1
|
Bassini-Silva R, Quadros RMD, Castilho PVD, Mendes LP, Souza GCD, Alves CF, Barros-Battesti DM, Jacinavicius FDC. Reviving knowledge: A 70-year gap in the host-parasite relationship between Trichodectes galictidis (Ischnocera: Trichodectidae) and Galictis cuja (Molina, 1782) (Carnivora: Mustelidae). Vet Parasitol Reg Stud Reports 2025; 58:101209. [PMID: 40049990 DOI: 10.1016/j.vprsr.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 05/13/2025]
Abstract
Galictis cuja is one of the least known mustelids in South America, with its frequency and distribution poorly documented across the Neotropical region from Mexico to Brazil. In February 2024, a female was rescued by fishermen on Porto Beach in Imbituba, Santa Catarina. A clinical examination revealed ectoparasites on the animal, identified as Trichodectes galictidis, a louse species not detected in these animals for over 70 years. This study explores the revival of knowledge regarding the host-parasite relationship between Trichodectes galictidis and Galictis cuja, highlighting a significant research gap. Through a literature review and new data obtained using scanning electron microscopy (SEM), the study documents previously unrecorded characteristics of the parasite. The findings not only revive knowledge of this relationship but also underscore the importance of continued research into the ecological and parasitic dynamics of this species, which remain largely unexplored in the Neotropical region.
Collapse
Affiliation(s)
| | - Rosiléia Marinho de Quadros
- Departamento de Medicina Veterinária, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina (UDESC), Lages, SC, Brazil; Laboratório de Zoologia e Parasitologia, Universidade do Planalto Catarinense (UNIPLAC), Lages, SC, Brazil.
| | - Pedro Volkmer de Castilho
- Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade do Estado de Santa Catarina (UDESC), Laguna, SC, Brazil.
| | - Luisa Padaratz Mendes
- Departamento de Medicina Veterinária, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina (UDESC), Lages, SC, Brazil.
| | | | | | - Darci Moraes Barros-Battesti
- Departamento de Patologia, Reprodução e Saúde Única, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Jaboticabal, SP, Brazil; Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, USP, São Paulo, SP, Brazil,.
| | | |
Collapse
|
2
|
Dong P, Wang L, Chen Y, Wang L, Liang W, Wang H, Cheng J, Chen Y, Guo F. Germplasm Resources and Genetic Breeding of Huang-Qi (Astragali Radix): A Systematic Review. BIOLOGY 2024; 13:625. [PMID: 39194563 DOI: 10.3390/biology13080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Huang-Qi (Astragali radix) is one of the most widely used herbs in traditional Chinese medicine, derived from the dried roots of Astragalus membranaceus or Astragalus membranaceus var. mongholicus. To date, more than 200 compounds have been reported to be isolated and identified in Huang-Qi. However, information pertaining to Huang-Qi breeding is considerably fragmented, with fundamental gaps in knowledge, creating a bottleneck in effective breeding strategies. This review systematically introduces Huang-Qi germplasm resources, genetic diversity, and genetic breeding, including wild species and cultivars, and summarizes the breeding strategy for cultivars and the results thereof as well as recent progress in the functional characterization of the structural and regulatory genes related to horticultural traits. Perspectives about the resource protection and utilization, breeding, and industrialization of Huang-Qi in the future are also briefly discussed.
Collapse
Affiliation(s)
- Pengbin Dong
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lingjuan Wang
- Pingliang City Plant Protection Centre, Pingliang 743400, China
| | - Yong Chen
- Institute of Soil, Fertilizer and Agricultural Water saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Liyang Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiali Cheng
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Montana MM, Kasper CB, Pinheiro FL, Pereira LFS, Abidu-Figueiredo M, de Souza-Junior P. Brain volumetry from CT-scan endocasts of three neotropical carnivores. Anat Histol Embryol 2024; 53:e13000. [PMID: 37994610 DOI: 10.1111/ahe.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Studies on brain anatomy can clarify specific evolutionary and behavioural aspects of wild animals. The rich diversity in a broad range of habitats makes carnivorans especially eligible for studying the relations between the brain form and behaviour, cognitive, sensorial and motor traits. This study compared the brain's contour and total and segmented brain volumetry in three species of neotropical carnivorans. CT images of 17 skulls of three species were acquired: Conepatus chinga (n = 6), Galictis cuja (n = 6) and Lontra longicaudis (n = 5). Three-dimensional endocasts allowed for estimating the brain's total and segmented volumes (olfactory bulb, rostral cerebrum, caudal cerebrum and cerebellum/brain stem). The average volume percentage of the segments was compared interspecifically and intraspecifically between the sexes. The otter has a notably more complex gyrification, typical for semiaquatic carnivorans. Proportionally, the olfactory bulb was significantly larger in hog-nosed skunks, possibly due to a better sense of smell for capturing insects. The proportional volumes of the rostral cerebrum, caudal cerebrum and cerebellum/brain stem segments did not differ between these species. Social behaviour traits and tactile, motor and balance skills were probably not sufficiently distinct to reflect differences in the brain segments analysed in these three species.
