition of drug-sensitivity profiles is challenging in rare epilepsies. Anecdotal evidence suggests that antiseizure medications that block sodium channels as their primary mechanism of action exacerbate seizures in HCN1 developmental and epileptic encephalopathies (DEEs), whereas sodium valproate is effective for some patients. The Hcn1 M294L heterozygous knock-in (Hcn1M294L ) mouse carries the homologue of the recurrent gain-of-function HCN1 M305L pathogenic variant and recapitulates the seizure and some behavioral phenotypes observed in patients. We used this mouse model to study drug efficacy in HCN1 DEE. Hcn1M294L mice display epileptiform spiking on electrocorticography (ECoG), which we used as a quantifiable measure of drug effect. Phenytoin, lamotrigine, and retigabine significantly increased ECoG spike frequency, with lamotrigine and retigabine triggering seizures in a subset of the mice tested. In addition, there was a strong trend for carbamazepine to increase spiking. In contrast, levetiracetam, diazepam, sodium valproate, and ethosuximide all significantly reduced ECoG spike frequency. Drugs that reduced spiking did not cause any consistent ECoG spectral changes, whereas drugs that increased spiking all increased power in the slower delta and/or theta bands. These data provide a framework on which to build our understanding of gain-of-function HCN1 DEE pharmacosensitivity in the clinical setting.
Collapse
Affiliation(s)
- Lauren E. Bleakley
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Chaseley E. McKenzie
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Christopher A. Reid
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- Epilepsy Research Centre, Department of Medicine, University of MelbourneAustin HealthHeidelbergVictoriaAustralia
| |
Collapse
|
9
|
Zhou X, Chen FY, Ye XG, Liu ZG. Nitrogen Permease Regulator Like-2 (NPRL2 ) truncating mutation causes Ohtahara syndrome with incomplete penetrance: expanding the genotype-phenotype correlations. Clin Dysmorphol 2022; 31:181-184. [PMID: 35731010 DOI: 10.1097/mcd.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Feng-Ying Chen
- Radiology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan
| | | | - Zhi-Gang Liu
- Departments of Pediatrics
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Kang KW, Cho YW, Lee SK, Jung KY, Kim JH, Kim DW, Lee SA, Hong SB, Na IS, Lee SH, Baek WK, Choi SY, Kim MK. Multidimensional Early Prediction Score for Drug-Resistant Epilepsy. J Clin Neurol 2022; 18:553-561. [PMID: 36062773 PMCID: PMC9444554 DOI: 10.3988/jcn.2022.18.5.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Achieving favorable postoperative outcomes in patients with drug-resistant epilepsy (DRE) requires early referrals for preoperative examinations. The purpose of this study was to investigate the possibility of a user-friendly early DRE prediction model that is easy for nonexperts to utilize. Methods A two-step genotype analysis was performed, by applying 1) whole-exome sequencing (WES) to the initial test set (n=243) and 2) target sequencing to the validation set (n=311). Based on a multicenter case–control study design using the WES data set, 11 genetic and 2 clinical predictors were selected to develop the DRE risk prediction model. The early prediction scores for DRE (EPS-DRE) was calculated for each group of the selected genetic predictors (EPS-DREgen), clinical predictors (EPS-DREcln), and two types of predictor mix (EPS-DREmix) in both the initial test set and the validation set. Results The multidimensional EPS-DREmix of the predictor mix group provided a better match to the outcome data than did the unidimensional EPS-DREgen or EPS-DREcln. Unlike previous studies, the EPS-DREmix model was developed using only 11 genetic and 2 clinical predictors, but it exhibited good discrimination ability in distinguishing DRE from drug-responsive epilepsy. These results were verified using an unrelated validation set. Conclusions Our results suggest that EPS-DREmix has good performance in early DRE prediction and is a user-friendly tool that is easy to apply in real clinical trials, especially by nonexperts who do not have detailed knowledge or equipment for assessing DRE. Further studies are needed to improve the performance of the EPS-DREmix model.
