1
|
Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Nirei K, Ogawa M, Moriyama M. Application of artificial intelligence in hepatology: Minireview. Artif Intell Gastroenterol 2020; 1:5-11. [DOI: 10.35712/aig.v1.i1.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
With the rapid advancements in computer science, artificial intelligence (AI) has become an intrinsic part of our daily life and clinical practices. The concepts of AI, such as machine learning, deep learning, and big data, are extensively used in clinical and basic research. In this review, we searched for the articles in PubMed and summarized recent developments of AI concerning hepatology while focusing on the diagnosis and risk assessment of liver diseases. Ultrasound is widely conducted for the routine surveillance of hepatocellular carcinoma along with tumor markers. Computer-aided diagnosis is useful in the detection of tumors and characterization of space-occupying lesions. The prognosis of hepatocellular carcinoma can be estimated via AI using large-scale and high-quality training datasets. The prevalence of nonalcoholic fatty liver disease is increasing worldwide and pivotal concern in the field is who will progress and develop hepatocellular carcinoma. Most AI studies require a large dataset, including laboratory or radiological findings and outcome data. AI will be useful in reducing medical errors, supporting clinical decisions, and predicting clinical outcomes. Thus, cooperation between AI and humans is expected to improve healthcare.
Collapse
|
Minireviews |
5 |
8 |
2
|
Kudou M, Kosuga T, Otsuji E. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. Artif Intell Gastroenterol 2020; 1:71-85. [DOI: 10.35712/aig.v1.i4.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) using machine or deep learning algorithms is attracting increasing attention because of its more accurate image recognition ability and prediction performance than human-aid analyses. The application of AI models to gastrointestinal (GI) clinical oncology has been investigated for the past decade. AI has the capacity to automatically detect and diagnose GI tumors with similar diagnostic accuracy to expert clinicians. AI may also predict malignant potential, such as tumor histology, metastasis, patient survival, resistance to cancer treatments and the molecular biology of tumors, through image analyses of radiological or pathological imaging data using complex deep learning models beyond human cognition. The introduction of AI-assisted diagnostic systems into clinical settings is expected in the near future. However, limitations associated with the evaluation of GI tumors by AI models have yet to be resolved. Recent studies on AI-assisted diagnostic models of gastric and colorectal cancers in the endoscopic, pathological, and radiological fields were herein reviewed. The limitations and future perspectives for the application of AI systems in clinical settings have also been discussed. With the establishment of a multidisciplinary team containing AI experts in each medical institution and prospective studies, AI-assisted medical systems will become a promising tool for GI cancer.
Collapse
|
Minireviews |
5 |
5 |
3
|
Al-Biltagi M, Saeed NK, Qaraghuli S. Gastrointestinal disorders in children with autism: Could artificial intelligence help? Artif Intell Gastroenterol 2022; 3:1-12. [DOI: 10.35712/aig.v3.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Autism is one of the pervasive neurodevelopmental disorders usually associated with many medical comorbidities. Gastrointestinal (GI) disorders are pervasive in children, with a 46%-84% prevalence rate. Children with Autism have an increased frequency of diarrhea, nausea and/or vomiting, gastroesophageal reflux and/or disease, abdominal pain, chronic flatulence due to various factors as food allergies, gastrointestinal dysmotility, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). These GI disorders have a significant negative impact on both the child and his/her family. Artificial intelligence (AI) could help diagnose and manage Autism by improving children's communication, social, and emotional skills for a long time. AI is an effective method to enhance early detection of GI disorders, including GI bleeding, gastroesophageal reflux disease, Coeliac disease, food allergies, IBS, IBD, and rectal polyps. AI can also help personalize the diet for children with Autism by microbiome modification. It can help to provide modified gluten without initiating an immune response. However, AI has many obstacles in treating digestive diseases, especially in children with Autism. We need to do more studies and adopt specific algorithms for children with Autism. In this article, we will highlight the role of AI in helping children with gastrointestinal disorders, with particular emphasis on children with Autism.
