1
|
Garro AG, Ravetti S, Brignone SG, Luna A, Villegas NA, Gaitán A, Palma SD. Microencapsulation techniques for developing cannabidiol formulations: a review. Ther Deliv 2025; 16:183-197. [PMID: 39529600 PMCID: PMC11849927 DOI: 10.1080/20415990.2024.2421155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cannabidiol (CBD), extracted from Cannabis sativa L., holds therapeutic promise without inducing psychoactive effects seen with Δ9-tetrahydrocannabinol. Its interaction with the endocannabinoid system plays a pivotal role in regulating mood, pain perception and immune function. Nevertheless, CBD encounters hurdles in clinical application due to its poor bioavailability and water solubility. To overcome these limitations, researchers are exploring microencapsulation techniques, which involve encapsulating CBD within protective matrices. This comprehensive review offers insights into various microencapsulation methods for CBD, scrutinizing their advantages, limitations and implications for formulation optimization. By elucidating the potential of microencapsulation, this review underscores its promise in refining CBD therapy and addressing challenges associated with administration.
Collapse
Affiliation(s)
- Ariel Gustavo Garro
- Ministerio de Producción, Ciencia e Innovación Tecnológica de la Provincia de Córdoba, Córdoba, CP 5004, Argentina
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, CP 5900, Argentina
| | - Soledad Ravetti
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, CP 5900, Argentina
- Centro de Investigaciones y Transferencia de Villa María (CIT VM), Villa María, CP 5900, Argentina
| | - Sofía Gisella Brignone
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, CONICET, UNITEFA, Haya de la Torre y Medina Allende, Córdoba, CP X5000HUA, Argentina
| | - Agustín Luna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, CONICET, IIBYT, Av. Vélez Sarsfield 1611, Córdoba, CP X5000HUA, Argentina
- Vegen Córdoba SAS, Córdoba, CP 5000, Argentina
| | - Natalia Angel Villegas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, CONICET, UNITEFA, Haya de la Torre y Medina Allende, Córdoba, CP X5000HUA, Argentina
| | - Agustina Gaitán
- Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, Villa María, CP 5900, Argentina
| | - Santiago Daniel Palma
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, CONICET, UNITEFA, Haya de la Torre y Medina Allende, Córdoba, CP X5000HUA, Argentina
| |
Collapse
|
2
|
Solano-Orrala D, Silva-Cullishpuma DA, Díaz-Cruces E, Gómez-López VM, Toro-Mendoza J, Gomez d'Ayala G, Troconis J, Narváez-Muñoz C, Alexis F, Mercader-Ros MT, Lucas-Abellán C, Zamora-Ledezma C. Exploring the Potential of Nonpsychoactive Cannabinoids in the Development of Materials for Biomedical and Sports Applications. ACS APPLIED BIO MATERIALS 2024; 7:8177-8202. [PMID: 39563525 DOI: 10.1021/acsabm.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This Perspective explores the potential of nonpsychoactive cannabinoids (NPCs) such as CBD, CBG, CBC, and CBN in developing innovative biomaterials for biomedical and sports applications. It examines their physicochemical properties, anti-inflammatory, analgesic, and neuroprotective effects, and their integration into various biomaterials such as hydrogels, sponges, films, and scaffolds. It also discusses the current challenges in standardizing formulations, understanding long-term effects, and understanding their intrinsical regulatory landscapes. Further, it discusses the promising applications of NPC-loaded materials in bone regeneration, wound management, and drug delivery systems, emphasizing their improved biocompatibility, mechanical properties, and therapeutic efficacy demonstrated in vitro and in vivo. The review also addresses innovative approaches to enhance NPC delivery including the use of computational tools and explores their potential in both biomedical and sports science contexts. By providing a comprehensive overview of the current state of research, this review aims to outline future directions, emphasizing the potential of NPCs in biomaterial science and regenerative medicine.
