1
|
Microenvironment in Oral Potentially Malignant Disorders: Multi-Dimensional Characteristics and Mechanisms of Carcinogenesis. Int J Mol Sci 2022; 23:ijms23168940. [PMID: 36012205 PMCID: PMC9409092 DOI: 10.3390/ijms23168940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 02/07/2023] Open
Abstract
Oral potentially malignant disorders (OPMDs) are a group of diseases involving the oral mucosa and that have a risk of carcinogenesis. The microenvironment is closely related to carcinogenesis and cancer progression by regulating the immune response, cell metabolic activities, and mechanical characteristics. Meanwhile, there are extensive interactions between the microenvironments that remodel and provide favorable conditions for cancer initiation. However, the changes, exact roles, and interactions of microenvironments during the carcinogenesis of OPMDs have not been fully elucidated. Here, we present an updated landscape of the microenvironments in OPMDs, emphasizing the changes in the immune microenvironment, metabolic microenvironment, mechanical microenvironment, and neural microenvironment during carcinogenesis and their carcinogenic mechanisms. We then propose an immuno–metabolic–mechanical–neural interaction network to describe their close relationships. Lastly, we summarize the therapeutic strategies for targeting microenvironments, and provide an outlook on future research directions and clinical applications. This review depicts a vivid microenvironment landscape and sheds light on new strategies to prevent the carcinogenesis of OPMDs.
Collapse
|
2
|
Scuderi SA, Casili G, Filippone A, Lanza M, Basilotta R, Giuffrida R, Munaò S, Colarossi L, Capra AP, Esposito E, Paterniti I. Beneficial effect of KYP-2047, a propyl-oligopeptidase inhibitor, on oral squamous cell carcinoma. Oncotarget 2021; 12:2459-2473. [PMID: 34917264 PMCID: PMC8664393 DOI: 10.18632/oncotarget.28147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell-carcinoma (OSCC) is a common cancer which arises from the alveolar ridge, buccal mucosa, and tongue. Among OSCC, the incidence of tongue squamous cell-carcinoma (TSCC) is growing all over the world. Oral carcinogenesis has been linked to genetic mutations, chromosomal aberrations and viral factors. Apoptosis and angiogenesis play a key role in the development of oral cancer. Therefore, it is very important discover new therapeutic strategies to counteract oral cancer progression. This study aimed to investigate the effect of KYP-2047 in an in vitro model of TSCC and in vivo CAL27-xenograft model. Our results demonstrated that KYP-2047 was able to reduce TSCCs cell viability at the concentrations of 50 μM and 100 μM. Additionally, KYP-2047 was able to increase Bax, Bad and caspase-3 expression, whereas Bcl-2 and p53 expression were reduced. Moreover, KYP-2047 significantly reduced vascular-endothelial-growth-factor (VEGF) and endothelial-nitric-oxide-synthase (eNOS) expression. In the vivo xenograft model, KYP-2047 at doses of 1 and 5 mg/kg significantly reduced tumor burden and tumor weight, decreasing also angiogenesis markers VEGF and eNOS. Moreover, KYP-2047 increased Bax and reduced Bcl2 expressions. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract tongue oral-cancer growth, thanks its abilities to modulate angiogenesis and apoptosis pathways.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | | | - Stefania Munaò
- Istituto Oncologico del Mediterraneo, Viagrande 95029, CT, Italy
| | | | - Anna Paola Capra
- Department of Clinical and Experimental Medicine, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| |
Collapse
|
3
|
Bavle RM, Paremala K, Venugopal R, Rudramuni AS, Khan N, Hosthor SS. Grading of Oral Leukoplakia: Can It be Improvised Using Immunohistochemical Markers p63 and CD31. Contemp Clin Dent 2021; 12:37-43. [PMID: 33967536 PMCID: PMC8092094 DOI: 10.4103/ccd.ccd_493_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/17/2020] [Accepted: 07/03/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Oral squamous cell carcinoma is usually preceded by potentially malignant disorders (PMDs), the most common being oral leukoplakia. A conservative management protocol is followed for milder dysplastic cases, while severe dysplastic lesions are surgically excised. Several classification systems have been developed based mainly on histopathological features with a lot of inter-observer variations. The present study was done to assess the use of immunohistochemical (IHC) markers in grading leukoplakic lesions in addition to histopathological grading. Aims and Objectives To grade leukoplakia using different grading systems and assess if IHC markers can aid in categorizing leukoplakia. Materials and Methods Thirty-five cases of leukoplakia were graded using Ljubljana, 2005 World Health Organization (WHO), and Binary System followed by IHC staining with p63 and CD31. Results and Statistics Variation was noted in 12 cases while using WHO, 11 using Ljubljana, and 7 using Binary System and was significant on Cohen-Kappa statistics, with the least significant variation noted on Binary System. p63 staining assisted to group doubtful cases and even identify variation in cases graded positively on histopathology. In total, 17 cases stained one-third (mild/low), while 15 cases stained one-half or more (higher grade) epithelial thickness. A weak correlation was observed between all grading systems and p63 on Kendall's Tau-b analysis and the weak correlation was significant for the WHO and binary grading systems. Analyzing p63 and CD31 using Kruskal-Wallis test, an increase in mean vessel density (MVD) was noted for mild/moderate cases but decreased for severe cases. Conclusion Addressing histological categorization of PMDs assisted by IHC markers to understand the biological behavior of the tissues is currently essential with studies on more markers to assist in the management protocol.
Collapse
Affiliation(s)
- Radhika Manoj Bavle
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental College and Hospital, Sir MVIT Campus, Bengaluru, Karnataka, India
| | - K Paremala
- Government Dental College and Hospital, Hyderabad, Telangana, India
| | - Reshma Venugopal
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental College and Hospital, Sir MVIT Campus, Bengaluru, Karnataka, India
| | - Amulya S Rudramuni
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental College and Hospital, Sir MVIT Campus, Bengaluru, Karnataka, India
| | - Nawal Khan
- Sher-i-Kashmir Institute of Medical Sciences, Community Medicine (Dental Unit), Srinagar, Jammu and Kashmir, India
| | - Sreenitha S Hosthor
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental College and Hospital, Sir MVIT Campus, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
González-Pérez LV, Isaza-Guzmán DM, Arango-Pérez EA, Tobón-Arroyave SI. Analysis of salivary detection of P16INK4A and RASSF1A promoter gene methylation and its association with oral squamous cell carcinoma in a Colombian population. J Clin Exp Dent 2020; 12:e452-e460. [PMID: 32509227 PMCID: PMC7263777 DOI: 10.4317/jced.56647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
Background Epigenetic factors play a fundamental role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This study evaluated if salivary detection of P16INK4A/RASSF1A gene promoter methylation might be linked to the clinical/histological features of OSCC in a Colombian population.
Material and Methods Methylation-specific polymerase chain reaction (MSP-PCR) was used to detect the methylation frequency of P16INK4A/RASSF1A genes in DNA obtained from whole saliva collected of 40 healthy controls (HC) and 43 OSCC patients. Determination of the clinical performance of MSP-PCR assay was based on standard algorithms derived from two-way contingency table analysis. The association of methylation status of targeted genes with OSCC was analyzed in a multivariate binary logistic regression model.
Results There were significantly higher proportions of promoter methylation of these target genes in OSCC patients when compared with HC. The analysis of single methylated genes showed high specificity, good positive and negative predictive values, but was accompanied by a low sensitivity. OSCC cases with clinical stage III/IV, poorly differentiated, and severe cellular atypia showed a significantly greater proportion of methylated than that of unmethylated targeted genes in saliva samples. Logistic regression analysis indicated an independent association of P16INK4A and RASSF1A promoter methylation with OSCC diagnosis. A significant interaction effect between ageing and P16INK4A promoter methylation was also detected.
Conclusions Salivary detection of P16INK4A and RASSF1A promoter methylation appears to be independently associated with OSCC and may be linked to the tumor activity in the present population. Consequently, the targeting of these genes in saliva samples might constitute an important tool for diagnosis and prognosis purposes. Key words:Gene methylation, oral squamous cell carcinoma, P16INK4A, RASSF1A, saliva.
Collapse
Affiliation(s)
| | - Diana-María Isaza-Guzmán
- Titular Professor. Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia. Medellín, Colombia
| | - Eduin-Alonso Arango-Pérez
- Oral and Maxillofacial Surgeon Resident. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Antioquia. Medellín, Colombia
| | - Sergio-Iván Tobón-Arroyave
- Titular Professor. Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia. Medellín, Colombia.,Stomatologist and Oral Surgeon. Stomatology and Maxillofacial Surgery Unit, San Vicente Foundation University Hospital, Medellín, Colombia
| |
Collapse
|
5
|
Sun DL, Qi YX, Yang T, Lin YY, Li SM, Li YJ, Xu QW, Sun YB, Li WM, Chen XZ, Xu PY. Early oral nutrition improves postoperative ileus through the TRPA1/CCK1-R-mediated mast cell-nerve axis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:179. [PMID: 32309326 PMCID: PMC7154392 DOI: 10.21037/atm.2020.01.95] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The mechanism of early oral nutrition that regulates the mast cell-nerve axis to improve postoperative ileus (POI) remains unclear. This study aims to investigate whether early oral nutrition can improve POI through Transient receptor potential ankyrin-1 (TRPA1)/cholecystokinin 1 receptor (CCK1-R) in the mast cell-nerve axis. Methods Experiment 1: Male Sprague-Dawley (SD) rats were randomly divided into the TRPA1 inhibitor + oral nutrition group (TI + ON + POI), oral nutrition group (ON + POI), POI group (POI) and sham surgery group (Sham). Nine rats in each group were treated. Experiment 2: Primary cultures of mast cells and dorsal root ganglion cells were created, and a non-contact co-culture system was established. The cells were divided into the dorsal root ganglion (DRG) group, mast cell group, DRG + mast cell group, TRPA1 inhibitor or enhancer group, mast cell stabilizer or enhancer group, CCK1-R inhibitor or enhancer group. The results of expression of TRPA1, CCK1-R and histamine in colon tissue, portal vein blood, supernatant or dorsal root ganglia, intestinal transport test and mast cell morphology were analysed. Results In experiment 1, Early oral nutrition could alleviate the degranulation and activation of mast cells and alleviate the inflammatory reaction of intestinal wall muscles (P<0.05). Early oral nutrition improved POI by stabilizing mast cells with TRPA1. TRPA1 inhibitor decreased CCK1-R concentrations in portal vein blood and CCK1-R expression in colonic smooth muscle (P<0.05). In experiment 2, the change in mast cell function regulated the secretion of CCK1-R by neurons, CCK1-R negatively regulated the degranulation and activation of mast cells (P<0.05), and mast cells positively regulated the expression of TRPA1 protein in DRG (P<0.05). Conclusions Early enteral nutrition can improve POI through the TRPA1/CCK1-R-mediated mast cell-nerve axis. TRPA1 positively regulates CCK1-R to stabilize mast cells, but TRPA1 is not the target of the downstream CCK1-R pathway.
Collapse
Affiliation(s)
- Da-Li Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Yu-Xing Qi
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Ting Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Yue-Ying Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Shu-Min Li
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Yi-Jun Li
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Qing-Wen Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Yan-Bo Sun
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Wei-Ming Li
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Xiong-Zhi Chen
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| | - Peng-Yuan Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China.,Yunnan Research Center for Surgical Clinical Nutrition, Kunming 650101, China
| |
Collapse
|
6
|
Improved Antitumor Efficacy of Combined Vaccine Based on the Induced HUVECs and DC-CT26 Against Colorectal Carcinoma. Cells 2019; 8:cells8050494. [PMID: 31121964 PMCID: PMC6562839 DOI: 10.3390/cells8050494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is essential for the development, growth, and metastasis of solid tumors. Vaccination with viable human umbilical vein endothelial cells (HUVECs) has been used for antitumor angiogenesis. However, the limited immune response induced by HUVECs hinders their clinical application. In the present study, we found that HUVECs induced by a tumor microenvironment using the supernatant of murine CT26 colorectal cancer cells exerted a better antiangiogenic effect than HUVECs themselves. The inhibitory effect on tumor growth in the induced HUVEC group was significantly better than that of the HUVEC group, and the induced HUVEC group showed a strong inhibition in CD31-positive microvessel density in the tumor tissues. Moreover, the level of anti-induced HUVEC membrane protein antibody in mouse serum was profoundly higher in the induced HUVEC group than in the HUVEC group. Based on this, the antitumor effect of a vaccine with a combination of induced HUVECs and dendritic cell-loading CT26 antigen (DC-CT26) was evaluated. Notably, the microvessel density of tumor specimens was significantly lower in the combined vaccine group than in the control groups. Furthermore, the spleen index, the killing effect of cytotoxic T lymphocytes (CTLs), and the concentration of interferon-γ in the serum were enhanced in the combined vaccine group. Based on these results, the combined vaccine targeting both tumor angiogenesis and tumor cells may be an attractive and effective cancer immunotherapy strategy.
Collapse
|
7
|
Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 2019; 18:63. [PMID: 30927923 PMCID: PMC6441173 DOI: 10.1186/s12943-019-0983-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development, including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment and their impact on cancer development and progression may help better understand the mechanisms behind different responses to therapy and help define possible targets for clinical intervention.
Collapse
Affiliation(s)
- Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595,, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
8
|
Wei L, Zhu S, Li M, Li F, Wei F, Liu J, Ren X. High Indoleamine 2,3-Dioxygenase Is Correlated With Microvessel Density and Worse Prognosis in Breast Cancer. Front Immunol 2018; 9:724. [PMID: 29719533 PMCID: PMC5913323 DOI: 10.3389/fimmu.2018.00724] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO), which catalyzes the breakdown of the essential amino acid tryptophan into kynurenine, is understood to have a key role in cancer immunotherapy. IDO has also received more attention because of its non-immune functions including regulating angiogenesis. The purpose of this study was to investigate the effects of IDO on microvessel density (MVD), and to explore its prognostic role in breast cancer. We showed IDO expression was positively correlated with MVD labeled by CD105 (MVD-CD105) rather than MVD labeled by CD31 (MVD-CD31) in breast cancer specimens. Both IDO expression and MVD-CD105 level were associated with initial TNM stage, histological grade, and tumor-draining lymph nodes (TDLNs) metastasis in breast cancer. In the prognostic analysis, TDLNs metastasis, an advanced TNM stage (III) and high histological grade (III) significantly predicted shorter survival in univariate analysis. Concentrating on IDO and MVD, the patients with IDO expression or high MVD level had poorer prognosis compared with no IDO expression [P = 0.047 for progress-free survival (PFS)] and low MVD level (P = 0.019 for OS); the patients with IDO expression and high MVD level had a tendency with shorter overall survival when compared with non IDO expression, low MVD level, or both (P = 0.062 for OS). In multivariate analysis, an advanced TNM stage (III) was significantly associated with shorter 5-year survival rate of PFS (HR: 0.126, 95% CI: 0.024–0.669, P = 0.015). In order to verify the phenomenon of IDO promoting angiogenesis, we contained the study in vitro. We detected the expression of IDO mRNA in breast cancer cell lines and measured the concentration of tryptophan and kynurenine in the supernatants of MCF-7 by high performance liquid chromatography. The ratio of Kyn and trp (kyn/trp) was calculated to estimate IDO-enzyme activity. MCF-7 cells, which produce high level of IDO and metabolize tryptophan, promoted human umbilical vein endothelial cells (HUVEC) proliferation significantly in co-culture system. Meanwhile IDO could upregulate the expression of CD105 in HUVEC, which was downregulated after adding IDO inhibitor, 1-methyl-d-trytophan. These results suggest that IDO could promote angiogenesis in breast cancer, providing a novel, potentially effective molecular or gene therapy target for angiogenesis inhibition in the future.
Collapse
Affiliation(s)
- Lijuan Wei
- Department of Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Shanshan Zhu
- Hexian Memorial Hospital of Panyu District, Guangzhou, China
| | - Menghui Li
- Department of Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Fangxuan Li
- Department of Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Feng Wei
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Juntian Liu
- Department of Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Xiubao Ren
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin Clinical Research Center for Cancer, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|