1
|
Ramai D, Collins B, Ofosu A, Mohan BP, Jagannath S, Tabibian JH, Girotra M, Barakat MT. Deep Learning Methods in the Imaging of Hepatic and Pancreaticobiliary Diseases. J Clin Gastroenterol 2025; 59:405-411. [PMID: 40193287 DOI: 10.1097/mcg.0000000000002125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Reports indicate a growing role for artificial intelligence (AI) in the evaluation of pancreaticobiliary and hepatic conditions. A key focus is differentiating between benign and malignant lesions, which is crucial for treatment decisions. AI improves diagnostic accuracy through high sensitivity and specificity, while CNN algorithms enhance image analysis and reduce variability. These advancements aim to match the accuracy of pathologists in cancer detection. In addition, AI aids in identifying diagnostic markers, as early detection is essential. This article reviews the applications of machine learning and deep learning in the diagnosis of hepatic and pancreaticobiliary diseases. Although the use of AI in these specialized areas of gastroenterology is primarily confined to experimental trials, current models demonstrate significant potential for enhancing the detection, evaluation, and treatment planning of hepatic and pancreaticobiliary conditions.
Collapse
Affiliation(s)
- Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah, Salt Lake City, UT
| | - Brendan Collins
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH
| | - Andrew Ofosu
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH
| | - Babu P Mohan
- Division of Gastroenterology and Hepatology, University of Utah, Salt Lake City, UT
| | - Soumya Jagannath
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - James H Tabibian
- Division of Gastroenterology, Olive View-UCLA Medical Center, Sylmar
- David Geffen School of Medicine at UCLA, Los Angeles
| | - Mohit Girotra
- Digestive Health Institute, Swedish Medical Center, Seattle, WA
| | | |
Collapse
|
2
|
Zhang L, Diao B, Fan Z, Zhan H. Radiomics for Differentiating Pancreatic Mucinous Cystic Neoplasm from Serous Cystic Neoplasm: Systematic Review and Meta-Analysis. Acad Radiol 2025; 32:2679-2688. [PMID: 39648097 DOI: 10.1016/j.acra.2024.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND As pancreatic cystic neoplasms (PCN) differ in current standard of care, and these treatments can affect quality of life to varying degrees, a definitive preoperative diagnosis must be reliable. Current diagnostic approaches, specifically traditional cross-sectional imaging techniques, face certain limitations. But radiomics has been shown to have high diagnostic accuracy across a range of diseases. Objective to conduct a comprehensive review of the literature on the use of radiomics to differentiate Mucinous Cystic Neoplasm (MCN) from Serous Cystic Neoplasm (SCN). METHODS This study was comprehensively searched in Pubmed, Scopus and Web of Science databases for meta-analysis of studies that used radiomics to distinguish MCN from SCN. Risk of bias was assessed using the diagnostic accuracy study quality assessment method and combined with sensitivity, specificity, diagnostic odds ratio, and summary receiver operating characteristic (SROC)curve analysis. RESULTS A total of 884 patients from 8 studies were included in this analysis, including 365 MCN and 519 SCN. The Meta-analysis found that radiomics identified MCN and SCN with high sensitivity and specificity, with combined sensitivity and specificity of 0.84(0.82-0.87) and 0.82(0.79-0.84). The positive likelihood ratio (PLR) and the negative likelihood ratio (NLR) are 5.61(3.72, 8.47) and 0.14(0.09-0.26). In addition, the area under the SROC curve (AUC) was drawn at 0.93. No significant risk of publication bias was detected through the funnel plot analysis. The performances of feature extraction from the volume of interest (VOI) or Using AI classifier in the radiomics models were superior to those of protocols employing region of interest (ROI) or absence of AI classifier. CONCLUSION This meta-analysis demonstrates that radiomics exhibits high sensitivity and specificity in distinguishing between MCN and SCN, and has the potential to become a reliable diagnostic tool for their identification.
Collapse
Affiliation(s)
- Longjia Zhang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (L.Z., B.D., Z.F., H.Z.)
| | - Boyu Diao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (L.Z., B.D., Z.F., H.Z.)
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (L.Z., B.D., Z.F., H.Z.)
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China (L.Z., B.D., Z.F., H.Z.).
| |
Collapse
|
3
|
Seyithanoglu D, Durak G, Keles E, Medetalibeyoglu A, Hong Z, Zhang Z, Taktak YB, Cebeci T, Tiwari P, Velichko YS, Yazici C, Tirkes T, Miller FH, Keswani RN, Spampinato C, Wallace MB, Bagci U. Advances for Managing Pancreatic Cystic Lesions: Integrating Imaging and AI Innovations. Cancers (Basel) 2024; 16:4268. [PMID: 39766167 PMCID: PMC11674829 DOI: 10.3390/cancers16244268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Pancreatic cystic lesions (PCLs) represent a spectrum of non-neoplasms and neoplasms with varying malignant potential, posing significant challenges in diagnosis and management. While some PCLs are precursors to pancreatic cancer, others remain benign, necessitating accurate differentiation for optimal patient care. Conventional approaches to PCL management rely heavily on radiographic imaging, and endoscopic ultrasound (EUS) guided fine-needle aspiration (FNA), coupled with clinical and biochemical data. However, the observer-dependent nature of image interpretation and the complex morphology of PCLs can lead to diagnostic uncertainty and variability in patient management strategies. This review critically evaluates current PCL diagnosis and surveillance practices, showing features of the different lesions and highlighting the potential limitations of conventional methods. We then explore the potential of artificial intelligence (AI) to transform PCL management. AI-driven strategies, including deep learning algorithms for automated pancreas and lesion segmentation, and radiomics for analyzing heterogeneity, can improve diagnostic accuracy and risk stratification. These advanced techniques can provide more objective and reproducible assessments, aiding clinicians in decision-making regarding follow-up intervals and surgical interventions. Early results suggest that AI-driven methods can significantly improve patient outcomes by enabling earlier detection of high-risk lesions and reducing unnecessary procedures for benign cysts. Finally, this review emphasizes that AI-driven approaches could potentially reshape the landscape of PCL management, ultimately leading to improved pancreatic cancer prevention.