Collapse
Affiliation(s)
- Dulexy Solano-Orrala
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| | - Dennis A Silva-Cullishpuma
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21 st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Vicente M Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Jhoan Toro-Mendoza
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Cientificas, Maracaibo 1020A, Venezuela
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
| | - Jorge Troconis
- Instituto Politécnico Nacional, ESIME-UPALM, Ciudad de Mexico 07738, México
| | - Christian Narváez-Muñoz
- Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas (ESPE), Sangolqui 171103, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Maria Teresa Mercader-Ros
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Carmen Lucas-Abellán
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| |
Collapse
|
3
|
Polat HU, Yalcin HA, Köm D, Aksoy Ö, Abaci I, Ekiz AT, Serhatli M, Onarici S. Antiviral effect of cannabidiol on K18-hACE2 transgenic mice infected with SARS-CoV-2. J Cell Mol Med 2024; 28:e70030. [PMID: 39267200 PMCID: PMC11392655 DOI: 10.1111/jcmm.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024] Open
Abstract
The aim of this study was to determine the antiviral activity of cannabidiol (CBD) against SARS-CoV-2 infection. CBD is the second most studied cannabinoid obtained from Cannabis plants. We investigated the potential use of CBD, which has so far proven to have a positive effect on different diseases, in the SARS-CoV-2 infection. To test this, in vivo studies were carried out using K18-hACE2 transgenic mice. To reveal the potential therapeutic effect of the CBD at the histopathological and molecular level challenge experiments were performed. The study was designed with two groups (n = 10) and in the treatment group animals were infected with SARS-CoV-2 virus strain B.1.1.7 alpha before the administration of CBD. While the disease progressed and resulted in death in the control group that was infected by the virus alone, it was observed that the infection slowed down and the survival rate increased in the mice treated with CBD along with the virus. In this study, K18-hACE2 transgenic mice infected with the wild SARS-CoV-2 virus were used to investigate and prove the antiviral activity of CBD.
Collapse
Affiliation(s)
| | | | - Deniz Köm
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| | - Özge Aksoy
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
- Molecular Biology and Genetics, Institute of SciencesYildiz Technical UniversityIstanbulTurkey
| | - Irem Abaci
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
- Department of Biotechnology, Institute of BiotechnologyGebze Technical UniversityKocaeliTurkey
| | - Arzu Tas Ekiz
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| | - Müge Serhatli
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| | - Selma Onarici
- TUBITAK Marmara Research Center, Life Sciences, TUBITAKKocaeliTurkey
| |
Collapse
|
4
|
Gao X, Campasino K, Yourick MR, Zhao Y, Sepehr E, Vaught C, Sprando RL, Yourick JJ. Comparison on the mechanism and potency of hepatotoxicity among hemp extract and its four major constituent cannabinoids. Toxicology 2024; 506:153885. [PMID: 39004335 DOI: 10.1016/j.tox.2024.153885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Cannabidiol (CBD) has been reported to induce hepatotoxicity in clinical trials and research studies; however, little is known about the safety of other nonintoxicating cannabinoids. New approach methodologies (NAMs) based on bioinformatic analysis of high-throughput transcriptomic data are gaining increasing importance in risk assessment and regulatory decision-making of data-poor chemicals. In the current study, we conducted a concentration response transcriptomic analysis of hemp extract and its four major constituent cannabinoids [CBD, cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN)] in hepatocytes derived from human induced pluripotent stem cells (iPSCs). Each compound impacted a distinctive combination of biological functions and pathways. However, all the cannabinoids impaired liver metabolism and caused oxidative stress in the cells. Benchmark concentration (BMC) analysis showed potencies in transcriptional activity of the cannabinoids were in the order of CBN > CBD > CBC > CBG, consistent with the order of their cytotoxicity IC50 values. Patterns of transcriptomic changes induced by hemp extract and its median overall BMC were very similar to CBD but differed significantly from other cannabinoids, suggesting that potential adverse effects of hemp extract were largely due to its major constituent CBD. Lastly, transcriptomic point-of-departure (tPoD) values were determined for each of the compounds, with the value for CBD (0.106 µM) being concordant with a previously reported one derived from apical endpoints of clinical and animal studies. Taken together, the current study demonstrates the potential utility of transcriptomic BMC analysis as a NAM for hazard assessment of data-poor chemicals, improves our understanding of the possible health effects of hemp extract and its constituent cannabinoids, and provides important tPoD data that could contribute to inform human safety assessment of these cannabinoid compounds.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA.