Collapse
Affiliation(s)
- Marelise Moral Montana
- Laboratory of Animal Anatomy, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Carlos Benhur Kasper
- Laboratory of Biology of Mammals and Birds, Federal University of Pampa (UNIPAMPA), São Gabriel, RS, Brazil
| | - Felipe Lima Pinheiro
- Laboratory of Paleobiology, Federal University of Pampa (UNIPAMPA), São Gabriel, RS, Brazil
| | | | - Marcelo Abidu-Figueiredo
- Department of Animal and Human Anatomy, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Paulo de Souza-Junior
- Laboratory of Animal Anatomy, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| |
Collapse
|
4
|
Quiroga-Carmona M, Teta P, D’Elía G. The skull variation of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini) is localized and correlated to the ecogeographic features of its geographic distribution. PeerJ 2023; 11:e15200. [PMID: 37077313 PMCID: PMC10108858 DOI: 10.7717/peerj.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
The relationship between phenotypic variation and landscape heterogeneity has been extensively studied to understand how the environment influences patterns of morphological variation and differentiation of populations. Several studies had partially addressed intraspecific variation in the sigmodontine rodent Abrothrix olivacea, focusing on the characterization of physiological aspects and cranial variation. However, these had been conducted based on geographically restricted populational samples, and in most cases, the aspects characterized were not explicitly contextualized with the environmental configurations in which the populations occurred. Here, the cranial variation of A. olivacea was characterized by recording twenty cranial measurements in 235 individuals from 64 localities in Argentina and Chile, which widely cover the geographic and environmental distribution of this species. The morphological variation was analyzed and ecogeographically contextualized using multivariate statistical analyses, which also included climatic and ecological variation at the localities where the individuals were sampled. Results indicate that the cranial variation of this species is mostly clustered in localized patterns associated to the types of environments, and that the levels of cranial differentiation are higher among the populations from arid and treeless zones. Additionally, the ecogeographical association of cranial size variation indicate that this species does not follow Bergmann's rule and that island populations exhibit larger cranial sizes compared to their continental counterparts distributed at the same latitudes. These results suggest that cranial differentiation among the populations of this species is not homogeneous throughout its geographic distribution, and that the patterns of morphological differentiation are also not completely consistent with the patterns of genetic structuring that have been described recently. Finally, the analyses performed to ponder morphological differentiation among populations suggest that the contribution of genetic drift in the formation of these patterns can be ruled out among Patagonian populations, and that the selective effect imposed by the environment could better explain them.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, United States
| | - Pablo Teta
- División de Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Buenos Aires, Argentina
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
| |
Collapse
|
5
|
Russo LF, Meloro C, De Silvestri M, Chadwick EA, Loy A. Better sturdy or slender? Eurasian otter skull plasticity in response to feeding ecology. PLoS One 2022; 17:e0274893. [PMID: 36174011 PMCID: PMC9521905 DOI: 10.1371/journal.pone.0274893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Otters are semi-aquatic mammals specialized in feeding on aquatic prey. The Eurasian otter Lutra lutra is the most widely distributed otter species. Despite a low degree of genetic variation across its European range, the population from Great Britain exhibits distinct genetic structuring. We examined 43 skulls of adult Eurasian otters belonging to 18 sampling localities and three genetic clusters (Shetlands, Wales and Scotland). For each sample location, information regarding climate was described using bioclimatic variables from WorldClim, and information on otter diet was extracted from the literature. By using photogrammetry, 3D models were obtained for each skull. To explore any evidence of adaptive divergence within these areas we used a three dimensional geometric morphometric approach to test differences in skull size and shape between areas with genetically distinct populations, as well as the influence of diet, isolation by distance and climate. Males were significantly larger in skull size than females across all the three genetic clusters. Skull shape, but not size, appeared to differ significantly among genetic clusters, with otters from Shetland exhibiting wider zygomatic arches and longer snouts compared to otters from Wales, whereas otters from Scotland displayed intermediate traits. A significant relationship could also be found between skull shape variation, diet as well as climate. Specifically, otters feeding on freshwater fish had more slender and short-snouted skulls compared to otters feeding mostly on marine fish. Individuals living along the coast are characterised by a mixed feeding regime based on marine fish and crustaceans and their skull showed an intermediate shape. Coastal and island otters also had larger orbits and eyes more oriented toward the ground, a larger nasal cavity, and a larger distance between postorbital processes and zygomatic arch. These functional traits could also represent an adaptation to favour the duration and depth of diving, while the slender skull of freshwater feeding otters could improve the hydrodynamics.
