1
|
Di Florio DN, Weigel GJ, Gorelov DJ, McCabe EJ, Beetler DJ, Shapiro KA, Bruno KA, Chekuri I, Jain A, Whelan ER, Salomon GR, Khatib S, Bonvie-Hill NE, Fliess JJ, Giresi PG, Hamilton C, Hartmoyer CJ, Balamurugan V, Darakjian AA, Edenfield BH, Kocsis SC, McLeod CJ, Cooper LT, Audet-Walsh É, Coronado MJ, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. Biol Sex Differ 2024; 15:104. [PMID: 39696682 PMCID: PMC11657264 DOI: 10.1186/s13293-024-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Myocarditis is an inflammation of the heart muscle most often caused by viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. METHODS Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis and functional validation to understand sex differences in the transcriptional landscape of myocarditis and identify factors that might drive sex differences in myocarditis. RESULTS As expected, the hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. Unique to this study, we found that males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial electron transport function while females were enriched for pathways related to mitochondrial homeostasis. Mitochondria isolated from the heart of males were confirmed to have worse mitochondrial respiration than females during myocarditis. Unbiased TRANSFAC analysis identified estrogen-related receptor alpha (ERRα) as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Transcript and protein levels of ERRα were confirmed as elevated in females with myocarditis compared to males. Differential binding analysis from chromatin immunoprecipitation (ChIP) sequencing confirmed that ERRα bound highly to select predicted respiratory chain genes in females more than males during myocarditis. CONCLUSIONS Females with viral myocarditis regulate mitochondrial homeostasis by upregulating master regulators of mitochondrial transcription including ERRα.
Collapse
Affiliation(s)
- Damian N Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gabriel J Weigel
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - David J Gorelov
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Katie A Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Emily R Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gary R Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Sami Khatib
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica J Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Presley G Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charwan Hamilton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ashley A Darakjian
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - S Christian Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Division, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | | | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Fairweather D, Beetler DJ, McCabe EJ, Lieberman SM. Mechanisms underlying sex differences in autoimmunity. J Clin Invest 2024; 134:e180076. [PMID: 39286970 PMCID: PMC11405048 DOI: 10.1172/jci180076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Autoimmune diseases are a leading cause of disability worldwide. Most autoimmune diseases occur more often in women than men, with rheumatic autoimmune diseases being among those most highly expressed in women. Several key factors, identified mainly in animal models and cell culture experiments, are important in increasing autoimmune disease in females. These include sex hormones, immune genes including those found on the X chromosome, sex-specific epigenetic effects on genes by estrogen and the environment, and regulation of genes and messenger RNA by microRNAs found in extracellular vesicles. Evidence is also emerging that viruses as well as drugs or toxins that damage mitochondria may contribute to increased levels of autoantibodies against nuclear and mitochondrial antigens, which are common in many autoimmune diseases. The purpose of this Review is to summarize our current understanding of mechanisms that may determine sex differences in autoimmune disease.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott M Lieberman
- Division of Rheumatology, Allergy, and Immunology, Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Di Florio D, Gorelov D, McCabe E, Beetler D, Shapiro K, Bruno K, Chekuri I, Jain A, Whelan E, Salomon G, Khatib S, Bonvie-Hill N, Giresi P, Balamurugan V, Weigel G, Fliess J, Darakjian A, Edenfield B, Kocsis C, McLeod C, Cooper L, Audet-Walsh E, Coronado M, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. RESEARCH SQUARE 2023:rs.3.rs-3716881. [PMID: 38196574 PMCID: PMC10775395 DOI: 10.21203/rs.3.rs-3716881/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Myocarditis is an inflammation of the heart muscle most often caused by an immune response to viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. Methods Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis to understand sex differences in the transcriptional landscape of myocarditis and identify candidate transcription factors that might drive sex differences in myocarditis. Results The hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. When comparing females to males with myocarditis, males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial transcriptional support (e.g., mitochondrial electron transport genes). In contrast, females were enriched for pathways related to mitochondrial respiration and bioenergetics, which were confirmed by higher transcript levels of master regulators of mitochondrial function including peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1α), nuclear respiratory factor 1 (NRF1) and estrogen-related receptor alpha (ERRα). TRANSFAC analysis identified ERRa as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Conclusions Master regulators of mitochondrial function were elevated in females with myocarditis compared to males and may promote sex differences in mitochondrial respiratory transcript expression during viral myocarditis resulting in less severe myocarditis in females following viral infection.
Collapse
|