Collapse
|
Editorial |
3 |
4 |
4
|
Lin HM, Xue XF, Wang XG, Dang SC, Gu M. Application of artificial intelligence for the diagnosis, treatment, and prognosis of pancreatic cancer. Artif Intell Gastroenterol 2020; 1:19-29. [DOI: 10.35712/aig.v1.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a complex cancer of the digestive tract. Diagnosis and treatment can be very difficult because of unclear early symptoms, the deep anatomical location of cancer tissues, and the high degree of cancer cell invasion. The prognosis is extremely poor; the 5-year survival rate of patients with pancreatic cancer is less than 1%. Artificial intelligence (AI) has great potential for application in the medical field. In addition to AI-based applications, such as disease data processing, imaging, and pathological image recognition, robotic surgery has revolutionized surgical procedures. To better understand the current role of AI in pancreatic cancer and predict future development trends, this article comprehensively reports the application of AI to the diagnosis, treatment, and prognosis of pancreatic cancer.
Collapse
|
Minireviews |
5 |
2 |
5
|
Balaban DV, Jinga M. Digital histology in celiac disease: A practice changer. Artif Intell Gastroenterol 2020; 1:1-4. [DOI: 10.35712/aig.v1.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has grown tremendously in the last decades and is undoubtedly the future era in medicine. Concerning digestive diseases, applications of AI include clinical gastroenterology, gastrointestinal endoscopy and imaging, and not least pathological diagnosis. Several gastrointestinal pathologies require histological confirmation for a positive diagnosis. Among them, celiac disease (CD) diagnosis has been in the spotlight over time, but controversy is still ongoing with regard to the so-called celiac-type histology. Despite efforts to improve histological diagnosis in CD, there are still several issues and pitfalls associated with duodenal histology reading. Several papers have assessed the accuracy of AI techniques in detecting CD on duodenal biopsy images and have shown high diagnostic performance over standard histology reading. We discuss the role of computer-assisted histology in improving the assessment of mucosal architectural injury and inflammation in CD patients, both for diagnosis and follow-up.
Collapse
|
Editorial |
5 |
2 |
6
|
Li Q, Li JF, Mao XR. Application of artificial intelligence in liver diseases: From diagnosis to treatment. Artif Intell Gastroenterol 2021; 2:133-140. [DOI: 10.35712/aig.v2.i5.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Infectious or noninfectious liver disease has inexorably risen as one of the leading causes of global death and disease burden. There were an estimated 2.14 million liver-related deaths in 2017, representing an 11.4% increase since 2012. Traditional diagnosis and treatment methods have various dilemmas in different causes of liver disease. As a hot research topic in recent years, the application of artificial intelligence (AI) in different fields has attracted extensive attention, and new technologies have brought more ideas for the diagnosis and treatment of some liver diseases. Machine learning (ML) is the core of AI and the basic way to make a computer intelligent. ML technology has many potential uses in hepatology, ranging from exploring new noninvasive means to predict or diagnose different liver diseases to automated image analysis. The application of ML in liver diseases can help clinical staff to diagnose and treat different liver diseases quickly, accurately and scientifically, which is of importance for reducing the incidence and mortality of liver diseases, reducing medical errors, and promoting the development of medicine. This paper reviews the application and prospects of AI in liver diseases, and aims to improve clinicians’ awareness of the importance of AI in the diagnosis and treatment of liver diseases.
Collapse
|
Minireviews |
4 |
2 |
7
|
Laoveeravat P, Abhyankar PR, Brenner AR, Gabr MM, Habr FG, Atsawarungruangkit A. Artificial intelligence for pancreatic cancer detection: Recent development and future direction. Artif Intell Gastroenterol 2021; 2:56-68. [DOI: 10.35712/aig.v2.i2.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has been increasingly utilized in medical applications, especially in the field of gastroenterology. AI can assist gastroenterologists in imaging-based testing and prediction of clinical diagnosis, for examples, detecting polyps during colonoscopy, identifying small bowel lesions using capsule endoscopy images, and predicting liver diseases based on clinical parameters. With its high mortality rate, pancreatic cancer can highly benefit from AI since the early detection of small lesion is difficult with conventional imaging techniques and current biomarkers. Endoscopic ultrasound (EUS) is a main diagnostic tool with high sensitivity for pancreatic adenocarcinoma and pancreatic cystic lesion. The standard tumor markers have not been effective for diagnosis. There have been recent research studies in AI application in EUS and novel biomarkers to early detect and differentiate malignant pancreatic lesions. The findings are impressive compared to the available traditional methods. Herein, we aim to explore the utility of AI in EUS and novel serum and cyst fluid biomarkers for pancreatic cancer detection.
Collapse
|
Minireviews |
4 |
2 |
8
|
Yi PS, Hu CJ, Li CH, Yu F. Clinical value of artificial intelligence in hepatocellular carcinoma: Current status and prospect. Artif Intell Gastroenterol 2021; 2:42-55. [DOI: 10.35712/aig.v2.i2.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed type of liver cancer and the fourth leading cause of cancer-related mortality worldwide. The early identification of HCC and effective treatments for it have been challenging. Due to the sufficient compensatory ability of early patients and its nonspecific symptoms, HCC is more likely to escape diagnosis in the incipient stage, during which patients can achieve a more satisfying overall survival if they undergo resection or liver transplantation. Patients at advanced stages can profit from radical therapies in a limited way. In order to improve the unfavorable prognosis of HCC, diagnostic ability and treatment efficiency must be improved. The past decade has seen rapid advancements in artificial intelligence, underlying its unique usefulness in almost every field, including that of medicine. Herein, we sought and reviewed studies that put emphasis on artificial intelligence and HCC.
Collapse
|
Minireviews |
4 |
1 |
9
|
Wang WA, Dong P, Zhang A, Wang WJ, Guo CA, Wang J, Liu HB. Artificial intelligence: A new budding star in gastric cancer. Artif Intell Gastroenterol 2020; 1:60-70. [DOI: 10.35712/aig.v1.i4.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/01/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
The pursuit of health has always been the driving force for the advancement of human society, and social development will be profoundly affected by every breakthrough in the medical industry. With the arrival of the information technology revolution era, artificial intelligence (AI) technology has been rapidly developed. AI has been combined with medicine but it has been less studied with gastric cancer (GC). AI is a new budding star in GC, and its contribution to GC is mainly focused on diagnosis and treatment. For early GC, AI’s impact is not only reflected in its high accuracy but also its ability to quickly train primary doctors, improve the diagnosis rate of early GC, and reduce missed cases. At the same time, it will also reduce the possibility of missed diagnosis of advanced GC in cardia. Furthermore, it is used to assist imaging doctors to determine the location of lymph nodes and, more importantly, it can more effectively judge the lymph node metastasis of GC, which is conducive to the prognosis of patients. In surgical treatment of GC, it also has great potential. Robotic surgery is the latest technology in GC surgery. It is a bright star for minimally invasive treatment of GC, and together with laparoscopic surgery, it has become a common treatment for GC. Through machine learning, robotic systems can reduce operator errors and trauma of patients, and can predict the prognosis of GC patients. Throughout the centuries of development of surgery, the history gradually changes from traumatic to minimally invasive. In the future, AI will help GC patients reduce surgical trauma and further improve the efficiency of minimally invasive treatment of GC.
Collapse
|
Minireviews |
5 |
1 |
10
|
Yuan Q, Zhao WL, Qin B. Big data and variceal rebleeding prediction in cirrhosis patients. Artif Intell Gastroenterol 2023; 4:1-9. [DOI: 10.35712/aig.v4.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/08/2023] [Imported: 07/06/2023] Open
Abstract
Big data has convincing merits in developing risk stratification strategies for diseases. The 6 “V”s of big data, namely, volume, velocity, variety, veracity, value, and variability, have shown promise for real-world scenarios. Big data can be applied to analyze health data and advance research in preclinical biology, medicine, and especially disease initiation, development, and control. A study design comprises data selection, inclusion and exclusion criteria, standard confirmation and cohort establishment, follow-up strategy, and events of interest. The development and efficiency verification of a prognosis model consists of deciding the data source, taking previous models as references while selecting candidate predictors, assessing model performance, choosing appropriate statistical methods, and model optimization. The model should be able to inform disease development and outcomes, such as predicting variceal rebleeding in patients with cirrhosis. Our work has merits beyond those of other colleagues with respect to cirrhosis patient screening and data source regarding variceal bleeding.
Collapse
|
Minireviews |
2 |
1 |
11
|
Chang KP, Lin SH, Chu YW. Artificial intelligence in gastrointestinal radiology: A review with special focus on recent development of magnetic resonance and computed tomography. Artif Intell Gastroenterol 2021; 2:27-41. [DOI: 10.35712/aig.v2.i2.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI), particularly the deep learning technology, have been proven influential to radiology in the recent decade. Its ability in image classification, segmentation, detection and reconstruction tasks have substantially assisted diagnostic radiology, and has even been viewed as having the potential to perform better than radiologists in some tasks. Gastrointestinal radiology, an important subspecialty dealing with complex anatomy and various modalities including endoscopy, have especially attracted the attention of AI researchers and engineers worldwide. Consequently, recently many tools have been developed for lesion detection and image construction in gastrointestinal radiology, particularly in the fields for which public databases are available, such as diagnostic abdominal magnetic resonance imaging (MRI) and computed tomography (CT). This review will provide a framework for understanding recent advancements of AI in gastrointestinal radiology, with a special focus on hepatic and pancreatobiliary diagnostic radiology with MRI and CT. For fields where AI is less developed, this review will also explain the difficulty in AI model training and possible strategies to overcome the technical issues. The authors’ insights of possible future development will be addressed in the last section.
Collapse
|
Review |
4 |
1 |
12
|
Yakar M, Etiz D. Artificial intelligence in rectal cancer. Artif Intell Gastroenterol 2021; 2:10-26. [DOI: 10.35712/aig.v2.i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Accurate and rapid diagnosis is essential for correct treatment in rectal cancer. Determining the optimal treatment plan for a patient with rectal cancer is a complex process, and the oncological results and toxicity are not the same in every patient with the same treatment at the same stage. In recent years, the increasing interest in artificial intelligence in all fields of science has also led to the development of innovative tools in oncology. Artificial intelligence studies have increased in many steps from diagnosis to follow-up in rectal cancer. It is thought that artificial intelligence will provide convenience in many ways from personalized treatment to reducing the workload of the physician. Prediction algorithms can be standardized by sharing data between centers, diversifying data, and creating big data.
Collapse
|
Review |
4 |
1 |
13
|
Mucenic M, de Mello Brandão AB, Marroni CA. Artificial intelligence and human liver allocation: Potential benefits and ethical implications. Artif Intell Gastroenterol 2022; 3:21-27. [DOI: 10.35712/aig.v3.i1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Since its implementation almost two decades ago, the urgency allocation policy has improved the survival of patients on the waiting list for liver transplantation worldwide. The Model for End-Stage Liver Disease score is widely used to predict waiting list mortality. Due to some limitations related to its use, there is an active investigation to develop other prognostic scores. Liver allocation (LA) entails complex decision-making, and grafts are occasionally not directed to the recipients who are more likely to survive. Prognostic scores have, thus far, failed to predict post-operatory survival. Furthermore, the increasing use of marginal donors is associated with worse outcomes. Adequate donor-recipient pairing could help avoid retransplantation or futile procedures and reduce postoperative complications, mortality, hospitalization time, and costs. Artificial intelligence has applications in several medical fields. Machine learning algorithms (MLAs) use large amounts of data to detect unforeseen patterns and complex interactions between variables. Artificial neural networks and decision trees were the most common forms of MLA tested on LA. Some researchers have shown them to be superior for predicting waiting list mortality and graft failure than conventional statistical methods. These promising techniques are increasingly being considered for implementation.
