1
|
Mohd Faizal NF, Shai S, Savaliya BP, Karen-Ng LP, Kumari R, Kumar R, Vincent-Chong VK. A Narrative Review of Prognostic Gene Signatures in Oral Squamous Cell Carcinoma Using LASSO Cox Regression. Biomedicines 2025; 13:134. [PMID: 39857718 PMCID: PMC11759772 DOI: 10.3390/biomedicines13010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies of the head and neck squamous cell carcinoma (HNSCC). HNSCC is recognized as the eighth most commonly occurring cancer globally in men. It is essential to distinguish between cancers arising in the head and neck regions due to significant differences in their etiologies, treatment approaches, and prognoses. As the Cancer Genome Atlas (TCGA) dataset is available in HNSCC, the survival analysis prognosis of OSCC patients based on the TCGA dataset for discovering gene expression-based prognostic biomarkers is limited. To address this paucity, we aimed to provide comprehensive evidence by recruiting studies that have reported new biomarkers/signatures to establish a prognostic model to predict the survival of OSCC patients. Using PubMed search, we have identified 34 studies that have been using the least absolute shrinkage and selection operator (LASSO)-based Cox regression analyses to establish signature prognosis that related to different pathways in OSCC from the past 4 years. Our review was focused on summarizing these signatures and implications for targeted therapy using FDA-approved drugs. Furthermore, we conducted an analysis of the LASSO Cox regression gene signatures. Our findings revealed 13 studies that correlated a greater number of regulatory T cells (Tregs) cells in protective gene signatures with increased recurrence-free and overall survival rates. Conversely, two studies displayed an opposing trend in cases of OSCC. We will also explore how the dysregulation of these signatures impacts immune status, promoting tumor immune evasion or, conversely, enhancing immune surveillance. Overall, this review will provide new insight for future anti-cancer therapies based on the potential gene that is associated with poor prognosis in OSCC.
Collapse
Affiliation(s)
- Nur Fatinazwa Mohd Faizal
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Saptarsi Shai
- Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Bansi P. Savaliya
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55901, USA;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.F.M.F.); (L.P.K.-N.)
| | - Rupa Kumari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Vui King Vincent-Chong
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Li N, Hu Z, Zhang N, Liang Y, Feng Y, Ding W, Cheng L, Zheng Y. Pairwise analysis of gene expression for oral squamous cell carcinoma via a large-scale transcriptome integration. J Cell Mol Med 2024; 28:e70153. [PMID: 39470584 PMCID: PMC11520439 DOI: 10.1111/jcmm.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Among all cancers occurring in the head and neck region, oral squamous cell carcinoma (OSCC) is the most common oral malignant tumours characterized by its aggressiveness and metastasis. The development of transcriptomics technology has greatly facilitated the diagnosis of various cancers. However, identifying genetic biomarkers is limited by data from a single batch of OSCC samples, and integrating analysis across different platforms remains a great challenge. In this study, we integrated five OSCC transcriptome datasets using an innovative strategy capable of mitigating batch effect, and extracting information from different datasets based on changes in the relative expression of gene pairs. By leveraging a machine learning method, we developed a prediction model including 27 differential gene pairs (DGPs) to discriminate OSCC from control samples, achieving an area under the receiver operating characteristic curve (AUC) of 0.8987 for the training set. Moreover, the model demonstrated commendable performance in four external validation sets, with AUCs of 0.9926, 0.9688, 0.8052 and 0.8565, respectively. Subsequently, a prognostic model was constructed based on six key gene pairs through univariate and multivariate Cox regression analysis. The AUCs of the model at 1-year and 3-year overall survival time prediction were 0.717 and 0.779 in an independent dataset. Our result demonstrates the effectiveness of this new method of integrating data and identifying DGPs. Using DGPs can significantly improve the performance of both diagnostic and prognostic models.