Collapse
Affiliation(s)
- Kyung Wook Kang
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Yong Won Cho
- Department of Neurology, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Sang Kun Lee
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| | - Ki-Young Jung
- Department of Neurology, Comprehensive Epilepsy Center, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea Program in Neuroscience, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Dong Wook Kim
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Ahm Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute (SBRI), Seoul, Korea.,National Epilepsy Care Center, Seoul, Korea
| | - In-Seop Na
- National Program of Excellence in Software Centre, Chosun University, Gwangju, Korea
| | - So-Hyun Lee
- Department of Biomedical Science, Chonnam National University Medical School, Hwasun, Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Korea
| | - Seok-Yong Choi
- Department of Biomedical Science, Chonnam National University Medical School, Hwasun, Korea.
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
11
|
Saha P, Bose D, Stebliankin V, Cickovski T, Seth RK, Porter DE, Brooks BW, Mathee K, Narasimhan G, Colwell R, Scott GI, Chatterjee S. Prior exposure to microcystin alters host gut resistome and is associated with dysregulated immune homeostasis in translatable mouse models. Sci Rep 2022; 12:11516. [PMID: 35799048 PMCID: PMC9262933 DOI: 10.1038/s41598-022-15708-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
A strong association between exposure to the common harmful algal bloom toxin microcystin and the altered host gut microbiome has been shown. We tested the hypothesis that prior exposure to the cyanotoxin microcystin-LR may alter the host resistome. We show that the mice exposed to microcystin-LR had an altered microbiome signature that harbored antibiotic resistance genes. Host resistome genotypes such as mefA, msrD, mel, ant6, and tet40 increased in diversity and relative abundance following microcystin-LR exposure. Interestingly, the increased abundance of these genes was traced to resistance to common antibiotics such as tetracycline, macrolides, glycopeptide, and aminoglycosides, crucial for modern-day treatment of several diseases. Increased abundance of these genes was positively associated with increased expression of PD1, a T-cell homeostasis marker, and pleiotropic inflammatory cytokine IL-6 with a concomitant negative association with immunosurveillance markers IL-7 and TLR2. Microcystin-LR exposure also caused decreased TLR2, TLR4, and REG3G expressions, increased immunosenescence, and higher systemic levels of IL-6 in both wild-type and humanized mice. In conclusion, the results show a first-ever characterization of the host resistome following microcystin-LR exposure and its connection to host immune status and antimicrobial resistance that can be crucial to understand treatment options with antibiotics in microcystin-exposed subjects in clinical settings.
Collapse
Affiliation(s)
- Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Vitalii Stebliankin
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Trevor Cickovski
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Giri Narasimhan
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Rita Colwell
- CosmosID Inc, Germantown, MD, 20874, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
- Columbia VA Medical Center, Columbia, SC, 29209, USA.
| |
Collapse
|
12
|
Luo S, Liu ZG, Wang J, Luo JX, Ye XG, Li X, Zhai QX, Liu XR, Wang J, Gao LD, Liu FL, Ye ZL, Li H, Gao ZF, Guo QH, Li BM, Yi YH, Liao WP. Recessive LAMA5 Variants Associated With Partial Epilepsy and Spasms in Infancy. Front Mol Neurosci 2022; 15:825390. [PMID: 35663266 PMCID: PMC9162154 DOI: 10.3389/fnmol.2022.825390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Objective The LAMA5 gene encodes the laminin subunit α5, the most abundant laminin α subunit in the human brain. It forms heterotrimers with the subunit β1/β2 and γ1/γ3 and regulates neurodevelopmental processes. Genes encoding subunits of the laminin heterotrimers containing subunit α5 have been reported to be associated with human diseases. Among LAMAs encoding the laminin α subunit, LAMA1-4 have also been reported to be associated with human disease. In this study, we investigated the association between LAMA5 and epilepsy. Methods Trios-based whole-exome sequencing was performed in a cohort of 118 infants suffering from focal seizures with or without spasms. Protein modeling was used to assess the damaging effects of variations. The LAMAs expression was analyzed with data from the GTEX and VarCards databases. Results Six pairs of compound heterozygous missense variants in LAMA5 were identified in six unrelated patients. All affected individuals suffered from focal seizures with mild developmental delay, and three patients presented also spasms. These variants had no or low allele frequencies in controls and presented statistically higher frequency in the case cohort than in controls. The recessive burden analysis showed that recessive LAMA5 variants identified in this cohort were significantly more than the expected number in the East Asian population. Protein modeling showed that at least one variant in each pair of biallelic variants affected hydrogen bonds with surrounding amino acids. Among the biallelic variants in cases with only focal seizures, two variants of each pair were located in different structural domains or domains/links, whereas in the cases with spasms, the biallelic variants were constituted by two variants in the identical functional domains or both with hydrogen bond changes. Conclusion Recessive LAMA5 variants were potentially associated with infant epilepsy. The establishment of the association between LAMA5 and epilepsy will facilitate the genetic diagnosis and management in patients with infant epilepsy.