| | - Kayla Campasino
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Miranda R Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Yang Zhao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Estatira Sepehr
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Cory Vaught
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
5
|
Nieoczym D, Marszalek-Grabska M, Szalak R, Kundap U, Kaczor AA, Wrobel TM, Kosheva N, Komar M, Abram M, Esguerra CV, Samarut E, Pieróg M, Jakubiec M, Kaminski K, Kukula-Koch W, Gawel K. A comprehensive assessment of palmatine as anticonvulsant agent - In vivo and in silico studies. Biomed Pharmacother 2024; 172:116234. [PMID: 38325264 DOI: 10.1016/j.biopha.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Chair of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Radoslaw Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Uday Kundap
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; Canada East Spine Centre, Saint John Regional Hospital, Department of Spine and Orthopaedics surgery, Horizon Health Network, Saint John, NB E2L 4L4, Canada
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodżki St., PL-20093 Lublin, Poland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tomasz M Wrobel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodżki St., PL-20093 Lublin, Poland
| | - Nataliia Kosheva
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Malgorzata Komar
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Michal Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway
| | - Eric Samarut
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; Neurosciences Department, University of Montreal, Montreal, QC, Canada
| | - Mateusz Pieróg
- Chair of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland.
| |
Collapse
|
6
|
Guruprasad Reddy P, Bar-Hai A, Hoffman A, Marc Feldmann S, Domb AJ. Novel phenolate salts of bioactive agents: Cannabidiol phenolate salts. Bioorg Chem 2023; 141:106914. [PMID: 37857065 DOI: 10.1016/j.bioorg.2023.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Bioactive phenolic compounds are commonly found in medications, with examples including apomorphine, estrone, thymol, estradiol, propofol, o-phenylphenol, l-Dopa, doxorubicin, tetrahydrocannabinol (THC), and cannabidiol (CBD). This study is the first to explore the creation and assessment of metal and ammonium phenolate salts using CBD as an example. CBD is used in medicine to treat anxiety, insomnia, chronic pain, and inflammation, but its bioavailability is limited due to poor water solubility. In this study exploit a synthetic route to convert CBD into anionic CBD-salts to enhance water solubility. Various CBD-salts with metal and ammonium counterions such as lithium (Li+), sodium (Na+), potassium (K+), choline hydroxide ([(CH3)3NCH2CH2OH]+), and tetrabutylammonium ([N(C4H9)4]+) have been synthesized and characterized. These salts are obtained in high yields, ranging from 74 % to 88 %, through a straightforward dehydration reaction between CBD and alkali metal hydroxides (LiOH, NaOH, KOH) or ammonium hydroxides (choline hydroxide, tetrabutylammonium hydroxide). These reactions are conducted in either ethanol, methanol, or a methanol:water mixture, maintaining a 1:1 molar ratio between the reactants. Comprehensive characterization using Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) spectroscopy, and elemental (CHN) analysis confirms the formation of CBD-salts, as evidenced by the absence of aromatic hydroxyl resonances or stretching frequencies. The molecular formulas of CBD salts were determined based on CHN analysis, and CBD quantification from acid regeneration experiments. Characterization data confirms that each CBD phenolate in a specific CBD salt was electrostatically stabilized by one of the either alkali metal or ammonium ion. The CBD-salts are highly susceptible to acidic conditions, readily reverting back to the original CBD. The percentage and purity of CBD in the CBD-metal/ammonium salts have been studied using High-Performance Liquid Chromatography (HPLC) analysis. Solubility studies indicate that the conversion of CBD into CBD salts significantly enhances its solubility in water, ranging from 110 to 1606 folds greater than pure CBD. Furthermore, the pharmacokinetic evaluation of oral administration of CBD-salts compared to CBD were determined in rats.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel
| | - Ayala Bar-Hai
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel
| | - Amnon Hoffman
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel
| | | | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem, Israel.