Collapse
|
Minireviews |
3 |
1 |
14
|
Ghosh NK, Kumar A. Colorectal cancer: Artificial intelligence and its role in surgical decision making. Artif Intell Gastroenterol 2022; 3:36-45. [DOI: 10.35712/aig.v3.i2.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Despite several advances in the oncological management of colorectal cancer (CRC), there still remains a lacuna in the treatment strategy, which differs from center to center and on the philosophy of the treating clinician that is not without bias. Personalized treatment is essential for the treatment of CRC to achieve better long-term outcomes and to reduce morbidity. Surgery has an important role to play in the treatment. Surgical treatment of CRC is decided based on clinical parameters and investigations and hence likely to have judgmental errors. Artificial intelligence has been reported to be useful in the surveillance, diagnosis, treatment, and follow-up with accuracy in several malignancies. However, it is still evolving and yet to be established in surgical decision making in CRC. It is not only useful preoperatively but also intraoperatively. Artificial intelligence helps to rectify the human surgical decision when clinical data and radiological and laboratory parameters are fed into the computer and may guide correct surgical treatment.
Collapse
|
Minireviews |
3 |
1 |
15
|
Hardy NP, Dalli J, Mac Aonghusa P, Neary PM, Cahill RA. Biophysics inspired artificial intelligence for colorectal cancer characterization. Artif Intell Gastroenterol 2021; 2:77-84. [DOI: 10.35712/aig.v2.i3.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/21/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last ten years artificial intelligence (AI) methods have begun to pervade even the most common everyday tasks such as email filtering and mobile banking. While the necessary quality and safety standards may have understandably slowed the introduction of AI to healthcare when compared with other industries, we are now beginning to see AI methods becoming more available to the clinician in select settings. In this paper we discuss current AI methods as they pertain to gastrointestinal procedures including both gastroenterology and gastrointestinal surgery. The current state of the art for polyp detection in gastroenterology is explored with a particular focus on deep leaning, its strengths, as well as some of the factors that may limit its application to the field of surgery. The use of biophysics (utilizing physics to study and explain biological phenomena) in combination with more traditional machine learning is also discussed and proposed as an alternative approach that may solve some of the challenges associated with deep learning. Past and present uses of biophysics inspired AI methods, such as the use of fluorescence guided surgery to aid in the characterization of colorectal lesions, are used to illustrate the role biophysics-inspired AI can play in the exciting future of the gastrointestinal proceduralist.
Collapse
|
Minireviews |
4 |
1 |
16
|
Carteri RB, Grellert M, Borba DL, Marroni CA, Fernandes SA. Machine learning approaches using blood biomarkers in non-alcoholic fatty liver diseases. Artif Intell Gastroenterol 2022; 3:80-87. [DOI: 10.35712/aig.v3.i3.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is an important public health concern. Early diagnosis of NAFLD and potential progression to nonalcoholic steatohepatitis (NASH), could reduce the further advance of the disease, and improve patient outcomes. Aiming to support patient diagnostic and predict specific outcomes, the interest in artificial intelligence (AI) methods in hepatology has dramatically increased, especially with the application of less-invasive biomarkers. In this review, our objective was twofold: Firstly, we presented the most frequent blood biomarkers in NAFLD and NASH and secondly, we reviewed recent literature regarding the use of machine learning (ML) methods to predict NAFLD and NASH in large cohorts. Strikingly, these studies provide insights into ML application in NAFLD patients' prognostics and ranked blood biomarkers are able to provide a recognizable signature allowing cost-effective NAFLD prediction and also differentiating NASH patients. Future studies should consider the limitations in the current literature and expand the application of these algorithms in different populations, fortifying an already promising tool in medical science.
Collapse
|
Minireviews |
3 |
1 |
17
|
Ortiz GX, Ulbrich AHDPDS, Lenhart G, dos Santos HDP, Schwambach KH, Becker MW, Blatt CR. Drug-induced liver injury and COVID-19: Use of artificial intelligence and the updated Roussel Uclaf Causality Assessment Method in clinical practice. Artif Intell Gastroenterol 2023; 4:36-47. [DOI: 10.35712/aig.v4.i2.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023] [Imported: 09/07/2023] Open
Abstract
BACKGROUND Liver injury is a relevant condition in coronavirus disease 2019 (COVID-19) inpatients. Pathophysiology varies from direct infection by virus, systemic inflammation or drug-induced adverse reaction (DILI). DILI detection and monitoring is clinically relevant, as it may contribute to poor prognosis, prolonged hospitalization and increase indirect healthcare costs. Artificial Intelligence (AI) applied in data mining of electronic medical records combining abnormal liver tests, keyword searching tools, and risk factors analysis is a relevant opportunity for early DILI detection by automated algorithms.