Collapse
Affiliation(s)
- Sheng Luo
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Gang Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Juan Wang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Xia Luo
- Epilepsy Center, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Xing-Guang Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xin Li
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiong-Xiang Zhai
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Rong Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Wang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fu-Li Liu
- Department of Neurology, The First People’s Hospital of Foshan, Foshan, China
| | - Zi-Long Ye
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zai-Fen Gao
- Epilepsy Center, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Qing-Hui Guo
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei-Ping Liao,
| |
Collapse
|
13
|
Yang Y, Niu X, Cheng M, Zeng Q, Deng J, Tian X, Wang Y, Yu J, Shi W, Wu W, Ma J, Li Y, Yang X, Zhang X, Jia T, Yang Z, Liao J, Sun Y, Zheng H, Sun S, Sun D, Jiang Y, Zhang Y. Phenotypic Spectrum and Prognosis of Epilepsy Patients With GABRG2 Variants. Front Mol Neurosci 2022; 15:809163. [PMID: 35359574 PMCID: PMC8964129 DOI: 10.3389/fnmol.2022.809163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE This study aimed to obtain a comprehensive understanding of the genetic and phenotypic aspects of GABRG2-related epilepsy and its prognosis and to explore the potential prospects for personalized medicine. METHODS Through a multicenter collaboration in China, we analyzed the genotype-phenotype correlation and antiseizure medication (ASM) of patients with GABRG2-related epilepsy. The three-dimensional protein structure of the GABRG2 variant was modeled to predict the effect of GABRG2 missense variants using PyMOL 2.3 software. RESULTS In 35 patients with GABRG2 variants, 22 variants were de novo, and 18 variants were novel. The seizure onset age was ranged from 2 days after birth to 34 months (median age: 9 months). The seizure onset age was less than 1 year old in 22 patients (22/35, 62.9%). Seizure types included focal seizures (68.6%), generalized tonic-clonic seizures (60%), myoclonic seizures (14.3%), and absence seizures (11.4%). Other clinical features included fever-sensitive seizures (91.4%), cluster seizures (57.1%), and developmental delay (45.7%). Neuroimaging was abnormal in 2 patients, including dysplasia of the frontotemporal cortex and delayed myelination of white matter. Twelve patients were diagnosed with febrile seizures plus, eleven with epilepsy and developmental delay, two with Dravet syndrome, two with developmental and epileptic encephalopathy, two with focal epilepsy, two with febrile seizures, and four with unclassified epilepsy. The proportions of patients with missense variants in the extracellular region and the transmembrane region exhibiting developmental delay were 40% and 63.2%, respectively. The last follow-up age ranged from 11 months to 17 years. Seizures were controlled in 71.4% of patients, and 92% of their seizures were controlled by valproate and/or levetiracetam. CONCLUSION The clinical features of GABRG2-related epilepsy included seizure onset, usually in infancy, and seizures were fever-sensitive. More than half of the patients had cluster seizures. Phenotypes of GABRG2-related epilepsy were ranged from mild febrile seizures to severe epileptic encephalopathies. Most patients with GABRG2 variants who experienced seizures had a good prognosis. Valproate and levetiracetam were effective treatments for most patients.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qi Zeng
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jie Deng
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Neurology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing Yu
- Department of Neurology, Children’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hospital of Beijing Children’s Hospital, Ürümqi, China
| | - Wenli Shi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenjuan Wu
- Department of Neurology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Jiehui Ma
