1
|
Anabitarte A, Astarloa A, Garcia-Barón I, Valle M, Chust G, Galparsoro I, Mateo M, Arrizabalaga H, Eguíluz VM, Martinez-Vicente V, Fernandes-Salvador JA. The use of Atlantic seascapes for marine protected areas planning in the context of the marine biological diversity of areas beyond National Jurisdiction agreement. MARINE POLLUTION BULLETIN 2025; 214:117776. [PMID: 40054307 DOI: 10.1016/j.marpolbul.2025.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
International biodiversity agreements aim to expand protected areas by up to 30 %, including areas beyond national jurisdiction. The high seas' extent, shared governance, and limited biodiversity data challenge the identification of large-scale areas to be protected. This study uses seascapes defined from satellite data as proxies for biodiversity in the Atlantic high seas to assist in preliminary designations of protected areas. Seascape's extent is compared with modelled distributions of phytoplankton groups, fish species, and endangered species to assess their biodiversity representativity. Furthermore, the study addresses trade-offs between protecting 30 % of each seascape, covering endangered species distribution, and main human activities in high seas (shipping and fishing). Marine traffic lanes are defined where there is currently more activity, redirecting other activities in the centroid of the seascapes to these lanes. This strategy protects 21 %, 35 %, 44 %, and 48 % of the habitat of the considered endangered species, while displaced human activity ranges from 3 % to 7 % for shipping and up to 4 % for fishing. The size of areas with high concentrated noise increases by 7.8 %, affecting all trophic levels, but areas without activities with only propagated noise increase by around 78.9 %. These results suggest that protecting at least 30 % of each seascape with activity lanes is a good prioritization starting point for high seas protection, which can be redefined later based on the presence of rare species or key habitats and socio-economic factors agreed with stakeholders within a systematic spatial planning approach.
Collapse
Affiliation(s)
- Asier Anabitarte
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain.
| | - Amaia Astarloa
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | - Isabel Garcia-Barón
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | - Mireia Valle
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | - Guillem Chust
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | - Ibon Galparsoro
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | - Maria Mateo
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | - Haritz Arrizabalaga
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | - Víctor M Eguíluz
- Basque Centre for Climate Change (BC3), 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Jose A Fernandes-Salvador
- AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| |
Collapse
|
2
|
Shuert CR, Hussey NE, Marcoux M, Heide-Jørgensen MP, Dietz R, Auger-Méthé M. Divergent migration routes reveal contrasting energy-minimization strategies to deal with differing resource predictability. MOVEMENT ECOLOGY 2023; 11:31. [PMID: 37280701 DOI: 10.1186/s40462-023-00397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Seasonal long-distance movements are a common feature in many taxa allowing animals to deal with seasonal habitats and life-history demands. Many species use different strategies to prioritize time- or energy-minimization, sometimes employing stop-over behaviours to offset the physiological burden of the directed movement associated with migratory behaviour. Migratory strategies are often limited by life-history and environmental constraints, but can also be modulated by the predictability of resources en route. While theory on population-wide strategies (e.g. energy-minimization) are well studied, there are increasing evidence for individual-level variation in movement patterns indicative of finer scale differences in migration strategies. METHODS We aimed to explore sources of individual variation in migration strategies for long-distance migrators using satellite telemetry location data from 41 narwhal spanning a 21-year period. Specifically, we aimed to determine and define the long-distance movement strategies adopted and how environmental variables may modulate these movements. Fine-scale movement behaviours were characterized using move-persistence models, where changes in move-persistence, highlighting autocorrelation in a movement trajectory, were evaluated against potential modulating environmental covariates. Areas of low move-persistence, indicative of area-restricted search-type behaviours, were deemed to indicate evidence of stop-overs along the migratory route. RESULTS Here, we demonstrate two divergent migratory tactics to maintain a similar overall energy-minimization strategy within a single population of narwhal. Narwhal migrating offshore exhibited more tortuous movement trajectories overall with no evidence of spatially-consistent stop-over locations across individuals. Nearshore migrating narwhal undertook more directed routes, contrasted by spatially-explicit stop-over behaviour in highly-productive fjord and canyon systems along the coast of Baffin Island for periods of several days to several weeks. CONCLUSIONS Within a single population, divergent migratory tactics can achieve a similar overall energy-minimizing strategy within a species as a response to differing trade-offs between predictable and unpredictable resources. Our methodological approach, which revealed the modulators of fine-scale migratory movements and predicted regional stop-over sites, is widely applicable to a variety of other aquatic and terrestrial species. Quantifying marine migration strategies will be key for adaptive conservation in the face of climate change and ever increasing human pressures.
Collapse
Affiliation(s)
- Courtney R Shuert
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, R3T 2N6, Canada.
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Marianne Marcoux
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, MB, R3T 2N6, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Marie Auger-Méthé
- Institute for the Oceans & Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Perschke MJ, Harris LR, Sink KJ, Lombard AT. Ecological Infrastructure as a framework for mapping ecosystem services for place-based conservation and management. J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Kot CY, Åkesson S, Alfaro‐Shigueto J, Amorocho Llanos DF, Antonopoulou M, Balazs GH, Baverstock WR, Blumenthal JM, Broderick AC, Bruno I, Canbolat AF, Casale P, Cejudo D, Coyne MS, Curtice C, DeLand S, DiMatteo A, Dodge K, Dunn DC, Esteban N, Formia A, Fuentes MMPB, Fujioka E, Garnier J, Godfrey MH, Godley BJ, González Carman V, Harrison A, Hart CE, Hawkes LA, Hays GC, Hill N, Hochscheid S, Kaska Y, Levy Y, Ley‐Quiñónez CP, Lockhart GG, López‐Mendilaharsu M, Luschi P, Mangel JC, Margaritoulis D, Maxwell SM, McClellan CM, Metcalfe K, Mingozzi A, Moncada FG, Nichols WJ, Parker DM, Patel SH, Pilcher NJ, Poulin S, Read AJ, Rees ALF, Robinson DP, Robinson NJ, Sandoval‐Lugo AG, Schofield G, Seminoff JA, Seney EE, Snape RTE, Sözbilen D, Tomás J, Varo‐Cruz N, Wallace BP, Wildermann NE, Witt MJ, Zavala‐Norzagaray AA, Halpin PN. Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Eliakimu ES, Mans L. Addressing Inequalities Toward Inclusive Governance for Achieving One Health: A Rapid Review. Front Public Health 2022; 9:755285. [PMID: 35127612 PMCID: PMC8811029 DOI: 10.3389/fpubh.2021.755285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
Collapse
Affiliation(s)
- Eliudi S. Eliakimu
- Health Quality Assurance Unit, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
- *Correspondence: Eliudi S. Eliakimu ;
| | - Linda Mans
- An Independent Consultant and Researcher in Support of Healthy People and a Healthy Planet, Manskracht, Nijmegen, Netherlands
| |
Collapse
|