| |
Collapse
|
7
|
Bomfim AJDL, Zuze SMF, Fabrício DDM, Pessoa RMDP, Crippa JAS, Chagas MHN. Effects of the Acute and Chronic Administration of Cannabidiol on Cognition in Humans and Animals: A Systematic Review. Cannabis Cannabinoid Res 2023; 8:955-973. [PMID: 37792394 DOI: 10.1089/can.2023.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Introduction: The effects of cannabidiol (CBD) on cognition has been investigated in recent years to determine the therapeutic potential of this cannabinoid for a broad gamut of medical conditions, including neuropsychiatric disorders. The aim of the present study was to perform a systematic review of studies that analyzed the effects of the acute and chronic administration of CBD on cognition in humans and animals both to assess the cognitive safety of CBD and to determine a beneficial potential of CBD on cognition. Methods: The PubMed, Web of Science, PsycINFO, and Scopus databases were searched in December of 2022 for relevant articles using the following combinations of keywords: ("cannabidiol" OR "CBD") AND ("cognition" OR "processing cognitive" OR "memory" OR "language" OR "attention" OR "executive function" OR "social cognition" OR "perceptual motor ability" OR "processing speed"). Results: Fifty-nine articles were included in the present review (36 preclinical and 23 clinical trials). CBD seems not to have any negative effect on cognitive processing in rats. The clinical trials confirmed these findings in humans. One study found that repeated dosing with CBD may improve cognitive in people who use cannabis heavily but not individuals with neuropsychiatric disorders. Considering the context of neuropsychiatric disorders in animal models, CBD seems to reverse the harm caused by the experimental paradigms, such that the performance of these animals becomes similar to that of control animals. Conclusions: The results demonstrate that the chronic and acute administration of CBD seems not to impair cognition in humans without neuropsychiatric disorders. In addition, preclinical studies report promising results regarding the effects of CBD on the cognitive processing of animals. Future double-blind, placebo-controlled, randomized clinical trials with larger, less selective samples, with standardized tests, and using different doses of CBD in outpatients are of particular interest to elucidate the cognitive effects of CBD.
Collapse
Affiliation(s)
- Ana Julia de Lima Bomfim
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Stefany Mirrelle Fávero Zuze
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Daiene de Morais Fabrício
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Rebeca Mendes de Paula Pessoa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - José Alexandre S Crippa
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Hortes N Chagas
- Department of Neurosciences and Behavioral Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Research Group on Mental Health, Cognition and Aging, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Singh K, Bhushan B, Chanchal DK, Sharma SK, Rani K, Yadav MK, Porwal P, Kumar S, Sharma A, Virmani T, Kumar G, Noman AA. Emerging Therapeutic Potential of Cannabidiol (CBD) in Neurological Disorders: A Comprehensive Review. Behav Neurol 2023; 2023:8825358. [PMID: 37868743 PMCID: PMC10586905 DOI: 10.1155/2023/8825358] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Cannabidiol (CBD), derived from Cannabis sativa, has gained remarkable attention for its potential therapeutic applications. This thorough analysis explores the increasing significance of CBD in treating neurological conditions including epilepsy, multiple sclerosis, Parkinson's disease, and Alzheimer's disease, which present major healthcare concerns on a worldwide scale. Despite the lack of available therapies, CBD has been shown to possess a variety of pharmacological effects in preclinical and clinical studies, making it an intriguing competitor. This review brings together the most recent findings on the endocannabinoid and neurotransmitter systems, as well as anti-inflammatory pathways, that underlie CBD's modes of action. Synthesized efficacy and safety assessments for a range of neurological illnesses are included, covering human trials, in vitro studies, and animal models. The investigation includes how CBD could protect neurons, control neuroinflammation, fend off oxidative stress, and manage neuronal excitability. This study emphasizes existing clinical studies and future possibilities in CBD research, addressing research issues such as regulatory complications and contradicting results, and advocates for further investigation of therapeutic efficacy and ideal dose methodologies. By emphasizing CBD's potential to improve patient well-being, this investigation presents a revised viewpoint on its suitability as a therapeutic intervention for neurological illnesses.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Dilip Kumar Chanchal
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Satish Kumar Sharma