Collapse
Affiliation(s)
- Nan Li
- Department of StomatologyShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Zunkai Hu
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Ning Zhang
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yining Liang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yating Feng
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wanfu Ding
- Department of Information and TechnologyShenzhen People's HospitalShenzhenGuangdongChina
| | - Lixin Cheng
- Department of Critical Care MedicineShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yuyan Zheng
- Department of StomatologyShenzhen People's Hospital (Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology)ShenzhenGuangdongChina
| |
Collapse
|
3
|
Soni U, Singh A, Soni R, Samanta SK, Varadwaj PK, Misra K. Identification of candidate target genes of oral squamous cell carcinoma using high-throughput RNA-Seq data and in silico studies of their interaction with naturally occurring bioactive compounds. J Biomol Struct Dyn 2024; 42:8024-8044. [PMID: 37526306 DOI: 10.1080/07391102.2023.2242515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Oral Squamous Cell Carcinoma (OSCC) accounts for more than 90% of all kinds of oral neoplasms that develop in the oral cavity. It is a type of malignancy that shows high morbidity and recurrence rate, but data on the disease's target genes and biomarkers is still insufficient. In this study, in silico studies have been performed to find out the novel target genes and their potential therapeutic inhibitors for the effective and efficient treatment of OSCC. The DESeq2 package of RStudio was used in the current investigation to screen and identify differentially expressed genes for OSCC. As a result of gene expression analysis, the top 10 novel genes were identified using the Cytohubba plugin of Cytoscape, and among them, the ubiquitin-conjugating enzyme (UBE2D1) was found to be upregulated and playing a significant role in the progression of human oral cancers. Following this, naturally occurring compounds were virtually evaluated and simulated against the discovered novel target as prospective drugs utilizing the Maestro, Schrodinger, and Gromacs software. In a simulated screening of naturally occurring potential inhibitors against the novel target UBE2D1, Epigallocatechin 3-gallate, Quercetin, Luteoline, Curcumin, and Baicalein were identified as potent inhibitors. Novel identified gene UBE2D1 has a significant role in the proliferation of human cancers through suppression of 'guardian of genome' p53 via ubiquitination dependent pathway. Therefore, the treatment of OSCC may benefit significantly from targeting this gene and its discovered naturally occurring inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Unnati Soni
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Ramendra Soni
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology, Prayagraj, India
| |
Collapse
|
4
|
Yan C, He L, Ma Y, Cheng J, Shen L, Singla RK, Zhang Y. Establishing and Validating an Innovative Focal Adhesion-Linked Gene Signature for Enhanced Prognostic Assessment in Endometrial Cancer. Reprod Sci 2024; 31:2468-2480. [PMID: 38653857 DOI: 10.1007/s43032-024-01564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Studies have highlighted the significant role of focal adhesion signaling in cancer. Nevertheless, its specific involvement in the pathogenesis of endometrial cancer and its clinical significance remains uncertain. We analyzed TCGA-UCEC and GSE119041 datasets with corresponding clinical data to investigate focal adhesion-related gene expression and their clinical significance. A signature, "FA-riskScore," was developed using LASSO regression in the TCGA cohort and validated in the GSE dataset. The FA-riskScore was compared with four existing models in terms of their prediction performance. We employed univariate and multivariate Cox regression analyses towards FA-riskScore to assess its independent prognostic value. A prognostic evaluation nomogram based on our model and clinical indexes was established subsequently. Biological and immune differences between high- and low-risk groups were explored through functional enrichment, PPI network analysis, mutation mining, TME evaluation, and single-cell analysis. Sensitivity tests on commonly targeted drugs were performed on both groups, and Connectivity MAP identified potentially effective molecules for high-risk patients. qRT-PCR validated the expressions of FA-riskScore genes. FA-riskScore, based on FN1, RELN, PARVG, and PTEN, indicated a poorer prognosis for high-risk patients. Compared with published models, FA-riskScore achieved better and more stable performance. High-risk groups exhibited a more challenging TME and suppressive immune status. qRT-PCR showed differential expression in FN1, RELN, and PTEN. Connectivity MAP analysis suggested that BU-239, potassium-canrenoate, and tubocurarine are effective for high-risk patients. This study introduces a novel prognostic model for endometrial cancer and offers insights into focal adhesion's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Cuiyin Yan
