1
|
Shahari AS, Palanisamy NK, Mohd Nor F. Genetic profiling of multidrug-resistant Acinetobacter baumannii from a tertiary care center in Malaysia. Microbiol Spectr 2025; 13:e0087224. [PMID: 39704504 PMCID: PMC11792510 DOI: 10.1128/spectrum.00872-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Genetic characterization of multidrug-resistant (MDR) Acinetobacter baumannii remains scarce in Malaysia. This study aimed to characterize antibiotic resistance, genomic location, and genetic relatedness among the A. baumannii isolates obtained from a tertiary hospital in Malaysia. A total of 128 MDR A. baumannii isolates were collected from patients admitted to various wards (intensive care unit [ICU], neonatal intensive care unit, coronary care unit, high dependency ward [HDW], and general wards). The isolates were identified by Vitek 2 and PCR amplification of the 16S rRNA gene followed by sequencing. The isolates were tested against imipenem, ceftazidime, amikacin, gentamicin, ampicillin, and ciprofloxacin using disk diffusion, Epsilometer test, and broth microdilution. The antibiotic resistance genes, blaOXA-23, blaOXA-24, blaADC, blaVIM, and blaIMP, were detected in chromosomal and plasmid DNA using PCR. Insertion sequence ISAba1/blaOXA-23 gene was detected on chromosomal DNA only. Isolates with different antibiotic susceptibility patterns and PCR profiles were subjected to multi-locus sequence typing. MDR A. baumannii was predominantly found in HDW (39.84%), general wards (29.69%), and ICU (28.13%). All isolates conferred resistance to carbapenem and more than 90% resistance to the remaining antibiotics. The antibiotic resistance genes blaOXA-23, blaVIM, and blaADC were detected in both chromosomal and plasmid DNA. The ISAba1/blaOXA-23 gene was detected in 99.22% of the isolates. Four sequence types (STs) were distinguished: ST2 (76.67%), ST164 (10%), ST642 (10%), and ST643 (3.33%). ST164 and ST642 were unique and represent a significant finding in Malaysia's surveillance data. These STs are associated with acquired blaOXA-23, indicating an evolutionary adaptation of A. baumannii within the hospital setting.IMPORTANCEAcinetobacter baumannii is a ubiquitous Gram-negative coccobacillus bacterium that is primarily associated with nosocomial infections that can colonize biotic and abiotic surfaces to enhance cell-to-cell adhesion, ensuring the establishment of infections. To date, the spread of multidrug-resistant A. baumannii (MDRAB) has become rampant and a great concern in the hospital setting, as the available antibiotics are insufficient to treat infections. The antibiotic resistance island resides in a mobile element and rapidly evolved. The antibiotic susceptibility data with its resistance mechanisms would contribute to and facilitate the management and infection control caused by MDRAB.
Collapse
Affiliation(s)
- Aisyah Syakirah Shahari
- Institute for Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
| | - Navindra Kumari Palanisamy
- Institute for Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
| | - Fadzilah Mohd Nor
- Institute for Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Rajangam SL, Leela KV, Jayaraman M, Sabarathinam S, Narasimhan MK. Effect of amikacin-humic acid combination on Acinetobacter baumannii biofilm: an in vitro and in silico study. Future Microbiol 2024; 19:1573-1585. [PMID: 39429208 DOI: 10.1080/17460913.2024.2412431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: Acinetobacter baumannii (AB) is a clinically important bacterial pathogen responsible for nosocomial infections. The biofilm-forming capability of these pathogens reduces the antibiotic penetration and its efficacy, thereby complicating the treatment. The current work aims to isolate the most potent biofilm-forming Acinetobacter species from clinical isolates of the patient samples and to evaluate the efficacy of the amikacin-humic acid combination against it.Methods: The combination effect of Amikacin-Humic (AMK-HUM) acid against the highest biofilm-producing A. baumannii SLMK001 was studied via in-vitro (microscopic analysis) and in-silico (Network Pharmacology) analysis.Results: The amikacin-humic acid combination significantly inhibited both the biofilm formation and cell viability of A. baumannii SLMK001. The images observed via Scanning Electron Microscope (SEM) showed a significant decrease in the biofilm matrix. Confocal Laser Scanning Microscope (CLSM) confirmed a reduction of the Z value of its three-dimensional structure. Further, the Network Pharmacology approach supported these experimental findings by identifying the key targets of the amikacin-humic acid combination against the biofilm pathways of A. baumannii.Conclusion: The in-vitro results aligned with the in-silico findings, indicating that the AMK-HUM combination is a promising treatment that significantly activates the key proteins against A. baumannii biofilm formation and pathogenesis.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manonmoney Jayaraman
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sarvesh Sabarathinam
- Pharmaco-Netinformatics Lab, Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
3
|
Leão PVS, Ferreira ALDS, Oliveira FADA, Mesquita ABDS, Lima-Net JDS, Gutierrez SJC, Nogueira CES, Cruz-Martins N, Arcanjo DDR, Barreto HM, Lima Ferreira JH. Riparin-B as a Potential Inhibitor of AdeABC Efflux System from Acinetobacter baumannii. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1780838. [PMID: 37089710 PMCID: PMC10118900 DOI: 10.1155/2023/1780838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 04/25/2023]
Abstract
Acinetobacter baumannii is an important opportunistic pathogen that causes serious health-related infections, especially in intensive care units. The present study aimed to investigate the antimicrobial activity of Riparin-B (Rip-B) alone and in association with norfloxacin against multidrug-resistant clinical isolates of A. baumannii. For this, the minimum inhibitory concentrations were determined by the microdilution method. For the evaluation of resistance-modulating activity, MIC values for antibiotics were determined in the presence or absence of subinhibitory concentrations of Rip-B or chlorpromazine (CPZ). The AdeABC-AdeRS efflux system genes from these isolates were detected by PCR. Docking studies were also carried out to evaluate the interaction of Riparin-B and the AdeABC-AdeRS efflux system. The study was conducted from 2017 to 2019. The results showed that Rip-B showed weak intrinsic activity against the strains tested. On the other hand, Rip-B was able to modulate norfloxacin's response against A. baumannii strains that express efflux pump-mediated resistance. Docking studies provided projections of the interaction between Rip-B and EtBr with the AdeB protein, suggesting that Rip-B acts by competitive inhibition with the drug. Results found by in vitro and in silico assays suggest that Rip-B, in combination with norfloxacin, has the potential to treat infections caused by multidrug-resistant A. baumanni with efflux pump resistance.
