1
|
Coleman RT, Morantte I, Koreman GT, Cheng ML, Ding Y, Ruta V. A modular circuit coordinates the diversification of courtship strategies. Nature 2024; 635:142-150. [PMID: 39385031 PMCID: PMC11540906 DOI: 10.1038/s41586-024-08028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Mate recognition systems evolve rapidly to reinforce the reproductive boundaries between species, but the underlying neural mechanisms remain enigmatic. Here we leveraged the rapid coevolution of female pheromone production and male pheromone perception in Drosophila1,2 to gain insight into how the architecture of mate recognition circuits facilitates their diversification. While in some Drosophila species females produce unique pheromones that act to arouse their conspecific males, the pheromones of most species are sexually monomorphic such that females possess no distinguishing chemosensory signatures that males can use for mate recognition3. We show that Drosophila yakuba males evolved the ability to use a sexually monomorphic pheromone, 7-tricosene, as an excitatory cue to promote courtship. By comparing key nodes in the pheromone circuits across multiple Drosophila species, we reveal that this sensory innovation arises from coordinated peripheral and central circuit adaptations: a distinct subpopulation of sensory neurons has acquired sensitivity to 7-tricosene and, in turn, selectively signals to a distinct subset of P1 neurons in the central brain to trigger courtship. Such a modular circuit organization, in which different sensory inputs can independently couple to parallel courtship control nodes, may facilitate the evolution of mate recognition systems by allowing novel sensory modalities to become linked to male arousal. Together, our findings suggest how peripheral and central circuit adaptations can be flexibly coordinated to underlie the rapid evolution of mate recognition strategies across species.
Collapse
Affiliation(s)
- Rory T Coleman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ianessa Morantte
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Gabriel T Koreman
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Megan L Cheng
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
2
|
Coleman RT, Morantte I, Koreman GT, Cheng ML, Ding Y, Ruta V. A modular circuit architecture coordinates the diversification of courtship strategies in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558080. [PMID: 37745588 PMCID: PMC10516016 DOI: 10.1101/2023.09.16.558080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Identifying a mate is a central imperative for males of most species but poses the challenge of distinguishing a suitable partner from an array of potential male competitors or females of related species. Mate recognition systems are thus subject to strong selective pressures, driving the rapid coevolution of female sensory cues and male sensory preferences. Here we leverage the rapid evolution of female pheromones across the Drosophila genus to gain insight into how males coordinately adapt their detection and interpretation of these chemical cues to hone their mating strategies. While in some Drosophila species females produce unique pheromones that act to attract and arouse their conspecific males, the pheromones of most species are sexually monomorphic such that females possess no distinguishing chemosensory signatures that males can use for mate recognition. By comparing several close and distantly-related Drosophila species, we reveal that D. yakuba males have evolved the distinct ability to use a sexually-monomorphic pheromone, 7-tricosene (7-T), as an excitatory cue to promote courtship, a sensory innovation that enables D. yakuba males to court in the dark thereby expanding their reproductive opportunities. To gain insight into the neural adaptations that enable 7-T to act as an excitatory cue, we compared the functional properties of two key nodes within the pheromone circuits of D. yakuba and a subset of its closest relatives. We show that the instructive role of 7-T in D. yakuba arises from concurrent peripheral and central circuit changes: a distinct subpopulation of sensory neurons has acquired sensitivity to 7-T which in turn selectively signals to a distinct subset of P1 neurons in the central brain that trigger courtship behaviors. Such a modular circuit organization, in which different sensory inputs can independently couple to multiple parallel courtship control nodes, may facilitate the evolution of mate recognition systems by allowing males to take advantage of novel sensory modalities to become aroused. Together, our findings suggest how peripheral and central circuit adaptations can be flexibly linked to underlie the rapid evolution of mate recognition and courtship strategies across species.