- Department of Obstetrics and Gynecology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Leilei He
- Department of Obstetrics and Gynecology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuhui Ma
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Jing Cheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Li Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Yueming Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Huang J, Meng Q, Liu R, Li H, Li Y, Yang Z, Wang Y, Wanyan C, Yang X, Wei J. The development of radioresistant oral squamous carcinoma cell lines and identification of radiotherapy-related biomarkers. Clin Transl Oncol 2023; 25:3006-3020. [PMID: 37029240 DOI: 10.1007/s12094-023-03169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND In the treatment of oral squamous cell carcinoma (OSCC), radiation resistance remains an important obstacle to patient outcomes. Progress in understanding the molecular mechanisms of radioresistance has been limited by research models that do not fully recapitulate the biological features of solid tumors. In this study, we aimed to develop novel in vitro models to investigate the underlying basis of radioresistance in OSCC and to identify novel biomarkers. METHODS Parental OSCC cells (SCC9 and CAL27) were repeatedly exposed to ionizing radiation to develop isogenic radioresistant cell lines. We characterized the phenotypic differences between the parental and radioresistant cell lines. RNA sequencing was used to identify differentially expressed genes (DEGs), and bioinformatics analysis identified candidate molecules that may be related to OSCC radiotherapy. RESULTS Two isogenic radioresistant cell lines for OSCC were successfully established. The radioresistant cells displayed a radioresistant phenotype when compared to the parental cells. Two hundred and sixty DEGs were co-expressed in SCC9-RR and CAL27-RR, and thirty-eight DEGs were upregulated or downregulated in both cell lines. The associations between the overall survival (OS) of OSCC patients and the identified genes were analyzed using data from the Cancer Genome Atlas (TCGA) database. A total of six candidate genes (KCNJ2, CLEC18C, P3H3, PIK3R3, SERPINE1, and TMC8) were closely associated with prognosis. CONCLUSION This study demonstrated the utility of constructing isogenic cell models to investigate the molecular changes associated with radioresistance. Six genes were identified based on the data from the radioresistant cells that may be potential targets in the treatment of OSCC.
Collapse
Affiliation(s)
- Junhong Huang
- College of Life Science, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qingzhe Meng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154000, China
| | - Rong Liu
- College of Life Science, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yahui Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zihui Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Chaojie Wanyan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Zhang Y, Liu J, Liu S, Yu L, Liu S, Li M, Jin F. Extracellular vesicles in oral squamous cell carcinoma: current progress and future prospect. Front Bioeng Biotechnol 2023; 11:1149662. [PMID: 37304135 PMCID: PMC10250623 DOI: 10.3389/fbioe.2023.1149662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most aggressive oral and maxillofacial malignancy with a high incidence and low survival rate. OSCC is mainly diagnosed by tissue biopsy, which is a highly traumatic procedure with poor timeliness. Although there are various options for treating OSCC, most of them are invasive and have unpredictable therapeutic outcomes. Generally, early diagnosis and noninvasive treatment cannot be always satisfied simultaneously in OSCC. Extracellular vesicles (EVs) are involved in intercellular communication. EVs facilitate disease progression and reflect the location and status of the lesions. Therefore, EVs are relatively less invasive diagnostic tools for OSCC. Furthermore, the mechanisms by which EVs are involved in tumorigenesis and tumor treatment have been well studied. This article dissects the involvement of EVs in the diagnosis, development, and treatment of OSCC, providing new insight into the treatment of OSCC by EVs. Different mechanisms, such as inhibiting EV internalization by OSCC cells and constructing engineered vesicles, with potential applications for treating OSCC will be discussed in this review article.