Collapse
Affiliation(s)
- Patrícia Virna Sales Leão
- Laboratory of Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Ana Laura da Silva Ferreira
- Laboratory of Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piaui, Teresina, Piauí, Brazil
| | | | - Avilnete Belém de Souza Mesquita
- Laboratory of Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piaui, Teresina, Piauí, Brazil
| | | | | | | | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Daniel Dias Rufino Arcanjo
- Laboratory of Functional and Molecular Studies on Physiopharmacology (LAFMOL), Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Humberto Medeiros Barreto
- Laboratory of Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piaui, Teresina, Piauí, Brazil
| | - Josie Haydée Lima Ferreira
- Laboratory of Research in Microbiology, Department of Parasitology and Microbiology, Federal University of Piaui, Teresina, Piauí, Brazil
| |
Collapse
|
4
|
Rostamian M, Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran, Kadivarian S, Kooti S, Dashtbin S, Abiri R, Alvandi A, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran, Fertility and Infertility Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran, Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran. Prevalence of Extended-Spectrum Beta-Lactamase in Gram Negative Bacteria Isolated from Kermanshah Medical Centers:
A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Tilahun M, Gedefie A, Bisetegn H, Debash H. Emergence of High Prevalence of Extended-Spectrum Beta-Lactamase and Carbapenemase Producing Acinetobacter Species and Pseudomonas aeruginosa Among Hospitalized Patients at Dessie Comprehensive Specialized Hospital, North-East Ethiopia. Infect Drug Resist 2022; 15:895-911. [PMID: 35299856 PMCID: PMC8921833 DOI: 10.2147/idr.s358116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Background The emergence of extended spectrum beta lactamase and carbapenemase production of Acinetobacter and Pseudomonas aeruginosa is a great concern and major cause of nosocomial infections due to its ability to production of extended spectrum beta lactamase and carbapenemase enzymes. Objective To assess Emergence of high prevalence of extended-spectrum beta-lactamase and Carbapenemase producing Acinetobacter species and Pseudomonas aeruginosa among hospitalized patients at Dessie Comprehensive Specialized Hospital, North-East Ethiopia. Materials and Methods A hospital-based cross-sectional study was conducted from February–August 2021 at Dessie Referral Hospital in the North eastern Ethiopia. A total of 423 clinical samples taken from admitted patients. Clinical specimens were collected aseptically and inoculated on blood agar and MacConkey agar media. Antimicrobial susceptibility test, ESBL and carbapenemase production were performed as CLSI guideline. The data were entered into the Epi-data and imported to Statistical Package for Social Science version 25. P value of <0.05 with odds ratio and 95% confidence interval was considered as statistically significant. Results Out of 423 clinical specimens 17.7% (75/423) were culture positive nosocomial infection. The proportions of nosocomial infection were higher in blood stream followed by wound infection which accounted 24.6%, 20.8%, respectively. Overall, 32/75 (42.7%) and 19/75 (25.3%) patients had infection with ESBL and CP producing bacterial infection. P. aeruginosa was the most predominant isolated bacteria 46/75 (52.9%). The overall multidrug resistance rate of the isolated bacteria was 88% (66/75). The majority of highest resistance rate was Piperacillin tazobactam 50 (66.7%) and Aztreonam 26 (56.5%), respectively, while least resistance rate was Amikacin 27 (36%). Conclusion The incidence rates of ESBL, carbapenemase production and antimicrobial resistant Acinetobacter species and P. aeruginosa infections are high. Therefore, treatment should be based on culture and antimicrobial test result and minimize the use of antibiotics empirically.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
- Correspondence: Mihret Tilahun, Department of Medical Laboratory Science College of Medicine and Health Sciences, Wollo University, PO.Box: 1145, Dessie, Ethiopia, Tel +251 920988307, Fax +251 333115250, Email
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Habitye Bisetegn
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| |
Collapse
|
6
|
Nateghi Rostami M, Mehrban F, Ghourchian S, Douraghi M. Genetic Diversity of OXA Producing Carbapenem-Resistant Acinetobacter baumannii from Environment of Tertiary Hospitals in Central Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020; 15. [DOI: 10.5812/archcid.95602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
8
|
Shahram SZ, Javadi R. Evaluation of Antibiotic Resistance Patterns and Frequency of Carbapenemase-Producing Acinetobacter baumannii Isolates by the Carbacineto NP Test. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
9
|
Polyclonal Distribution of blaOXA-23 Gene Among Acinetobacter baumannii Isolated from Intensive Care Unit Patients in Tehran; Pulsed-Field Gel Electrophoresis Analysis. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.58032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|