Collapse
Affiliation(s)
- Rory T. Coleman
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Ianessa Morantte
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Gabriel T. Koreman
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Megan L. Cheng
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Vanessa Ruta
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
3
|
Moulin TC, Dey S, Dashi G, Li L, Sridhar V, Safa T, Berkins S, Williams MJ, Schiöth HB. A simple high-throughput method for automated detection of Drosophila melanogaster light-dependent behaviours. BMC Biol 2022; 20:283. [PMID: 36527001 PMCID: PMC9758938 DOI: 10.1186/s12915-022-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Like most living organisms, the fruit fly Drosophila melanogaster exhibits strong and diverse behavioural reactions to light. Drosophila is a diurnal animal that displays both short- and long-term responses to light, important for, instance, in avoidance and light wavelength preference, regulation of eclosion, courtship, and activity, and provides an important model organism for understanding the regulation of circadian rhythms both at molecular and circuit levels. However, the assessment and comparison of light-based behaviours is still a challenge, mainly due to the lack of a standardised platform to measure behaviour and different protocols created across studies. Here, we describe the Drosophila Interactive System for Controlled Optical manipulations (DISCO), a low-cost, automated, high-throughput device that records the flies' activity using infrared beams while performing LED light manipulations. RESULTS To demonstrate the effectiveness of this tool and validate its potential as a standard platform, we developed a number of distinct assays, including measuring the locomotor response of flies exposed to sudden darkness (lights-off) stimuli. Both white-eyed and red-eyed wild-type flies exhibit increased activity after the application of stimuli, while no changes can be observed in Fmr1 null allele flies, a model of fragile X syndrome. Next, to demonstrate the use of DISCO in long-term protocols, we monitored the circadian rhythm of the flies for 48 h while performing an alcohol preference test. We show that increased alcohol consumption happens intermittently throughout the day, especially in the dark phases. Finally, we developed a feedback-loop algorithm to implement a place preference test based on the flies' innate aversion to blue light and preference for green light. We show that both white-eyed and red-eyed wild-type flies were able to learn to avoid the blue-illuminated zones. CONCLUSIONS Our results demonstrate the versatility of DISCO for a range of protocols, indicating that this platform can be used in a variety of ways to study light-dependent behaviours in flies.
Collapse
Affiliation(s)
- Thiago C. Moulin
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden ,grid.4514.40000 0001 0930 2361 Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sovik Dey
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Giovanna Dashi
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lei Li
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vaasudevan Sridhar
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Tania Safa
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Samuel Berkins
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Michael J. Williams
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Keesey IW. Sensory neuroecology and multimodal evolution across the genus Drosophila. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.932344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The neural basis and genetic mechanisms for sensory evolution are increasingly being explored in depth across many closely related members of the Drosophila genus. This has, in part, been achieved due to the immense efforts toward adapting gene-editing technologies for additional, non-model species. Studies targeting both peripheral sensory variations, as well as interspecies divergence in coding or neural connectivity, have generated numerous, tangible examples of how and where the evolution of sensory-driven animal behavior has occurred. Here, we review and discuss studies that each aim to identify the neurobiological and genetic components of sensory system evolution to provide a comparative overview of the types of functional variations observed across both perceptual input and behavioral output. In addition, we examined the roles neuroecology and neuroevolution play in speciation events, such as courtship and intraspecies communication, as well as those aspects related to behavioral divergence in host navigation or egg-laying preferences. Through the investigation of comparative, large-scale trends and correlations across diverse, yet closely related species within this highly ecologically variable genus of flies, we can begin to describe the underlying pressures, mechanisms, and constraints that have guided sensory and nervous system evolution within the natural environments of these organisms.
Collapse
|
5
|
Abstract
Theoretically, symmetry in bilateral animals is subject to sexual selection, since it can serve as a proxy for genetic quality of competing mates during mate choice. Here, we report female preference for symmetric males in Drosophila, using a mate-choice paradigm where males with environmentally or genetically induced wing asymmetry were competed. Analysis of courtship songs revealed that males with asymmetric wings produced songs with asymmetric features that served as acoustic cues, facilitating this female preference. Females experimentally evolved in the absence of mate choice lost this preference for symmetry, suggesting that it is maintained by sexual selection. In many species, including humans and Drosophila, symmetric individuals secure more matings, suggesting that bilateral symmetry signals the quality of potential mates and is subject to sexual selection. However, this idea remains controversial, largely because obtaining conclusive experimental evidence has been hindered by confounding effects arising from the methods used to increase asymmetry in test subjects. Here, we show that altering gravity during development increases asymmetry in Drosophila melanogaster without a detrimental effect on survival, growth, and behavior. Testing males with altered-gravity–induced asymmetry in female mate-choice assays revealed symmetry-based discrimination of males via auditory cues. Females similarly discriminated against males with genetically induced asymmetry, suggesting that their preference for symmetry is not specific to altered gravity. By segmenting the male courtship song into left and right wing-generated song-bouts, we detected asymmetry in the courtship song of altered-gravity males with asymmetric wings that experienced rejection. Females experimentally evolved in the absence of mate choice lacked this preference for symmetry, suggesting that symmetry is maintained by sexual selection. Our data provide evidence for the role of symmetry in sexual selection and reveal how nonvisual cues can flag mate asymmetry during courtship.
Collapse
|