Collapse
Affiliation(s)
- Luca Francesco Russo
- EnvixLab, Department of Biosciences and Territory, Università degli Studi del Molise, Pesche, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail:
| | - Mara De Silvestri
- EnvixLab, Department of Biosciences and Territory, Università degli Studi del Molise, Pesche, Italy
| | - Elizabeth A. Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff, United Kingdom
| | - Anna Loy
- EnvixLab, Department of Biosciences and Territory, Università degli Studi del Molise, Pesche, Italy
| |
Collapse
|
6
|
Genetic differentiation pattern and evidence of an early speciation process in the genus Reithrodon (Rodentia: Sigmodontinae). Mamm Biol 2022. [DOI: 10.1007/s42991-022-00297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Gálvez-López E, Kilbourne B, Cox PG. Cranial shape variation in mink: Separating two highly similar species. J Anat 2021; 240:210-225. [PMID: 34569054 PMCID: PMC8742963 DOI: 10.1111/joa.13554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023] Open
Abstract
European and American minks (Mustela lutreola and Neovison vison, respectively) are very similar in their ecology, behavior, and morphology. However, the American mink is a generalist predator and seems to adapt better to anthropized environments, allowing it to outcompete the European mink in areas where it has been introduced, threatening the survival of the native species. To assess whether morphological differences may be contributing to the success of the American mink relative to the European mink, we analyzed shape variation in the cranium of both species using 3D geometric morphometrics. A set of 38 landmarks and 107 semilandmarks was used to study shape variation between and within species, and to assess how differences in size factored into that variation. Sexual dimorphism in both size and shape was also studied. Significant differences between species were found in cranial shape, but not in size. Relative to American mink, European mink have a shorter facial region with a rounder forehead and wider orbits, a longer neurocranium with less developed crests and processes, and an antero-medially placed tympanic bullae with an anteriorly expanded cranial border. Within species, size-related sexual dimorphism is highly significant, but sexual dimorphism in shape is only significant in American mink, not in European mink. Additionally, two trends common to both species were discovered, one related to allometric changes and another to sexual size dimorphism. Shape changes related to increasing size can be subdivided into two, probably related, groups: increased muscle force and growth. The first group somewhat parallels the differences between both mink species, while the second group of traits includes an anterodorsal expansion of the face, and the neurocranium shifting from a globous shape in small individuals to a dorsoventrally flattened ellipse in the largest ones. Finally, the sexual dimorphism trend, while also accounting for differences in muscle force, seems to be related to the observed dietary differences between males and females. Overall, differences between species and sexes, and shape changes with increasing size, seem to mainly relate to differences in masticatory-muscle volume and therefore muscle force and bite force, which, in turn, relate to a wider range of potential prey (bigger prey, tougher shells). Thus, muscle force (and dietary range) would be larger in American mink than in European mink, in males than in females, and in larger individuals than in smaller ones.
Collapse
Affiliation(s)
- Eloy Gálvez-López
- PalaeoHub, Department of Archaeology, University of York, York, United Kingdom
| | - Brandon Kilbourne
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Philip G Cox
- PalaeoHub, Department of Archaeology, University of York, York, United Kingdom
| |
Collapse
|