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jianing Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Periodontology, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Siying Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Yang Z, Liu F, Li Z, Liu N, Yao X, Zhou Y, Zhang L, Jiang P, Liu H, Kong L, Lang C, Xu X, Jia J, Nakajima T, Gu W, Zheng L, Zhang Z. Histone lysine methyltransferase SMYD3 promotes oral squamous cell carcinoma tumorigenesis via H3K4me3-mediated HMGA2 transcription. Clin Epigenetics 2023; 15:92. [PMID: 37237385 DOI: 10.1186/s13148-023-01506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Epigenetic dysregulation is essential to the tumorigenesis of oral squamous cell carcinoma (OSCC). SET and MYND domain-containing protein 3 (SMYD3), a histone lysine methyltransferase, is implicated in gene transcription regulation and tumor development. However, the roles of SMYD3 in OSCC initiation are not fully understood. The present study investigated the biological functions and mechanisms involved in the SMYD3-mediated tumorigenesis of OSCC utilizing bioinformatic approaches and validation assays with the aim of informing the development of targeted therapies for OSCC. RESULTS 429 chromatin regulators were screened by a machine learning approach and aberrant expression of SMYD3 was found to be closely associated with OSCC formation and poor prognosis. Data profiling of single-cell and tissue demonstrated that upregulated SMYD3 significantly correlated with aggressive clinicopathological features of OSCC. Alterations in copy number and DNA methylation patterns may contribute to SMYD3 overexpression. Functional experimental results suggested that SMYD3 enhanced cancer cell stemness and proliferation in vitro and tumor growth in vivo. SMYD3 was observed to bind to the High Mobility Group AT-Hook 2 (HMGA2) promoter and elevated tri-methylation of histone H3 lysine 4 at the corresponding site was responsible for transactivating HMGA2. SMYD3 also was positively linked to HMGA2 expression in OSCC samples. Furthermore, treatment with the SMYD3 chemical inhibitor BCI-121 exerted anti-tumor effects. CONCLUSIONS Histone methyltransferase activity and transcription-potentiating function of SMYD3 were found to be essential for tumorigenesis and the SMYD3-HMGA2 is a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zongcheng Yang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Fen Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, People's Republic of China
| | - Zongkai Li
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Nianping Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xinfeng Yao
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yu Zhou
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Liyu Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Pan Jiang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Honghong Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Lingming Kong
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chuandong Lang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Zhihong Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Guo C, Qu X, Tang X, Song Y, Wang J, Hua K, Qiu J. Spatiotemporally deciphering the mysterious mechanism of persistent HPV-induced malignant transition and immune remodelling from HPV-infected normal cervix, precancer to cervical cancer: Integrating single-cell RNA-sequencing and spatial transcriptome. Clin Transl Med 2023; 13:e1219. [PMID: 36967539 PMCID: PMC10040725 DOI: 10.1002/ctm2.1219] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The mechanism underlying cervical carcinogenesis that is mediated by persistent human papillomavirus (HPV) infection remains elusive. AIMS Here, for the first time, we deciphered both the temporal transition and spatial distribution of cellular subsets during disease progression from normal cervix tissues to precursor lesions to cervical cancer. MATERIALS & METHODS We generated scRNA-seq profiles and spatial transcriptomics data from nine patient samples, including two HPV-negative normal, two HPV-positive normal, two HPV-positive HSIL and three HPV-positive cancer samples. RESULTS We not only identified three 'HPV-related epithelial clusters' that are unique to normal, high-grade squamous intraepithelial lesions (HSIL) and cervical cancer tissues but also discovered node genes that potentially regulate disease progression. Moreover, we observed the gradual transition of multiple immune cells that exhibited positive immune responses, followed by dysregulation and exhaustion, and ultimately established an immune-suppressive microenvironment during the malignant program. In addition, analysis of cellular interactions further verified that a 'homeostasis-balance-malignancy' change occurred within the cervical microenvironment during disease progression. DISCUSSION We for the first time presented a spatiotemporal atlas that systematically described the cellular heterogeneity and spatial map along the four developmental steps of HPV-related cervical oncogenesis, including normal, HPV-positive normal, HSIL and cancer. We identified three unique HPV-related clusters, discovered critical node genes that determined the cell fate and uncovered the immune remodeling during disease escalation. CONCLUSION Together, these findings provided novel possibilities for accurate diagnosis, precise treatment and prognosis evaluation of patients with precancer and cervical cancer.