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ketki Rani
- Department of Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Manoj Kumar Yadav
- Department of Pharmacology, Dr. Bhimrao Ambedkar University, Chhalesar Campus, Agra, Uttar Pradesh, India
| | - Prateek Porwal
- Department of Pharmacognosy, Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, 121105, Palwal, Haryana, India
| | | |
Collapse
|
9
|
Bosco F, Guarnieri L, Rania V, Palma E, Citraro R, Corasaniti MT, Leo A, De Sarro G. Antiseizure Medications in Alzheimer's Disease from Preclinical to Clinical Evidence. Int J Mol Sci 2023; 24:12639. [PMID: 37628821 PMCID: PMC10454935 DOI: 10.3390/ijms241612639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) and epilepsy are common neurological disorders in the elderly. A bi-directional link between these neurological diseases has been reported, with patients with either condition carrying almost a two-fold risk of contracting the other compared to healthy subjects. AD/epilepsy adversely affects patients' quality of life and represents a severe public health problem. Thus, identifying the relationship between epilepsy and AD represents an ongoing challenge and continuing need. Seizures in AD patients are often unrecognized because they are often nonconvulsive and sometimes mimic some behavioral symptoms of AD. Regarding this, it has been hypothesized that epileptogenesis and neurodegeneration share common underlying mechanisms. Targeted treatment to decrease epileptiform activity could represent a valuable strategy for delaying the neurodegenerative process and related cognitive impairment. Several preclinical studies have shown that some antiseizure medications (ASMs) targeting abnormal network hyperexcitability may change the natural progression of AD. However, to date, no guidelines are available for managing seizures in AD patients because of the paucity of randomized clinical trials sufficient for answering the correlated questions. Future AD clinical studies are mandatory to update clinicians about the symptomatic treatment of seizures in AD patients and recognize whether ASM therapy could change the natural progression of the disease, thereby rescuing cognitive performance.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Lorenza Guarnieri
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Ernesto Palma
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Rita Citraro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Tiziana Corasaniti
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Antonio Leo
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Fernández N, Cappello MG, Quiroga PN. An assessment of qualitative and quantitative cannabinoids analysis in selected commercially available cannabis oils in Argentina. Forensic Sci Int 2023; 349:111762. [PMID: 37392612 DOI: 10.1016/j.forsciint.2023.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
In recent years, the therapeutic use of cannabis products, especially cannabis oils, has increased significantly, due to the pharmacological potential of their cannabinoids, for the treatment of conditions, such as pain management, cancer, and epilepsy. In Argentina, patients with medical prescriptions can access to cannabis oil, through self-cultivation, a third-person (grower or importer), or a civil organization authorized for that purpose. However, these products remain largely unregulated in Argentina, and information available regarding labeling accuracy, especially cannabidiol (CBD)/ Δ9-tetrahydrocannabinol (Δ9-THC) concentrations are inconsistent or nonexistent, nor long-term product stability, and lot to lot variability. Understanding these properties is fundamental if these products are to be used in patients with a determinate pathology. Therefore, we analyzed commercially available cannabis oils (n: 500) in Argentina for qualitative and quantitative cannabinoids content. In order to provide a detailed overview of their cannabinoids profiles, and determine Δ9-THC, CBD, and cannabinol (CBN) concentrations, samples were diluted and analyzed by gas chromatography- mass spectrometry (GC/MS). Most of the samples tested positive for cannabinoids (n: 469) with Δ9-THC and CBD as the predominant cannabinoids. Among products tested, only 29.8% (n: 149) gave specific CBD label claims, and testing indicated a CBD tested positive of 70.5% (n: 105). For products (n: 17) with a THC-free label claim, testing indicated 76.5% (n: 13) of Δ9-THC positive, and cannabinoids were not detected in four products. Δ9-THC concentrations ranged from 0.1 to 143.0 mg/mL, CBD concentrations from 0.1 to 125.3 mg/mL, and CBN concentrations from 0.04 to 60.10 mg/mL; CBN/ Δ9-THC ratios ranged from 0.0012 to 2.31, and CBD/ Δ9-THC ratios from 0.0008 to 178.87. Furthermore, the (Δ9-THC + CBN)/CBD ratio of most samples was greater than one. In summary, our results indicate that cannabis oil products show wide variability in cannabinoids content, purity, and labeling.
