• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4591707)   Today's Articles (1619)   Subscriber (49315)
Number Citation Analysis
1
FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem 2023;299:105046. [PMID: 37453661 PMCID: PMC10462841 DOI: 10.1016/j.jbc.2023.105046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]  Open
2
FDX1 regulates cellular protein lipoylation through direct binding to LIAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526472. [PMID: 36778498 PMCID: PMC9915701 DOI: 10.1101/2023.02.03.526472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
3
Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol 2023;19:206-217. [PMID: 36280795 PMCID: PMC10873809 DOI: 10.1038/s41589-022-01159-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
4
Characterization of LipS1 and LipS2 from Thermococcus kodakarensis: Proteins Annotated as Biotin Synthases, which Together Catalyze Formation of the Lipoyl Cofactor. ACS BIO & MED CHEM AU 2022;2:509-520. [PMID: 36281299 PMCID: PMC9585515 DOI: 10.1021/acsbiomedchemau.2c00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
5
[FeFe]-Hydrogenase: Defined Lysate-Free Maturation Reveals a Key Role for Lipoyl-H-Protein in DTMA Ligand Biosynthesis. Angew Chem Int Ed Engl 2022;61:e202203413. [PMID: 35319808 PMCID: PMC9117470 DOI: 10.1002/anie.202203413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/09/2022]
6
Cover Picture: [FeFe]‐Hydrogenase: Defined Lysate‐Free Maturation Reveals a Key Role for Lipoyl‐H‐Protein in DTMA Ligand Biosynthesis (Angew. Chem. Int. Ed. 22/2022). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/anie.202204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
7
[FeFe]‐Hydrogenase: Defined Lysate‐Free Maturation Reveals a Key Role for Lipoyl‐H‐Protein in DTMA Ligand Biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
8
[FeFe]‐Hydrogenase: Defined Lysate‐Free Maturation Reveals a Key Role for Lipoyl‐H‐Protein in DTMA Ligand Biosynthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
9
An Unexpected Species Determined by X-ray Crystallography that May Represent an Intermediate in the Reaction Catalyzed by Quinolinate Synthase. J Am Chem Soc 2019;141:14142-14151. [PMID: 31390192 DOI: 10.1021/jacs.9b02513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
10
Rapid Reduction of the Diferric-Peroxyhemiacetal Intermediate in Aldehyde-Deformylating Oxygenase by a Cyanobacterial Ferredoxin: Evidence for a Free-Radical Mechanism. J Am Chem Soc 2015;137:11695-709. [PMID: 26284355 DOI: 10.1021/jacs.5b06345] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
11
Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase. Biochemistry 2015;54:1006-15. [PMID: 25496470 DOI: 10.1021/bi500847u] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
12
Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. J Am Chem Soc 2013;135:15801-12. [PMID: 23987523 PMCID: PMC3869994 DOI: 10.1021/ja405047b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
13
Evidence for Only Oxygenative Cleavage of Aldehydes to Alk(a/e)nes and Formate by Cyanobacterial Aldehyde Decarbonylases. Biochemistry 2012;51:7908-16. [DOI: 10.1021/bi300912n] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
14
Identification of small molecule inhibitors of the HIV-1 nucleocapsid-stem-loop 3 RNA complex. J Med Chem 2012;55:4132-41. [PMID: 22480197 DOI: 10.1021/jm2007694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
15
Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. J Am Chem Soc 2011;133:6158-61. [PMID: 21462983 DOI: 10.1021/ja2013517] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 2011;133:3316-9. [PMID: 21341652 PMCID: PMC3069495 DOI: 10.1021/ja111607x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Identification of Specific Small Molecule Ligands for Stem Loop 3 Ribonucleic Acid of the Packaging Signal Ψ of Human Immunodeficiency Virus-1. J Med Chem 2009;52:5462-73. [DOI: 10.1021/jm900599v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA