1
|
Bachu S, Kowalik M, Huet B, Nayir N, Dwivedi S, Hickey DR, Qian C, Snyder DW, Rotkin SV, Redwing JM, van Duin ACT, Alem N. Role of Bilayer Graphene Microstructure on the Nucleation of WSe 2 Overlayers. ACS NANO 2023. [PMID: 37368885 DOI: 10.1021/acsnano.2c12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Over the past few years, graphene grown by chemical vapor deposition (CVD) has gained prominence as a template to grow transition metal dichalcogenide (TMD) overlayers. The resulting two-dimensional (2D) TMD/graphene vertical heterostructures are attractive for optoelectronic and energy applications. However, the effects of the microstructural heterogeneities of graphene grown by CVD on the growth of the TMD overlayers are relatively unknown. Here, we present a detailed investigation of how the stacking order and twist angle of CVD graphene influence the nucleation of WSe2 triangular crystals. Through the combination of experiments and theory, we correlate the presence of interlayer dislocations in bilayer graphene with how WSe2 nucleates, in agreement with the observation of a higher nucleation density of WSe2 on top of Bernal-stacked bilayer graphene versus twisted bilayer graphene. Scanning/transmission electron microscopy (S/TEM) data show that interlayer dislocations are present only in Bernal-stacked bilayer graphene but not in twisted bilayer graphene. Atomistic ReaxFF reactive force field molecular dynamics simulations reveal that strain relaxation promotes the formation of these interlayer dislocations with localized buckling in Bernal-stacked bilayer graphene, whereas the strain becomes distributed in twisted bilayer graphene. Furthermore, these localized buckles in graphene are predicted to serve as thermodynamically favorable sites for binding WSex molecules, leading to the higher nucleation density of WSe2 on Bernal-stacked graphene. Overall, this study explores synthesis-structure correlations in the WSe2/graphene vertical heterostructure system toward the site-selective synthesis of TMDs by controlling the structural attributes of the graphene substrate.
Collapse
Affiliation(s)
- Saiphaneendra Bachu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Malgorzata Kowalik
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin Huet
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Applied Research Laboratory (ARL), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nadire Nayir
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmetbey University, Karaman, Turkey 7000
| | - Swarit Dwivedi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Danielle Reifsnyder Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chenhao Qian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David W Snyder
- Applied Research Laboratory (ARL), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Slava V Rotkin
- Materials Research Institute and Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nasim Alem
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium (2DCC), Materials Research Institute (MRI), The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Luo D, Choe M, Bizao RA, Wang M, Su H, Huang M, Jin S, Li Y, Kim M, Pugno NM, Ren B, Lee Z, Ruoff RS. Folding and Fracture of Single-Crystal Graphene Grown on a Cu(111) Foil. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110509. [PMID: 35134267 DOI: 10.1002/adma.202110509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A single-crystal graphene film grown on a Cu(111) foil by chemical vapor deposition (CVD) has ribbon-like fold structures. These graphene folds are highly oriented and essentially parallel to each other. Cu surface steps underneath the graphene are along the <110> and <211> directions, leading to the formation of the arrays of folds. The folds in the single-layer graphene (SLG) are not continuous but break up into alternating patterns. A "joint" (an AB-stacked bilayer graphene) region connects two neighboring alternating regions, and the breaks are always along zigzag or armchair directions. Folds formed in bilayer or few-layer graphene are continuous with no breaks. Molecular dynamics simulations show that SLG suffers a significantly higher compressive stress compared to bilayer graphene when both are under the same compression, thus leading to the rupture of SLG in these fold regions. The fracture strength of a CVD-grown single-crystal SLG film is simulated to be about 70 GPa. This study greatly deepens the understanding of the mechanics of CVD-grown single-crystal graphene and such folds, and sheds light on the fabrication of various graphene origami/kirigami structures by substrate engineering. Such oriented folds can be used in a variety of further studies.
Collapse
Affiliation(s)
- Da Luo
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Myeonggi Choe
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rafael A Bizao
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano, 77, Trento, 38123, Italy
| | - Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Haisheng Su
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ming Huang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Sunghwan Jin
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yunqing Li
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Minhyeok Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano, 77, Trento, 38123, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
3
|
Park HJ, Cha J, Choi M, Kim JH, Tay RY, Teo EHT, Park N, Hong S, Lee Z. One-dimensional hexagonal boron nitride conducting channel. SCIENCE ADVANCES 2020; 6:eaay4958. [PMID: 32181347 PMCID: PMC7060069 DOI: 10.1126/sciadv.aay4958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/12/2019] [Indexed: 05/16/2023]
Abstract
Hexagonal boron nitride (hBN) is an insulating two-dimensional (2D) material with a large bandgap. Although known for its interfacing with other 2D materials and structural similarities to graphene, the potential use of hBN in 2D electronics is limited by its insulating nature. Here, we report atomically sharp twin boundaries at AA'/AB stacking boundaries in chemical vapor deposition-synthesized few-layer hBN. We find that the twin boundary is composed of a 6'6' configuration, showing conducting feature with a zero bandgap. Furthermore, the formation mechanism of the atomically sharp twin boundaries is suggested by an analogy with stacking combinations of AA'/AB based on the observations of extended Klein edges at the layer boundaries of AB-stacked hBN. The atomically sharp AA'/AB stacking boundary is promising as an ultimate 1D electron channel embedded in insulating pristine hBN. This study will provide insights into the fabrication of single-hBN electronic devices.
Collapse
Affiliation(s)
- Hyo Ju Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Janghwan Cha
- Department of Physics, Graphene Research Institute, and GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Min Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung Hwa Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Roland Yingjie Tay
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Noejung Park
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Suklyun Hong
- Department of Physics, Graphene Research Institute, and GRI-TPC International Research Center, Sejong University, Seoul 05006, Republic of Korea
- Corresponding author. (Z.L.); (S.H.)
| | - Zonghoon Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Corresponding author. (Z.L.); (S.H.)
| |
Collapse
|