Collapse
Affiliation(s)
- Nicolás Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina.
| | - Marcello Gian Cappello
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Patricia Noemí Quiroga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA), Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Elliott T, Gienapp AJ, Wheless JW. Dispensary Cannabidiol (CBD): Nothing to Worry About! Child Neurol Open 2023; 10:2329048X231169395. [PMID: 37101430 PMCID: PMC10123877 DOI: 10.1177/2329048x231169395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: Despite US FDA approval of cannabidiol (CBD) liquid (Epidiolex®), patients with epilepsy still supplement prescription treatments with dispensary CBD. This study aimed to evaluate therapeutic effectiveness of dispensary CBD. Methods: We retrospectively collected dosage information, CBD serum levels, efficacy, and adverse effects from patient charts (children, adolescents, adults) (n = 18). Results: All 18 patients showed no clinical benefit from dispensary CBD as detectable serum levels never reached a therapeutic range of 150 ng/mL (6 patients had barely detectable levels that were below laboratory reporting thresholds). Minute levels of tetrahydrocannabinol (THC) were found in 3 patients, and moderate levels were found in 1 patient. Conclusion: Dispensary CBD failed to reach effective therapeutic levels in all of these patients. The presence of THC demonstrates the current lack of regulation of dispensary CBD. Anecdotal reports of clinical effectiveness should be considered an effect of concomitant prescription antiseizure medications and not dispensary CBD.
Collapse
Affiliation(s)
- Taylor Elliott
- Department of Biochemistry and Molecular Biology, Rhodes College, Memphis, TN, USA
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
| | - Andrew J. Gienapp
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Children's Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
| | - James W. Wheless
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA
- Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- James Wheless, Le Bonheur Children's Hospital, 49 North Dunlap, 3 Floor, Neurology, Memphis, TN 38103, USA.
| |
Collapse
|
12
|
Birhan YS. Medicinal plants utilized in the management of epilepsy in Ethiopia: ethnobotany, pharmacology and phytochemistry. Chin Med 2022; 17:129. [PMCID: PMC9675240 DOI: 10.1186/s13020-022-00686-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is a common central nervous system (CNS) disorder that affects 50 million people worldwide. Patients with status epilepticus (SE) suffer from devastating comorbidities and a high incidence of mortalities. Antiepileptic drugs (AEDs) are the mainstream treatment options for the symptomatic relief of epilepsy. The incidence of refractory epilepsy and the dose-dependent neurotoxicity of AEDs such as fatigue, cognitive impairment, dizziness, attention-deficit behavior, and other side effects are the major bottlenecks in epilepsy treatment. In low- and middle-income countries (LMICs), epilepsy patients failed to adhere to the AEDs regimens and consider other options such as complementary and alternative medicines (CAMs) to relieve pain due to status epilepticus (SE). Plant-based CAMs are widely employed for the treatment of epilepsy across the globe including Ethiopia. The current review documented around 96 plant species (PS) that are often used for the treatment of epilepsy in Ethiopia. It also described the in vivo anticonvulsant activities and toxicity profiles of the antiepileptic medicinal plants (MPs). Moreover, the phytochemical constituents of MPs with profound anticonvulsant effects were also assessed. The result reiterated that a lot has to be done to show the association between herbal-based epilepsy treatment and in vivo pharmacological activities of MPs regarding their mechanism of action (MOA), toxicity profiles, and bioactive constituents so that they can advance into the clinics and serve as a treatment option for epilepsy.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- grid.449044.90000 0004 0480 6730Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| |
Collapse
|
13
|
