1
|
Fang L, Yang T, Wang H, Cao J. Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens. Biol Direct 2024; 19:96. [PMID: 39438996 PMCID: PMC11495241 DOI: 10.1186/s13062-024-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Vaginal infections caused by multidrug-resistant pathogens such as Candida albicans and Gardnerella spp. represent a significant health challenge. Current treatments often fail because of resistance and toxicity. This study aimed to synthesize and characterize a novel amphiphilic polypeptide, KF-5, and evaluate its antibacterial and antifungal activities, biocompatibility, and potential mechanisms of action. RESULTS The KF-5 peptide was synthesized via solid-phase peptide synthesis and self-assembled into nanostructures with filamentous and hydrogel-like configurations. Characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the unique nanostructural properties of KF-5. KF-5 (125, 250, or 500 µg/ml) demonstrated potent antibacterial and antifungal activities, with significant inhibitory effects on drug-resistant Candida albicans and Gardnerella spp. (P < 0.05). In vitro assays revealed that 500 µg/ml KF-5 disrupted microbial cell membranes, increased membrane permeability, and induced lipid oxidation, leading to cell death (P < 0.05). Cytotoxicity tests revealed minimal toxicity in human vaginal epithelial cells, keratinocytes, and macrophages, with over 95% viability at high concentrations. Molecular dynamics simulations indicated that KF-5 interacts with phospholipid bilayers through electrostatic interactions, causing membrane disruption. In vivo studies using a mouse model of vaginal infection revealed that 0.5, 1, and 2 mg/ml KF-5 significantly reduced fungal burden and inflammation, and histological analysis confirmed the restoration of vaginal mucosal integrity (P < 0.01). Compared with conventional antifungal treatments such as miconazole, KF-5 exhibited superior efficacy (P < 0.01). CONCLUSIONS KF-5 demonstrates significant potential as a safe and effective antimicrobial agent for treating vaginal infections. Its ability to disrupt microbial membranes while maintaining biocompatibility with human cells highlights its potential for clinical application. These findings provide a foundation for further development of KF-5 as a therapeutic option for combating drug-resistant infections.
Collapse
Affiliation(s)
- Ling Fang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 214105, Jiangsu, China
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
| | - Tiancheng Yang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
| | - Haojue Wang
- Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 214105, Jiangsu, China.
| | - Jun Cao
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China.
| |
Collapse
|
2
|
Ul Haq I, Maryam S, Shyntum DY, Khan TA, Li F. Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs. J Ind Microbiol Biotechnol 2024; 51:kuae018. [PMID: 38710584 PMCID: PMC11119867 DOI: 10.1093/jimb/kuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The growing prevalence of fungal infections alongside rising resistance to antifungal drugs poses a significant challenge to public health safety. At the close of the 2000s, major pharmaceutical firms began to scale back on antimicrobial research due to repeated setbacks and diminished economic gains, leaving only smaller companies and research labs to pursue new antifungal solutions. Among various natural sources explored for novel antifungal compounds, antifungal peptides (AFPs) emerge as particularly promising. Despite their potential, AFPs receive less focus than their antibacterial counterparts. These peptides have been sourced extensively from nature, including plants, animals, insects, and especially bacteria and fungi. Furthermore, with advancements in recombinant biotechnology and computational biology, AFPs can also be synthesized in lab settings, facilitating peptide production. AFPs are noted for their wide-ranging efficacy, in vitro and in vivo safety, and ability to combat biofilms. They are distinguished by their high specificity, minimal toxicity to cells, and reduced likelihood of resistance development. This review aims to comprehensively cover AFPs, including their sources-both natural and synthetic-their antifungal and biofilm-fighting capabilities in laboratory and real-world settings, their action mechanisms, and the current status of AFP research. ONE-SENTENCE SUMMARY This comprehensive review of AFPs will be helpful for further research in antifungal research.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Programa de Pós-graduação em Inovação Tecnológica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Divine Y Shyntum
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Taj A Khan
- Division of Infectious Diseases & Global Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Fan Li
- School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Lima LS, Ramalho SR, Sandim GC, Parisotto EB, Orlandi Sardi JDC, Rodrigues Macedo ML. Prevention of hospital pathogen biofilm formation by antimicrobial peptide KWI18. Microb Pathog 2022; 172:105791. [PMID: 36150557 DOI: 10.1016/j.micpath.2022.105791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
This study investigated the antimicrobial and antibiofilm activity of KWI18, a new synthetic peptide. KWI18 was tested against planktonic cells and Pseudomonas aeruginosa and Candida parapsilosis biofilms. Time-kill and synergism assays were performed. Sorbitol, ergosterol, lipid peroxidation, and protein oxidation assays were used to gain insight into the mechanism of action of the peptide. Toxicity was evaluated against erythrocytes and Galleria mellonella. KWI18 showed antimicrobial activity, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 10 μM. KWI18 at 10 × MIC reduced P. aeruginosa and C. parapsilosis biofilm formation and cell viability. Time-kill assays revealed that KWI18 inhibited the growth of P. aeruginosa in 4 h and that of C. parapsilosis in 6 h. The mechanism of action was related to ergosterol as well as induction of oxidative damage in cells and biofilms. Furthermore, KWI18 demonstrated low toxicity to erythrocytes and G. mellonella. KWI18 proved to be an effective antibiofilm agent, opening opportunities for the development of new antimicrobials.
