1
|
Mizutani Y, Orita R, Kimura K, Funabara D. Hypoxia-induced changes in the gill and hepatopancreatic bacterial communities of the ark shell Anadara kagoshimensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:53. [PMID: 39976704 DOI: 10.1007/s10126-025-10430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/06/2025] [Indexed: 04/25/2025]
Abstract
Coastal hypoxia is an increasing environmental concern affecting marine ecosystems globally, particularly impacting benthic organisms such as bivalves. Although previous studies focused on the physiological responses of bivalves to hypoxic stress, the role of resident bacteria in the host response to hypoxia remains poorly understood. This study investigated changes in the resident bacterial communities in the gills and hepatopancreatic tissues of the ark shell (Anadara kagoshimensis) under hypoxic conditions. Specimens were assigned to three treatment groups: untreated control, hypoxia, and hypoxia with chloramphenicol supplementation (5.0 mg/L). After 3 days, specimens exposed to hypoxia exhibited black precipitation in the culture water, whereas antibiotic treatment reduced these effects. Amplicon sequencing revealed distinct bacterial communities between the tissues, with Arcobacteraceae and Alkalispirochaetaceae dominating in the gills and Metamycoplasmataceae being predominant in the hepatopancreas. The hepatopancreas displayed greater bacterial community changes than the gills under hypoxic conditions, including an increase in the abundance of Metamycoplasmataceae. The predicted metabolic functions suggested that these bacteria contribute to iron sulfide precipitation through sulfate reduction and iron respiration. The antibiotic-treated group displayed bacterial communities more similar to those of the control group, confirming the effectiveness of chloramphenicol in suppressing bacterial changes under hypoxia. This study provided new insights into tissue-specific bacterial responses to hypoxia in A. kagoshimensis and highlighted the potential role of Metamycoplasmataceae in the bivalve's response to hypoxic stress.
Collapse
Affiliation(s)
- Yukino Mizutani
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Ryo Orita
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Kei Kimura
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daisuke Funabara
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Sharma SP, Purcell CM, Hyde JR, Severin AJ. Spirochaete genome identified in red abalone sample represents a novel genus Candidatus Haliotispira gen. nov. within the order Spirochaetales. Int J Syst Evol Microbiol 2024; 74. [PMID: 38179990 DOI: 10.1099/ijsem.0.006198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone (Haliotis rufescens) genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family Spirochaetaceae on the phylogenetic tree. The comparison of 16S rRNA sequences and average nucleotide identity scores between the spirochaete genome with known species of different families in Spirochaetia indicate that it is an unknown species. Further, the percentage of conserved proteins compared to neighbouring taxa confirm that it does not belong to a known genus within Spirochaetaceae. We propose the name Candidatus Haliotispira prima gen. nov., sp. nov. based on its taxonomic placement and origin. We also tested for the presence of this species in different species of abalone and found that it is also present in white abalone (Haliotis sorenseni). In addition, we highlight the need for better classification of taxa within the class Spirochaetia.
Collapse
Affiliation(s)
| | - Catherine M Purcell
- NOAA Fisheries Southwest Fisheries Science Center, La Jolla, California, USA
| | - John R Hyde
- NOAA Fisheries Southwest Fisheries Science Center, La Jolla, California, USA
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Li P, Hong J, Yuan Z, Huang Y, Wu M, Ding T, Wu Z, Sun X, Lin D. Gut microbiota in parasite-transmitting gastropods. Infect Dis Poverty 2023; 12:105. [PMID: 38001502 PMCID: PMC10668521 DOI: 10.1186/s40249-023-01159-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gastropoda, the largest class within the phylum Mollusca, houses diverse gut microbiota, and some gastropods serve as intermediate hosts for parasites. Studies have revealed that gut bacteria in gastropods are associated with various biological aspects, such as growth, immunity and host-parasite interactions. Here, we summarize our current knowledge of gastropod gut microbiomes and highlight future research priorities and perspectives. METHODS A literature search was undertaken using PubMed, Web of Science and CNKI for the articles on the gut microbiota of gastropods until December 31, 2022. We retrieved a total of 166 articles and identified 73 eligible articles for inclusion in this review based on the inclusion and exclusion criteria. RESULTS Our analysis encompassed freshwater, seawater and land snails, with a specific focus on parasite-transmitting gastropods. We found that most studies on gastropod gut microbiota have primarily utilized 16S rRNA gene sequencing to analyze microbial composition, rather than employing metagenomic, metatranscriptomic, or metabolomic approaches. This comprehensive review provided an overview of the parasites carried by snail species in the context of gut microbiota studies. We presented the gut microbial trends, a comprehensive summary of the diversity and composition, influencing factors, and potential functions of gastropod gut microbiota. Additionally, we discussed the potential applications, research gaps and future perspectives of gut microbiomes in parasite-transmitting gastropods. Furthermore, several strategies for enhancing our comprehension of gut microbiomes in snails were also discussed. CONCLUSIONS This review comprehensively summarizes the current knowledge on the composition, potential function, influencing factors, potential applications, limitations, and challenges of gut microbiomes in gastropods, with a specific emphasis on parasite-transmitting gastropods. These findings provide important insights for future studies aiming to understand the potential role of gastropod gut microbiota in controlling snail populations and snail-borne diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yun Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Arboleda-Baena C, Pareja CB, Pla I, Logares R, De la Iglesia R, Navarrete SA. Hidden interactions in the intertidal rocky shore: variation in pedal mucus microbiota among marine grazers that feed on epilithic biofilm communities. PeerJ 2022; 10:e13642. [PMID: 36172502 PMCID: PMC9512015 DOI: 10.7717/peerj.13642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