Puri V, Kanojia N, Sharma A, Huanbutta K, Dheer D, Sangnim T. Natural product-based pharmacological studies for neurological disorders. Front Pharmacol 2022; 13:1011740. [PMID: 36419628 PMCID: PMC9676372 DOI: 10.3389/fphar.2022.1011740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
Central nervous system (CNS) disorders and diseases are expected to rise sharply in the coming years, partly because of the world's aging population. Medicines for the treatment of the CNS have not been successfully made. Inadequate knowledge about the brain, pharmacokinetic and dynamic errors in preclinical studies, challenges with clinical trial design, complexity and variety of human brain illnesses, and variations in species are some potential scenarios. Neurodegenerative diseases (NDDs) are multifaceted and lack identifiable etiological components, and the drugs developed to treat them did not meet the requirements of those who anticipated treatments. Therefore, there is a great demand for safe and effective natural therapeutic adjuvants. For the treatment of NDDs and other memory-related problems, many herbal and natural items have been used in the Ayurvedic medical system. Anxiety, depression, Parkinson's, and Alzheimer's diseases (AD), as well as a plethora of other neuropsychiatric disorders, may benefit from the use of plant and food-derived chemicals that have antidepressant or antiepileptic properties. We have summarized the present level of knowledge about natural products based on topological evidence, bioinformatics analysis, and translational research in this review. We have also highlighted some clinical research or investigation that will help us select natural products for the treatment of neurological conditions. In the present review, we have explored the potential efficacy of phytoconstituents against neurological diseases. Various evidence-based studies and extensive recent investigations have been included, which will help pharmacologists reduce the progression of neuronal disease.
Collapse
Affiliation(s)
- Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Kampanart Huanbutta
- School of Pharmacy, Eastern Asia University, Rangsit, Pathum Thani, Thailand
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Muang, Chon Buri, Thailand
| |
Collapse
|
14
|
Hu QP, Yan HX, Peng F, Feng W, Chen FF, Huang XY, Zhang X, Zhou YY, Chen YS. Genistein protects epilepsy-induced brain injury through regulating the JAK2/STAT3 and Keap1/Nrf2 signaling pathways in the developing rats. Eur J Pharmacol 2021; 912:174620. [PMID: 34752743 DOI: 10.1016/j.ejphar.2021.174620] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Epilepsy is a common chronic neurological disease. Recurrent seizures can cause irreversible brain damage. This study aimed to explore the regulation of Genistein on JAK2/STAT3 and Keap1/Nrf2 signaling pathway and the protective effects on brain injury after epilepsy. METHODS Pentylenetetrazole (PTZ) was used to induce epilepsy in developing rats and Genistein was used for pretreatment of epilepsy. The seizure latency, grade scores and duration of the first generalized tonic-clonic seizure (GTCs) were recorded. Hippocampus tissue was sampled at 24 h post-epilepsy. Immunofluorescence staining was used to observe mature neurons, activated microglia and astrocytes in the hippocampal CA1 region. Western blot and qRT-PCR were used to determine the protein and mRNA levels of JAK2, STAT3, TNF-α, IL-1β, Keap1, Nrf2, HO-1, NQO1, caspase3, Bax and Bcl2 in the hippocampus. RESULTS Immunofluorescence showed that the number of neurons significantly decreased, and activated microglia and astrocytes significantly increased after epilepsy; Western blot and q-PCR showed that the expressions of JAK2, STAT3, TNF-α, IL-1β, Keap1, caspase3 and Bax significantly increased, while Nrf2, HO-1, NQO1 and Bcl-2 were significantly reduced after epilepsy. These effects were reversed by Genistein treatment. Moreover, Genistein was found to prolong seizure latency and reduce seizure intensity score and duration of generalized tonic-clonic seizures(GTCs) CONCLUSIONS: Genistein can activate the Keap1/Nrf2 antioxidant stress pathway and attenuate the activation of microglia and astrocytes. Genistein also inhibits the JAK2-STAT3 inflammation pathway and expression of apoptotic proteins, and increases the number of surviving neurons, thus having a protective effect on epilepsy-induced brain damage.