- Department of Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufen Li
- Department of Pediatrics, Linyi People’s Hospital, Linyi, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoli Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yan Sun
- Department of Neurology, Children’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hospital of Beijing Children’s Hospital, Ürümqi, China
| | - Hong Zheng
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suzhen Sun
- Department of Neurology, Hebei Children’s Hospital, Shijiazhuang, China
| | - Dan Sun
- Department of Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Pala M, Meral I, Pala Acikgoz N, Gorucu Yilmaz Ş, Taslidere E, Okur SK, Acar S, Akbas F. Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus. Neurol Res 2022; 44:726-737. [DOI: 10.1080/01616412.2022.2051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mukaddes Pala
- Faculty of Medicine, Department of Physiology, Malatya Turgut Ozal University, Malatya, Turkey
| | - Ismail Meral
- Faculty of Medicine, Department of Physiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nilgun Pala Acikgoz
- Faculty of Medicine, Department of Neurology, Bezmialem Vakif University, Istanbul, Turkey
| | - Şenay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey
| | - Elif Taslidere
- Faculty of Medicine, Department of Histology and Embryology, Inonu University, Malatya, Turkey
| | - Sema Karaca Okur
- Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Seyma Acar
- Sancaktepe No. 1 Family Health Center, Istanbul, Turkey
| | - Fahri Akbas
- Faculty of Medicine, Department of Medical Biology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
15
|
McKnight D, Bristow SL, Truty RM, Morales A, Stetler M, Westbrook MJ, Robinson K, Riethmaier D, Borlot F, Kellogg M, Hwang ST, Berg A, Aradhya S. Multigene Panel Testing in a Large Cohort of Adults With Epilepsy: Diagnostic Yield and Clinically Actionable Genetic Findings. Neurol Genet 2022; 8:e650. [PMID: 34926809 PMCID: PMC8678910 DOI: 10.1212/nxg.0000000000000650] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Although genetic testing among children with epilepsy has demonstrated clinical utility and become a part of routine testing, studies in adults are limited. This study reports the diagnostic yield of genetic testing in adults with epilepsy. METHODS Unrelated individuals aged 18 years and older who underwent diagnostic genetic testing for epilepsy using a comprehensive, next-generation sequencing-based, targeted gene panel (range 89-189 genes) were included in this cross-sectional study. Clinical information, provided at the discretion of the ordering clinician, was reviewed and analyzed. Diagnostic yield was calculated for all individuals including by age at seizure onset and comorbidities based on clinician-reported information. The proportion of individuals with clinically actionable genetic findings, including instances when a specific treatment would be indicated or contraindicated due to a diagnostic finding, was calculated. RESULTS Among 2,008 individuals, a diagnostic finding was returned for 218 adults (10.9%), with clinically actionable findings in 55.5% of diagnoses. The highest diagnostic yield was in adults with seizure onset during infancy (29.6%, 0-1 year), followed by in early childhood (13.6%, 2-4 years), late childhood (7.0%, 5-10 years), adolescence (2.4%, 11-17 years), and adulthood (3.7%, ≥18 years). Comorbid intellectual disability (ID) or developmental delay resulted in a high diagnostic yield (16.0%), most notably for females (19.6% in females vs 12.3% in males). Among individuals with pharmacoresistant epilepsy, 13.5% had a diagnostic finding, and of these, 57.4% were clinically actionable genetic findings. DISCUSSION These data reinforce the utility of genetic testing for adults with epilepsy, particularly for those with childhood-onset seizures, ID, and pharmacoresistance. This is an important consideration due to longer survival and the complexity of the transition from pediatric to adult care. In addition, more than half of diagnostic findings in this study were considered clinically actionable, suggesting that genetic testing could have a direct impact on clinical management and outcomes.