AIM To describe DILI cases in COVID-19 inpatients detected from data mining in electronic medical records (EMR) using AI and the updated Roussel Uclaf Causality Assessment Method (RUCAM).
METHODS The study was conducted in March 2021 in a hospital in southern Brazil. The NoHarm© system uses AI to support decision making in clinical pharmacy. Hospital admissions were 100523 during this period, of which 478 met the inclusion criteria. From these, 290 inpatients were excluded due to alternative causes of liver injury and/or due to not having COVID-19. We manually reviewed the EMR of 188 patients for DILI investigation. Absence of clinical information excluded most eligible patients. The DILI assessment causality was possible via the updated RUCAM in 17 patients.
RESULTS Mean patient age was 53 years (SD ± 18.37; range 22-83), most were male (70%), and admitted to the non-intensive care unit sector (65%). Liver injury pattern was mainly mixed, mean time to normalization of liver markers was 10 d, and mean length of hospitalization was 20.5 d (SD ± 16; range 7-70). Almost all patients recovered from DILI and one patient died of multiple organ failure. There were 31 suspected drugs with the following RUCAM score: Possible (n = 24), probable (n = 5), and unlikely (n = 2). DILI agents in our study were ivermectin, bicalutamide, linezolid, azithromycin, ceftriaxone, amoxicillin-clavulanate, tocilizumab, piperacillin-tazobactam, and albendazole. Lack of essential clinical information excluded most patients. Although rare, DILI is a relevant clinical condition in COVID-19 patients and may contribute to poor prognostics.
CONCLUSION The incidence of DILI in COVID-19 inpatients is rare and the absence of relevant clinical information on EMR may underestimate DILI rates. Prospects involve creation and validation of alerts for risk factors in all DILI patients based on RUCAM assessment causality, alterations of liver biomarkers and AI and machine learning.
Collapse
|
Observational Study |
2 |
1 |
18
|
Juneja D, Gupta A, Singh O. Artificial intelligence in critically ill diabetic patients: current status and future prospects. Artif Intell Gastroenterol 2022; 3:66-79. [DOI: 10.35712/aig.v3.i2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Recent years have witnessed increasing numbers of artificial intelligence (AI) based applications and devices being tested and approved for medical care. Diabetes is arguably the most common chronic disorder worldwide and AI is now being used for making an early diagnosis, to predict and diagnose early complications, increase adherence to therapy, and even motivate patients to manage diabetes and maintain glycemic control. However, these AI applications have largely been tested in non-critically ill patients and aid in managing chronic problems. Intensive care units (ICUs) have a dynamic environment generating huge data, which AI can extract and organize simultaneously, thus analysing many variables for diagnostic and/or therapeutic purposes in order to predict outcomes of interest. Even non-diabetic ICU patients are at risk of developing hypo or hyperglycemia, complicating their ICU course and affecting outcomes. In addition, to maintain glycemic control frequent blood sampling and insulin dose adjustments are required, increasing nursing workload and chances of error. AI has the potential to improve glycemic control while reducing the nursing workload and errors. Continuous glucose monitoring (CGM) devices, which are Food and Drug Administration (FDA) approved for use in non-critically ill patients, are now being recommended for use in specific ICU populations with increased accuracy. AI based devices including artificial pancreas and CGM regulated insulin infusion system have shown promise as comprehensive glycemic control solutions in critically ill patients. Even though many of these AI applications have shown potential, these devices need to be tested in larger number of ICU patients, have wider availability, show favorable cost-benefit ratio and be amenable for easy integration into the existing healthcare systems, before they become acceptable to ICU physicians for routine use.