Collapse
Affiliation(s)
- Letícia Souza Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Suellen Rodrigues Ramalho
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Graziele Custódia Sandim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eduardo Benedetti Parisotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Programa de Pós-Graduação em Ciências Odontológicas Integradas, Universidade de Cuiabá, Cuiabá, Mato Grosso, Brazil
| | - Maria Lígia Rodrigues Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
4
|
Perez-Rodriguez A, Eraso E, Quindós G, Mateo E. Antimicrobial Peptides with Anti-Candida Activity. Int J Mol Sci 2022; 23:ijms23169264. [PMID: 36012523 PMCID: PMC9409312 DOI: 10.3390/ijms23169264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Mycoses are accountable for millions of infections yearly worldwide. Invasive candidiasis is the most usual, presenting a high morbidity and mortality. Candida albicans remains the prevalent etiologic agent, but the incidence of other species such as Candida parapsilosis, Candida glabrata and Candida auris keeps increasing. These pathogens frequently show a reduced susceptibility to commonly used antifungal drugs, including polyenes, triazoles and echinocandins, and the incidence of emerging multi-drug-resistant strains of these species continues to increase. Therefore, the need to search for new molecules that target these pathogenic species in a different manner is now more urgent than ever. Nature is an almost endless source of interesting new molecules that could meet this need. Among these molecules, antimicrobial peptides, present in different sources in nature, possess some advantages over conventional antifungal agents, even with their own drawbacks, and are considered as a promising pharmacological option against a wide range of microbial infections. In this review, we describe 20 antimicrobial peptides from different origins that possess an activity against Candida.
Collapse
|
5
|
Qian W, Wang W, Zhang J, Fu Y, Liu Q, Li X, Wang T, Zhang Q. Exploitation of the antifungal and antibiofilm activities of plumbagin against Cryptococcus neoformans. BIOFOULING 2022; 38:558-574. [PMID: 35818738 DOI: 10.1080/08927014.2022.2094260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Cryptococcus neoformans is an important opportunistic fungal pathogen that causes various infections. Here, the antifungal and antibiofilm activities of plumbagin against C. neoformans and the underlying mechanisms were evaluated. The minimum inhibitory concentration (MIC) of plumbagin against C. neoformans H99 was 8 μg ml-1. Plumbagin disrupted the cell membrane integrity and reduced the metabolic activities of C. neoformans H99. C. neoformans H99 biofilm cells were damaged by plumbagin at a concentration of 64 μg ml-1, whereas 48-h mature biofilms were dispersed at a plumbagin concentration of 128 μg ml-1. Whole-transcriptome analysis of plumbagin-treated C. neoformans H99 in the biofilm and planktonic states identified differentially expressed genes enriched in several important cellular processes (cell membrane, ribosome biogenesis, fatty acid synthesis, melanin and capsule production). Notably, plumbagin damaged biofilm cells by downregulating FAS1 and FAS2 expression. Thus, plumbagin can be exploited as an antifungal agent to combat C. neoformans-related infections.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Wenjing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Qiming Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, PR China
| | - Qian Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, PR China
| |
Collapse
|
6
|
Comar SR, Spiri BS, Ferreira DS, de Azambuja AP. Early detection of Candida parapsilosis sepsis in peripheral blood as a result of cytografic changes on the Sysmex XN-3000 hematology analyzer. Int J Lab Hematol 2021; 43:e280-e283. [PMID: 33973721 DOI: 10.1111/ijlh.13566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Samuel Ricardo Comar
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Laboratório de Hematologia, Curitiba, Brasil
| | - Beatriz Sanada Spiri
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Laboratório de Hematologia, Curitiba, Brasil
| | - Diésica Suiane Ferreira
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Laboratório de Hematologia, Curitiba, Brasil
| | - Ana Paula de Azambuja
- Universidade Federal do Paraná, Complexo Hospital de Clínicas, Laboratório de Citometria de Fluxo, Curitiba, Brasil
| |
Collapse
|