Collapse
Affiliation(s)
- Chenyan Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yu Song
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jue Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
9
|
FAM3D as a Prognostic Indicator of Head and Neck Squamous Cell Carcinoma Is Associated with Immune Infiltration. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5851755. [PMID: 36510584 PMCID: PMC9741545 DOI: 10.1155/2022/5851755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022]
Abstract
Background Globally, head and neck squamous cell carcinoma (HNSCC) is a common malignant tumor with high morbidity and mortality. Hence, it is important to find effective biomarkers for the diagnosis and prediction of the prognosis of patients with HNSCC. FAM3D had been proven to be vital in other cancers. However, its predictive and therapeutic value in HNSCC is unclear. Therefore, it is valuable to explore the association between the expression level of FAM3D and its impacts on the prognosis and tumor microenvironment in HNSCC. Methods The Cancer Genome Atlas (TCGA) dataset, Genotype-Tissue Expression (GTEx) dataset, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset, and The Human Protein Atlas (THPA) website were used to assess HNSCC expressions in tumor and nontumor tissues. Then, we further conducted immunohistochemistry experiment as internal cohort to validate the same results. The Cox regression analysis, Kaplan-Meier analysis, and nomograms were performed to find the predictive prognostic value of FAM3D in HNSCC patients and its relationship with the clinicopathological features in HNSCC. The Gene Expression Omnibus (GEO) dataset was utilized to externally verify the prognosis value of FAM3D in HNSCC. Gene Set Enrichment Analysis (GESA) was applied to search the molecular and biological functions of FAM3D. The association between FAM3D and immune cell infiltration was investigated with the Tumor Immune Estimating Resource, version 2 (TIMER2). The relationships between FAM3D expression and tumor microenvironment (TME) scores, immune checkpoints, and antitumor compound half-maximal inhibitory concentration predictions were also explored. Results In different datasets, FAM3D mRNA and protein levels were all significantly lower in HNSCC tissues than in normal tissues, and they were strongly inversely associated with tumor grade, stage, lymph node metastasis, and T stage. Patients with high-FAM3D-expression displayed better prognosis than those with low-FAM3D-expression. FAM3D was also determined to be a suitable biomarker for predicting the prognosis of patients with HNSCC. This was externally validated in the GEO dataset. As for gene and protein level, the functional and pathway research results of FAM3D indicated that it was enriched in alteration of immune-related pathways in HNSCC. The low-expression group had higher stromal and ESTIMATE scores by convention than the high-expression group. FAM3D expression were found to be positively correlated with immune infiltrating cells, such as cancer-associated fibroblasts, myeloid-derived suppressor cells, macrophage cells, T cell CD8+ cells, regulatory T cells, and T cell follicular helper cells. FAM3D's relationships with immune checkpoints and sensitivity to antitumor drugs were also investigated. Conclusion Our study explored the impact of FAM3D as a favorable prognostic marker for HNSCC on the tumor immune microenvironment from multiple perspectives. The results may provide new insights into HNSCC-targeted immunotherapy.
Collapse
|
10
|
Relationships of Ferroptosis and Pyroptosis-Related Genes with Clinical Prognosis and Tumor Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3713929. [PMID: 36246400 PMCID: PMC9557253 DOI: 10.1155/2022/3713929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis and pyroptosis are two new programmed cell death (PCD) modes discovered in recent years. However, the potential value of ferroptosis and pyroptosis-related genes (FPRGs) in prognosis prediction and the tumor immune microenvironment of head and neck squamous cell carcinoma (HNSCC) is still unclear. We obtained 21 significant FPRGs based on the training dataset (TCGA- HNSC) using the univariate Cox and differential expression analysis. The TCGA- HNSC (n = 502) dataset was clustered into two group (clusters A and B) based on the 21 significant FPRGs. 1467 differentially expressed genes (DEGs) between cluster A and B were put into univariate Cox and Least absolute shrinkage and selection operator (LASSO) analysis to build a risk model. The predictive capability of the risk model was successfully confirmed by internal validation, external validation, and clinical sample validation. To improve the clinical applicability, a nomogram model combined risk score and clinical information were constructed. Moreover, the patients with lower risk score were characterized by increased immune response and tumor mutation burden (TMB), while the patients with higher risk score were characterized by increased TP53 mutation rate. In conclusion, our comprehensive analysis of the FPRGs revealed their significant role in prognosis prediction and the tumor immune microenvironment. The risk model containing 9 FPRGs could be a potential prognostic markers and effective immunotherapy targets for HNSCC.
Collapse
|
11
|
Yuan Z, Huang J, Teh BM, Hu S, Hu Y, Shen Y. Exploration of a predictive model based on genes associated with fatty acid metabolism and clinical treatment for head and neck squamous cell carcinoma. J Clin Lab Anal 2022; 36:e24722. [PMID: 36181275 DOI: 10.1002/jcla.24722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent malignant tumors of the head and neck and presents high risks of recurrence and poor prognosis postoperatively. The aim of this study was to establish a predictive model based on fatty acid metabolism (FAM) genes to forecast the prognosis of HNSCC patients and the subsequent treatment strategies. METHODS We accessed the TCGA and GEO databases for HNSCC genes and clinical data. The FAM risk score model was created and validated using a combination of univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Combining risk scores and clinical characteristics, a nomogram was established and assessed. Subsequently, the function, gene mutation, immune difference, and chemotherapeutic drug sensitivity of the groups with high- and low-risk scores were analyzed. Consequently, the mode's validity was evaluated comprehensively by combining single gene analysis. RESULTS The FAM risk score model for predicting HNSCC prognosis had certain validity. Patients in the high- and low-risk groups had genetic mutations, and the prognosis was the poorest for the high-risk groups with high genetic mutations. The patients with low-risk scores were suitable for immunotherapy since they had increased infiltration of immune cells. In contrast, the patients in the other groups were more suitable for chemotherapy. CONCLUSION The results of this study demonstrated that the FAM risk score model may predict the prognosis of HSNCC and has a certain therapeutic guidance value.