Collapse
|
Minireviews |
3 |
1 |
19
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
|
Review |
3 |
1 |
20
|
Fernandes SA, Rossoni C, Koch VW, Imbrizi M, Evangelista-Poderoso R, Pinto LP, Magro DO. Phase angle through electrical bioimpedance as a predictor of cellularity in inflammatory bowel disease. Artif Intell Gastroenterol 2021; 2:111-123. [DOI: 10.35712/aig.v2.i4.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
It is estimated in Western industrialized countries that inflammatory bowel disease (IBD) has a prevalence of 1 for every 200 inhabitants. In the past, the fat mass disproportionate increase in relation to the fat-free mass was considered uncommon in patients with IBD, due to the observation of the disease being more common with weight loss and malnutrition. However, more in-depth investigations demonstrate that the fat/lean mass disproportion stands out both in prevalence in patients with new diagnoses of ulcerative colitis or Crohn's disease as well as a factor of poor prognosis to the natural evolution of the disease or to the therapeutic response. Another important aspect associated with obesity in IBD is the increased risk of drug clearance [including anti-tumor necrosis factor (TNF) and anti-integrin agents], resulting in short half-life and low trough drug concentrations, since the levels of TNF secreted by adipocytes sequester anti-TNF agents, which could result in suboptimal response to biologics. In view of these characteristic aspects of the inflammatory process of IBD, the identification of cellular functioning is necessary, which can be associated with the staging of the underlying disease, biochemical parameters, and body composition, helping as an indicator for a more accurate clinical and nutritional conduct.
Collapse
|
Minireviews |
4 |
1 |
21
|
Simsek C, Lee LS. Machine learning in endoscopic ultrasonography and the pancreas: The new frontier? Artif Intell Gastroenterol 2022; 3:54-65. [DOI: 10.35712/aig.v3.i2.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic diseases have a substantial burden on society which is predicted to increase further over the next decades. Endoscopic ultrasonography (EUS) remains the best available diagnostic method to assess the pancreas, however, there remains room for improvement. Artificial intelligence (AI) approaches have been adopted to assess pancreatic diseases for over a decade, but this methodology has recently reached a new era with the innovative machine learning algorithms which can process, recognize, and label endosonographic images. Our review provides a targeted summary of AI in EUS for pancreatic diseases. Included studies cover a wide spectrum of pancreatic diseases from pancreatic cystic lesions to pancreatic masses and diagnosis of pancreatic cancer, chronic pancreatitis, and autoimmune pancreatitis. For these, AI models seemed highly successful, although the results should be evaluated carefully as the tasks, datasets and models were greatly heterogenous. In addition to use in diagnostics, AI was also tested as a procedural real-time assistant for EUS-guided biopsy as well as recognition of standard pancreatic stations and labeling anatomical landmarks during routine examination. Studies thus far have suggested that the adoption of AI in pancreatic EUS is highly promising and further opportunities should be explored in the field.
Collapse
|
Minireviews |
3 |
1 |
22
|
Bou Jaoude J, Al Bacha R, Abboud B. Will artificial intelligence reach any limit in gastroenterology? Artif Intell Gastroenterol 2024; 5:91336. [DOI: 10.35712/aig.v5.i2.91336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 08/08/2024] [Imported: 08/08/2024] Open
Abstract
Endoscopy is the cornerstone in the management of digestive diseases. Over the last few decades, technology has played an important role in the development of this field, helping endoscopists in better detecting and characterizing luminal lesions. However, despite ongoing advancements in endoscopic technology, the incidence of missed pre-neoplastic and neoplastic lesions remains high due to the operator-dependent nature of endoscopy and the challenging learning curve associated with new technologies. Artificial intelligence (AI), an operator-independent field, could be an invaluable solution. AI can serve as a “second observer”, enhancing the performance of endoscopists in detecting and characterizing luminal lesions. By utilizing deep learning (DL), an innovation within machine learning, AI automatically extracts input features from targeted endoscopic images. DL encompasses both computer-aided detection and computer-aided diagnosis, assisting endoscopists in reducing missed detection rates and predicting the histology of luminal digestive lesions. AI applications in clinical gastrointestinal diseases are continuously expanding and evolving the entire digestive tract. In all published studies, real-time AI assists endoscopists in improving the performance of non-expert gastroenterologists, bringing it to a level comparable to that of experts. The development of DL may be affected by selection biases. Studies have utilized different AI-assisted models, which are heterogeneous. In the future, algorithms need validation through large, randomized trials. Theoretically, AI has no limit to assist endoscopists in increasing the accuracy and the quality of endoscopic exams. However, practically, we still have a long way to go before standardizing our AI models to be accepted and applied by all gastroenterologists.