In marine ecosystems, most invertebrates possess diverse microbiomes on their external surfaces, such as those found in the pedal mucus of grazing gastropods and chitons that aids displacement on different surfaces. The microbes are then transported around and placed in contact with free-living microbial communities of micro and other macro-organisms, potentially exchanging species and homogenizing microbial composition and structure among grazer hosts. Here, we characterize the microbiota of the pedal mucus of five distantly related mollusk grazers, quantify differences in microbial community structure, mucus protein and carbohydrate content, and, through a simple laboratory experiment, assess their effects on integrated measures of biofilm abundance. Over 665 Amplicon Sequence Variants (ASVs) were found across grazers, with significant differences in abundance and composition among grazer species and epilithic biofilms. The pulmonate limpet Siphonaria lessonii and the periwinkle Echinolittorina peruviana shared similar microbiota. The microbiota of the chiton Chiton granosus, keyhole limpet Fissurella crassa, and scurrinid limpet Scurria araucana differed markedly from one another, and form those of the pulmonate limpet and periwinkle. Flavobacteriaceae (Bacteroidia) and Colwelliaceae (Gammaproteobacteria) were the most common among microbial taxa. Microbial strict specialists were found in only one grazer species. The pedal mucus pH was similar among grazers, but carbohydrate and protein concentrations differed significantly. Yet, differences in mucus composition were not reflected in microbial community structure. Only the pedal mucus of F. crassa and S. lessonii negatively affected the abundance of photosynthetic microorganisms in the biofilm, demonstrating the specificity of the pedal mucus effects on biofilm communities. Thus, the pedal mucus microbiota are distinct among grazer hosts and can affect and interact non-trophically with the epilithic biofilms on which grazers feed, potentially leading to microbial community coalescence mediated by grazer movement. Further studies are needed to unravel the myriad of non-trophic interactions and their reciprocal impacts between macro- and microbial communities.
Collapse
Affiliation(s)
- Clara Arboleda-Baena
- Estación Costera de Investigaciones Marinas and Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, El Tabo, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Región Metropolitana, Chile
| | - Claudia Belén Pareja
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Región Metropolitana, Chile
| | - Isadora Pla
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Región Metropolitana, Chile
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Rodrigo De la Iglesia
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Región Metropolitana, Chile
- Marine Energy Research & Innovation Center (MERIC), Santiago de Chile, Chile
| | - Sergio Andrés Navarrete
- Estación Costera de Investigaciones Marinas and Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, El Tabo, Chile
- Marine Energy Research & Innovation Center (MERIC), Santiago de Chile, Chile
- Centro Basal COPAS-COASTAL, Universidad de Concepción
| |
Collapse
|
5
|
Li S, Young T, Archer S, Lee K, Sharma S, Alfaro AC. Mapping the Green-Lipped Mussel (Perna canaliculus) Microbiome: A Multi-Tissue Analysis of Bacterial and Fungal Diversity. Curr Microbiol 2022; 79:76. [PMID: 35091849 PMCID: PMC8799583 DOI: 10.1007/s00284-021-02758-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
Poor health and mortality events of the commercially important and endemic New Zealand green-lipped mussel (Perna canaliculus) pose a threat to its industry. Despite the known importance of microbiomes to animal health and environmental resilience, the host-associated microbiome is unexplored in this species. We conducted the first baseline characterization of bacteria and fungi within key host tissues (gills, haemolymph, digestive gland, and stomach) using high-throughput amplicon sequencing of 16S rRNA gene and ITS1 region for bacteria and fungi, respectively. Tissue types displayed distinctive bacterial profiles, consistent among individuals, that were dominated by phyla which reflect (1) a fluid exchange between the circulatory system (gills and haemolymph) and surrounding aqueous environment and (2) a highly diverse digestive system (digestive gland and stomach) microbiota. Gammaproteobacteria and Campylobacterota were mostly identified in the gill tissue and haemolymph, and were also found in high abundance in seawater. Digestive gland and stomach tissues were dominated by common gut bacterial phyla, such as Firmicutes, Cyanobacteria, Proteobacteria, and Bacteroidota, which reflects the selectivity of the digestive system and food-based influences. Other major notable taxa included the family Spirochaetaceae, and genera Endozoicomonas, Psychrilyobacter, Moritella and Poseidonibacter, which were highly variable among tissue types and samples. More than 50% of fungal amplicon sequence variants (ASVs) were unclassified beyond the phylum level, which reflects the lack of studies with marine fungi. However, the majority of those identified were assigned to the phylum Ascomycota. The findings from this work provide the first insight into healthy tissue microbiomes of P. canaliculus and is of central importance to understanding the effect of environmental changes on farmed mussels at the microbial level.
Collapse
Affiliation(s)
- Siming Li
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Stephen Archer
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Kevin Lee
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Shaneel Sharma
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand.
| |
Collapse
|