1
|
Blanch-Lázaro B, Chamings A, Ribot RFH, Bhatta TR, Berg ML, Alexandersen S, Bennett ATD. Beak and feather disease virus (BFDV) persists in tissues of asymptomatic wild Crimson Rosellas. Commun Biol 2024; 7:1017. [PMID: 39289466 PMCID: PMC11408594 DOI: 10.1038/s42003-024-06652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Infectious diseases can drive populations and species to extinction. Beak and feather disease virus (BFDV) is a circovirus of global conservation concern that can infect all Psittaciformes and some other species. Yet some parrot species, such as Crimson rosellas (Platycercus elegans), can live successfully with high BFDV prevalence (>40%) with no clinical signs reported in infected individuals. We assessed BFDV load in 10-12 tissues per bird, from n = 66 P. elegans, to reveal tissue tropism and BFDV persistence in tissues. Here we show that in 94% of individuals, BFDV was detected in one or more tissues. While BFDV replicated to high levels in subadults, in adults (some confirmed seropositive) the virus persisted in various tissues at much lower levels. Our findings reveal that BFDV is much more common in wild P. elegans than previously thought and suggest that current screening practices (mostly on blood) may substantially underestimate BFDV infection estimates, with implications for biosecurity and conservation programs globally.
Collapse
Affiliation(s)
- Berta Blanch-Lázaro
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia.
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia.
- Australian Centre for Disease Preparedness (ACDP), CSIRO, Geelong, VIC, Australia.
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Raoul F H Ribot
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- Australian Rickettsial Reference Laboratory (ARRL), Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Deakin University, Geelong, VIC, Australia
| | - Mathew L Berg
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
- Parks Victoria, Melbourne, VIC, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Department of Animal and Veterinary Sciences, Aarhus University, Viborg Campus, Tjele, Denmark
| | - Andrew T D Bennett
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
2
|
Le Souëf AT, Bruce M, Barbosa A, Shephard JM, Mawson PR, Dawson R, Saunders DA, Warren KS. Health parameters for wild Carnaby's cockatoo ( Zanda latirostris) nestlings in Western Australia: results of a long-term study. CONSERVATION PHYSIOLOGY 2024; 12:coae005. [PMID: 39898298 PMCID: PMC11784592 DOI: 10.1093/conphys/coae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2025]
Abstract
The collection of baseline health data is an essential component of an endangered species conservation program. As for many wildlife species, there are minimal health data available for wild populations of the endangered Carnaby's cockatoo (Zanda latirostris). In this study, 426 wild Carnaby's cockatoo nestlings were sampled from nine breeding sites throughout the range of the species over an 11-year period. In addition to a physical examination, samples were collected to test for hematologic and biochemical parameters, psittacine beak and feather disease virus (BFDV), avian polyomavirus (APV), psittacine adenovirus, psittacine herpesvirus, Chlamydia, disease serology and endoparasites. Environmental sampling was performed to screen for BFDV and APV in nest hollows. Descriptive health data are presented for nestlings of this species, with BFDV, APV and Chlamydia infections reported. Reference intervals for hematologic and biochemical parameters are presented in three age groups, and factors affecting blood analytes and body condition index are discussed. This longitudinal dataset provides insights into health parameters for Carnaby's cockatoo nestlings and a reference for future monitoring of breeding populations.