Collapse
Affiliation(s)
- Dianalee McKnight
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Sara L. Bristow
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Rebecca M. Truty
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Ana Morales
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Molly Stetler
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - M. Jody Westbrook
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Kristina Robinson
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Darlene Riethmaier
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Felippe Borlot
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Marissa Kellogg
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Sean T. Hwang
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Anne Berg
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| | - Swaroop Aradhya
- From the Invitae (D.M., S.L.B., R.M.T., A.M., M.S., M.J.W., K.R., D.R., S.A.), San Francisco, CA; Alberta Children's Hospital Research Institute, Cumming School of Medicine, (F.B.) University of Calgary, Canada; Oregon Health & Science University Comprehensive Epilepsy Center (M.K.); Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell (S.T.H); Epilepsy Center, Ann & Robert H. Lurie Children's Hospital of Chicago (A.B.); and Department of Neurology, Northwestern University-Feinberg School of Medicine (A.B.), Chicago, IL
| |
Collapse
|
16
|
Sheidley BR, Malinowski J, Bergner AL, Bier L, Gloss DS, Mu W, Mulhern MM, Partack EJ, Poduri A. Genetic testing for the epilepsies: A systematic review. Epilepsia 2021; 63:375-387. [PMID: 34893972 DOI: 10.1111/epi.17141] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Numerous genetic testing options for individuals with epilepsy have emerged over the past decade without clear guidelines regarding optimal testing strategies. We performed a systematic evidence review (SER) and conducted meta-analyses of the diagnostic yield of genetic tests commonly utilized for patients with epilepsy. We also assessed nonyield outcomes (NYOs) such as changes in treatment and/or management, prognostic information, recurrence risk determination, and genetic counseling. METHODS We performed an SER, in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), using PubMed, Embase, CINAHL, and Cochrane Central through December of 2020. We included studies that utilized genome sequencing (GS), exome sequencing (ES), multigene panel (MGP), and/or genome-wide comparative genomic hybridization/chromosomal microarray (CGH/CMA) in cohorts (n ≥ 10) ascertained for epilepsy. Quality assessment was undertaken using ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions). We estimated diagnostic yields and 95% confidence intervals with random effects meta-analyses and narratively synthesized NYOs. RESULTS From 5985 nonduplicated articles published through 2020, 154 met inclusion criteria and were included in meta-analyses of diagnostic yield; 43 of those were included in the NYO synthesis. The overall diagnostic yield across all test modalities was 17%, with the highest yield for GS (48%), followed by ES (24%), MGP (19%), and CGH/CMA (9%). The only phenotypic factors that were significantly associated with increased yield were (1) the presence of developmental and epileptic encephalopathy and/or (2) the presence of neurodevelopmental comorbidities. Studies reporting NYOs addressed clinical and personal utility of testing. SIGNIFICANCE This comprehensive SER, focused specifically on the literature regarding patients with epilepsy, provides a comparative assessment of the yield of clinically available tests, which will help shape clinician decision-making and policy regarding insurance coverage for genetic testing. We highlight the need for prospective assessment of the clinical and personal utility of genetic testing for patients with epilepsy and for standardization in reporting patient characteristics.