Collapse
Affiliation(s)
- Zhechen Yuan
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Bing Mei Teh
- Department of Ear Nose and Throat, Head and Neck Surgery, Eastern Health, Box Hill, Victoria, Australia.,Department of Otolaryngology, Head and Neck Surgery, Monash Health, Clayton, Victoria, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Shiyu Hu
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Yi Hu
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Yi Shen
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center of Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Ding Y, Duan H, Lin J, Zhang X. YY1 accelerates oral squamous cell carcinoma progression through long non-coding RNA Kcnq1ot1/microRNA-506-3p/SYPL1 axis. J Ovarian Res 2022; 15:77. [PMID: 35778739 PMCID: PMC9250217 DOI: 10.1186/s13048-022-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ying Yang1 (YY1) has already been discussed in oral squamous cell carcinoma (OSCC), but the knowledge about its mediation on long non-coding RNA KCNQ1 overlapping transcript 1/microRNA-506-3p/synaptophysin like 1 (Kcnq1ot/miR-506-3p/SYPL1) axis in OSCC is still in its infancy. Hence, this article aims to explain the mechanism of YY1/Kcnq1ot1/miR-506-3p/SYPL1 axis in OSCC development. METHODS YY1, Kcnq1ot1, miR-506-3p and SYPL1 expression levels were determined in OSCC tissues. The potential relation among YY1, Kcnq1ot1, miR-506-3p and SYPL1 was explored. Cell progression was observed to figure out the actions of depleted YY1, Kcnq1ot1 and SYPL1 and restored miR-506-3p in OSCC. OSCC tumorigenic ability in mice was examined. RESULTS Elevated YY1, Kcnq1ot1 and SYPL1 and reduced miR-506-3p were manifested in OSCC. YY1 promoted Kcnq1ot1 transcription and up-regulated Kcnq1ot1 expression, thereby promoting OSCC cell procession. Silencing Kcnq1ot1 or elevating miR-506-3p delayed OSCC cell progression and silencing Kcnq1ot1 impeded tumorigenic ability of OSCC cells in mice. YY1-mediated Kcnq1ot1 sponged miR-506-3p to target SYPL1. CONCLUSION YY1 promotes OSCC cell progression via up-regulating Kcnq1ot1 to sponge miR-506-3p to elevate SYPL1, guiding a novel way to treat OSCC.
Collapse
Affiliation(s)
- Yi Ding
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.,School of Life Sciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Heng Duan
- Department of Pharmacy, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jian Lin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
13
|
Fontana S, Mauceri R, Novara ME, Alessandro R, Campisi G. Protein Cargo of Salivary Small Extracellular Vesicles as Potential Functional Signature of Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:11160. [PMID: 34681822 PMCID: PMC8539015 DOI: 10.3390/ijms222011160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and bioinformatic strategies to determine the potential use of saliva small extracellular vesicles (S/SEVs) as a potential tumor biomarker source. Among the twenty-three enrolled patients, 5 were free from diseases (OSCC_FREE), 6 were with OSCC without lymph node metastasis (OSCC_NLNM), and 12 were with OSCC and lymph node metastasis (OSCC_LNM). The S/SEVs from patients of each group were pooled and properly characterized before performing their quantitative proteome comparison based on the SWATH_MS (Sequential Window Acquisition of all Theoretical Mass Spectra) method. The analysis resulted in quantitative information for 365 proteins differentially characterizing the S/SEVs of analyzed clinical conditions. Bioinformatic analysis of the proteomic data highlighted that each S/SEV group was associated with a specific cluster of enriched functional network terms. Our results highlighted that protein cargo of salivary small extracellular vesicles defines a functional signature, thus having potential value as novel predict biomarkers for OSCC.
Collapse
Affiliation(s)
- Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98124 Messina, Italy
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, 2090 Msida, Malta
| | - Maria Eugenia Novara
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
| |
Collapse
|