Collapse
Affiliation(s)
- Anna T Le Souëf
- School of Veterinary Medicine, College of Environmental and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
- Department of Biodiversity, Conservation and Attractions, Perth Zoo, Locked Bag 104, Bentley DC, Western Australia, 6983, Australia
| | - Mieghan Bruce
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Amanda Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Jill M Shephard
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Peter R Mawson
- Department of Biodiversity, Conservation and Attractions, Perth Zoo, Locked Bag 104, Bentley DC, Western Australia, 6983, Australia
| | | | | | - Kristin S Warren
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
3
|
Schilling AK, Mazzamuto MV, Romeo C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What's New? Animals (Basel) 2022; 12:1719. [PMID: 35804619 PMCID: PMC9265025 DOI: 10.3390/ani12131719] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the last decades, wildlife diseases and the health status of animal populations have gained increasing attention from the scientific community as part of a One Health framework. Furthermore, the need for non-invasive sampling methods with a minimal impact on wildlife has become paramount in complying with modern ethical standards and regulations, and to collect high-quality and unbiased data. We analysed the publication trends on non-invasive sampling in wildlife health and disease research and offer a comprehensive review on the different samples that can be collected non-invasively. We retrieved 272 articles spanning from 1998 to 2021, with a rapid increase in number from 2010. Thirty-nine percent of the papers were focussed on diseases, 58% on other health-related topics, and 3% on both. Stress and other physiological parameters were the most addressed research topics, followed by viruses, helminths, and bacterial infections. Terrestrial mammals accounted for 75% of all publications, and faeces were the most widely used sample. Our review of the sampling materials and collection methods highlights that, although the use of some types of samples for specific applications is now consolidated, others are perhaps still underutilised and new technologies may offer future opportunities for an even wider use of non-invasively collected samples.
Collapse
Affiliation(s)
- Anna-Katarina Schilling
- Previously Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Maria Vittoria Mazzamuto
- Haub School of Environment and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, USA;
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
4
|
Blanch-Lázaro B, Ribot RF, Berg ML, Alexandersen S, Bennett AT. Ability to detect antibodies to beak and feather disease virus in blood on filter paper decreases with duration of storage. PeerJ 2021; 9:e12642. [PMID: 35036139 PMCID: PMC8697771 DOI: 10.7717/peerj.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background Beak and feather disease virus (BFDV) is a circovirus that infects captive and wild psittacine birds, and is of conservation concern. The haemagglutination inhibition (HI) assay is used to determine antibody titres against BFDV, and the use of dried blood spots (DBS) on filter paper stored at room temperature has been suggested to be an equally valid technique to the use of frozen serum. However, research on other pathogens has found variable results when investigating the longevity of antibodies stored on DBS at room temperature. Consequently, we aimed to test the temporal stability of antibodies to BFDV in DBS samples stored long-term at room temperature. A further goal was to add to the current knowledge of antibody response to naturally acquired BFDV infection in crimson rosellas (Platycercus elegans). Methods Blood was collected from wild P. elegans in Victoria, Australia, that had been live-trapped (n = 9) or necropsied (n = 11). BFDV virus load data were obtained from blood stored in ethanol by real-time quantitative PCR (qPCR); antibody titres were obtained by HI assay from either DBS or serum samples, which had been collected concurrently. All HI assays were performed commercially by the Veterinary Diagnostic Laboratory (VDL) in Charles Sturt University, Australia, who were blind to BFDV blood status. Results HI titres from DBS stored at room temperature declined significantly over time (~80 weeks). By contrast, frozen serum samples assayed after 80 weeks in storage all had high HI titres, only varying up to one dilution step from the initial HI titres obtained from DBS at 3–6 weeks after sampling. Weak HI titres from DBS samples all came back negative when the test was repeated only nine weeks later. Novel high HI titres were reported in P. elegans, and while most birds with high antibody titres had corresponding negative qPCR results, a single subadult presented with high HI titres and virus load simultaneously. Conclusion Detection of antibodies on filter paper stored at room temperature decreases over time, increasing the chances of false negatives in these samples, and in repeated testing of samples with weak HI titres. Consequently, serum should be the preferred sample type to use for seroepidemiological studies on BFDV in parrots and other bird species. When not possible, it may help to store DBS on filter paper at −20 °C or lower. However, prompt testing of DBS samples (e.g., <6 weeks in storage) is recommended pending further research on antibody temporal stability. We also show that P. elegans, especially adults, can produce high antibody titres against BFDV, which may help them resist infection.
Collapse
Affiliation(s)
- Berta Blanch-Lázaro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria, Australia
| | - Raoul F.H. Ribot
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Mathew L. Berg
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Barwon Health, Geelong, Victoria, Australia
| | - Andrew T.D. Bennett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|