Collapse
Affiliation(s)
- Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Amanda L Bergner
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - David S Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, West Virginia, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maureen M Mulhern
- Department of Pathology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Emily J Partack
- Genomics Services, Quest Diagnostics, Marlborough, Massachusetts, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Lin CH, Chou IC, Hong SY. Genetic factors and the risk of drug-resistant epilepsy in young children with epilepsy and neurodevelopment disability: A prospective study and updated meta-analysis. Medicine (Baltimore) 2021; 100:e25277. [PMID: 33761731 PMCID: PMC8049163 DOI: 10.1097/md.0000000000025277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
Drug-resistant epilepsy (DRE) affects 7% to 20% of children with epilepsy. Although some risk factors for DRE have been identified, the results have not been consistent. Moreover, data regarding the risk factors for epilepsy and its seizure outcome in the first 2 years of life are limited.We analyzed data for children aged 0 to 2 years with epilepsy and neurodevelopmental disability from January, 2013, through December, 2017. These patients were followed up to compare the risk of DRE in patients with genetic defect (genetic group) with that without genetic defect (nongenetic group). Additionally, we conducted a meta-analysis to identify the pooled prevalence of genetic factors in children with DRE.A total of 96 patients were enrolled. A total of 68 patients were enrolled in the nongenetic group, whereas 28 patients were enrolled in the genetic group. The overall DRE risk in the genetic group was 6.5 times (95% confidence interval [CI], 2.15-19.6; p = 0.03) higher than that in the nongenetic group. Separately, a total of 1308 DRE patients were participated in the meta-analysis. The pooled prevalence of these patients with genetic factors was 22.8% (95% CI 17.4-29.3).The genetic defect plays a crucial role in the development of DRE in younger children with epilepsy and neurodevelopmental disability. The results can serve as a reference for further studies of epilepsy panel design and may also assist in the development of improved treatments and prevention strategies for DRE.
Collapse
Affiliation(s)
- Chien-Heng Lin
- Division of Pediatrics Pulmonology, China Medical University, Children's Hospital, Taichung, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University, Children's Hospital
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatrics Neurology, China Medical University, Children's Hospital
| |
Collapse
|
18
|
Luo FM, Deng MX, Yu R, Liu L, Fan LL. Case Report: Chorea-Acanthocytosis Presents as Epilepsy in a Consanguineous Family With a Nonsense Mutation of in VPS13A. Front Neurosci 2021; 15:604715. [PMID: 33679298 PMCID: PMC7928333 DOI: 10.3389/fnins.2021.604715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Chorea-Acanthocytosis (ChAc), a rare autosomal recessive inherited neurological disorder, originated from variants in Vacuolar Protein Sorting 13 homolog A (VPS13A) gene. The main symptoms of ChAc contain hyperkinetic movements, seizures, cognitive impairment, neuropsychiatric symptoms, elevated serum biochemical indicators, and acanthocytes detection in peripheral blood smear. Recently, researchers found that epilepsy may be a presenting and prominent symptom of ChAc. Here, we enrolled a consanguineous family with epilepsy and non-coordinated movement. Whole exome sequencing was employed to explore the genetic lesion of the family. After data filtering, co-separation analysis was performed by Sanger sequencing and bioinformatics analysis, the homozygous nonsense variant (NM_033305.2: c.8282C>G, p.S2761X) of VPS13A were identified which could be genetic factor of the patient. No other meaningful mutations were detected. This mutation (p.S2761X) led to a truncated protein in exon 60 of the VPS13A gene, was simultaneously absent in our 200 local control participants. The homozygous mutation (NM_033305.2: c.8282C>G, p.S2761X) of VPS13A may be the first time be identified in ChAc patient with epilepsy. Our study assisted to the diagnosis of ChAc in this patient and contributed to the genetic diagnosis and counseling of families with ChAc presented as epilepsy. Moreover, we further indicated that epilepsy was a crucial phenotype in ChAc patients caused by VPS13A mutations.
Collapse
Affiliation(s)
- Fang-Mei Luo
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second XiangYa Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Ming-Xing Deng
- Department of Dermatology, Loudi Central Hospital, Loudi, China
| | - Rong Yu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lv Liu
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second XiangYa Hospital of Central South University, Changsha, China
| | - Liang-Liang Fan
- Department of Respiratory Medicine, Diagnosis and Treatment Center of Respiratory Disease, The Second XiangYa Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
| |
Collapse
|