Collapse
|
Editorial |
1 |
|
23
|
Mubarak M, Rashid R, Sapna F, Shakeel S. Expanding role and scope of artificial intelligence in the field of gastrointestinal pathology. Artif Intell Gastroenterol 2024; 5:91550. [DOI: 10.35712/aig.v5.i2.91550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/08/2024] [Imported: 08/08/2024] Open
Abstract
Digital pathology (DP) and its subsidiaries including artificial intelligence (AI) are rapidly making inroads into the area of diagnostic anatomic pathology (AP) including gastrointestinal (GI) pathology. It is poised to revolutionize the field of diagnostic AP. Historically, AP has been slow to adopt digital technology, but this is changing rapidly, with many centers worldwide transitioning to DP. Coupled with advanced techniques of AI such as deep learning and machine learning, DP is likely to transform histopathology from a subjective field to an objective, efficient, and transparent discipline. AI is increasingly integrated into GI pathology, offering numerous advancements and improvements in overall diagnostic accuracy, efficiency, and patient care. Specifically, AI in GI pathology enhances diagnostic accuracy, streamlines workflows, provides predictive insights, integrates multimodal data, supports research, and aids in education and training, ultimately improving patient care and outcomes. This review summarized the latest developments in the role and scope of AI in AP with a focus on GI pathology. The main aim was to provide updates and create awareness among the pathology community.
Collapse
|
Minireviews |
1 |
|
24
|
Qie YY, Xue XF, Wang XG, Dang SC. Application of artificial intelligence in the diagnosis and prediction of gastric cancer. Artif Intell Gastroenterol 2020; 1:12-18. [DOI: 10.35712/aig.v1.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer deaths worldwide. Despite the great progress in the diagnosis and treatment of gastric cancer, the incidence and mortality rate of the disease in China are still relatively high. The high mortality rate of gastric cancer may be related to its low early diagnosis rate and poor prognosis. Much research has been focused on improving the sensitivity and specificity of diagnostic tools for gastric cancer, in order to more accurately predict the survival times of gastric cancer patients. Taking appropriate treatment measures is the key to reducing the mortality rate of gastric cancer. In the past decade, artificial intelligence technology has been applied to various fields of medicine as a branch of computer science. This article discusses the application and research status of artificial intelligence in gastric cancer diagnosis and survival prediction.
Collapse
|
Minireviews |
5 |
|
25
|
Gunasekharan A, Jiang J, Nickerson A, Jalil S, Mumtaz K. Application of artificial intelligence in non-alcoholic fatty liver disease and viral hepatitis. Artif Intell Gastroenterol 2022; 3:46-53. [DOI: 10.35712/aig.v3.i2.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and chronic viral hepatitis are among the most significant causes of liver-related mortality worldwide. It is critical to develop reliable methods of predicting progression to fibrosis, cirrhosis, and decompensated liver disease. Current screening methods such as biopsy and transient elastography are limited by invasiveness and observer variation in analysis of data. Artificial intelligence (AI) provides a unique opportunity to more accurately diagnose NAFLD and viral hepatitis, and to identify patients at high risk for disease progression. We conducted a literature review of existing evidence for AI in NAFLD and viral hepatitis. Thirteen articles on AI in NAFLD and 14 on viral hepatitis were included in our analysis. We found that machine learning algorithms were comparable in accuracy to current methods for diagnosis and fibrosis prediction (MELD-Na score, liver biopsy, FIB-4 score, and biomarkers). They also reliably predicted hepatitis C treatment failure and hepatic encephalopathy, for which there are currently no established prediction tools. These studies show that AI could be a helpful adjunct to existing techniques for diagnosing, monitoring, and treating both NAFLD and viral hepatitis.
Collapse
|
Minireviews |
3 |
|