Collapse
Affiliation(s)
- Qing-Peng Hu
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Hong-Xia Yan
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fang Peng
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Feng
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fen-Fang Chen
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang-Yi Huang
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xin Zhang
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yang-Yu Zhou
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yi-Shui Chen
- Department of Pediatrics, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
15
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
Park YJ, Ryu JM, Na HH, Jung HS, Kim B, Park JS, Ahn BS, Kim KC. Regulatory Effect of Cannabidiol (CBD) on Decreased β-Catenin Expression in Alopecia Models by Testosterone and PMA Treatment in Dermal Papilla Cells. J Pharmacopuncture 2021; 24:68-75. [PMID: 34249397 PMCID: PMC8220510 DOI: 10.3831/kpi.2021.24.2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Objectives The hair follicle is composed of more than 20 kinds of cells, and mesoderm derived dermal papilla cells and keratinocytes cooperatively contribute hair growth via Wnt/β-catenin signaling pathway. We are to investigate β-catenin expression and regulatory mechanism by CBD in alopecia hair tissues and dermal papilla cells. Methods We performed structural and anatomical analyses on alopecia patients derived hair tissues using microscopes. Pharmacological effect of CBD was evaluated by β-catenin expression using RT-PCR and immunostaining experiment. Results Morphological deformation and loss of cell numbers in hair shaft were observed in alopecia hair tissues. IHC experiment showed that loss of β-catenin expression was shown in inner shaft of the alopecia hair tissues, indicating that β-catenin expression is a key regulatory function during alopecia progression. Consistently, β-catenin expression was decreased in testosterone or PMA treated dermal papilla cells, suggesting that those treatments are referred as a model on molecular mechanism of alopecia using dermal papilla cells. RT-PCR and immunostaining experiments showed that β-catenin expression was decreased in RNA level, as well as decreased β-catenin protein might be resulted from ubiquitination. However, CBD treatment has no changes in gene expression including β-catenin, but the decreased β-catenin expression by testosterone or PMA was restored by CBD pretreatment, suggesting that potential regulatory effect on alopecia induction of testosterone and PMA. Conclusion CBD might have a modulating function on alopecia caused by hormonal or excess of signaling pathway, and be a promising application for on alopecia treatment.
Collapse
Affiliation(s)
- Yoon-Jong Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jae-Min Ryu
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea.,Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Suk Jung
- Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea.,Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Bokhye Kim
- Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea
| | - Byung-Soo Ahn
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea.,Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
17
|
Sadanandan N, Saft M, Gonzales-Portillo B, Borlongan CV. Multipronged Attack of Stem Cell Therapy in Treating the Neurological and Neuropsychiatric Symptoms of Epilepsy. Front Pharmacol 2021; 12:596287. [PMID: 33815100 PMCID: PMC8010689 DOI: 10.3389/fphar.2021.596287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy stands as a life-threatening disease that is characterized by unprovoked seizures. However, an important characteristic of epilepsy that needs to be examined is the neuropsychiatric aspect. Epileptic patients endure aggression, depression, and other psychiatric illnesses. Therapies for epilepsy can be divided into two categories: antiepileptic medications and surgical resection. Antiepileptic drugs are used to attenuate heightened neuronal firing and to lessen seizure frequency. Alternatively, surgery can also be conducted to physically cut out the area of the brain that is assumed to be the root cause for the anomalous firing that triggers seizures. While both treatments serve as viable approaches that aim to regulate seizures and ameliorate the neurological detriments spurred by epilepsy, they do not serve to directly counteract epilepsy's neuropsychiatric traits. To address this concern, a potential new treatment involves the use of stem cells. Stem cell therapy has been employed in experimental models of neurological maladies, such as Parkinson's disease, and neuropsychiatric illnesses like depression. Cell-based treatments for epilepsy utilizing stem cells such as neural stem cells (NSCs), mesenchymal stem cells (MSCs), and interneuron grafts have been explored in preclinical and clinical settings, highlighting both the acute and chronic stages of epilepsy. However, it is difficult to create an animal model to capitalize on all the components of epilepsy due to the challenges in delineating the neuropsychiatric aspect. Therefore, further preclinical investigation into the safety and efficacy of stem cell therapy in addressing both the neurological and the neuropsychiatric components of epilepsy is warranted in order to optimize cell dosage, delivery, and timing of cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|