Collapse
Affiliation(s)
- Deniz Seyithanoglu
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Gorkem Durak
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Elif Keles
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Alpay Medetalibeyoglu
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Ziliang Hong
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Zheyuan Zhang
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Yavuz B. Taktak
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Timurhan Cebeci
- Istanbul Faculty of Medicine, Istanbul University, Istanbul 38000, Turkey; (Y.B.T.); (T.C.)
| | - Pallavi Tiwari
- Department of Radiology, BME, University of Wisconsin-Madison, Madison, WI 53707, USA;
- William S. Middleton Memorial Veterans Affairs (VA) Healthcare, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Yuri S. Velichko
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Cemal Yazici
- Department of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60611, USA;
| | - Temel Tirkes
- Department of Radiology, Indiana University, Indianapolis, IN 46202, USA;
| | - Frank H. Miller
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Rajesh N. Keswani
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| | - Concetto Spampinato
- Department of Electrical, Electronics and Computer Engineering, University of Catania, 95124 Catania, Italy;
| | - Michael B. Wallace
- Department of Gastroenterology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Ulas Bagci
- Machine and Hybrid Intelligence Lab, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (D.S.); (G.D.); (E.K.); (A.M.); (Z.H.); (Z.Z.); (Y.S.V.); (F.H.M.); (R.N.K.)
| |
Collapse
|
4
|
Moris D, Liapis I, Gupta P, Ziogas IA, Karachaliou GS, Dimitrokallis N, Nguyen B, Radkani P. An Overview for Clinicians on Intraductal Papillary Mucinous Neoplasms (IPMNs) of the Pancreas. Cancers (Basel) 2024; 16:3825. [PMID: 39594780 PMCID: PMC11593033 DOI: 10.3390/cancers16223825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Currently, there is no reliable method of discerning between low-risk and high-risk intraductal papillary mucinous neoplasms (IPMNs). Operative resection is utilized in an effort to resect those lesions with high-grade dysplasia (HGD) prior to the development of invasive disease. The current guidelines recommend resection for IPMN that involve the main pancreatic duct. Resecting lesions with HGD before their progression to invasive disease and the avoidance of resection in those patients with low-grade dysplasia is the optimal clinical scenario. Therefore, the importance of developing preoperative models able to discern HGD in IPMN patients cannot be overstated. Low-risk patients should be managed with nonsurgical treatment options (typically MRI surveillance), while high-risk patients would undergo resection, hopefully prior to the formation of invasive disease. Current research is evolving in multiple directions. First, there is an ongoing effort to identify reliable markers for predicting malignant transformation of IPMN, mainly focusing on genomic and transcriptomic data from blood, tissue, and cystic fluid. Also, multimodal models of combining biomarkers with clinical and radiographic data seem promising for providing robust and accurate answers of risk levels for IPMN patients.
Collapse
Affiliation(s)
- Dimitrios Moris
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Ioannis Liapis
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Piyush Gupta
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Ioannis A. Ziogas
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Georgia-Sofia Karachaliou
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| | - Nikolaos Dimitrokallis
- 1st Department of Surgery & Organ Transplant Unit, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Brian Nguyen
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| | - Pejman Radkani
- MedStar Georgetown Transplant Institute, Washington, DC 20007, USA; (P.G.); (B.N.); (P.R.)
| |
Collapse
|
5
|
Bush N, Khashab M, Akshintala VS. Current and Emerging Applications of Artificial Intelligence (AI) in the Management of Pancreatobiliary (PB) disorders. Curr Gastroenterol Rep 2024; 26:304-309. [PMID: 39134866 DOI: 10.1007/s11894-024-00942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW: In this review, we aim to summarize the existing literature and future directions on the use of artificial intelligence (AI) for the diagnosis and treatment of PB (pancreaticobiliary) disorders. RECENT FINDINGS: AI models have been developed to aid in the diagnosis and management of PB disorders such as pancreatic adenocarcinoma (PDAC), pancreatic neuroendocrine tumors (pNETs), acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, choledocholithiasis, indeterminate biliary strictures, cholangiocarcinoma and endoscopic procedures such as ERCP, EUS, and cholangioscopy. Recent studies have integrated radiological, endoscopic and pathological data to develop models to aid in better detection and prognostication of these disorders. AI is an indispensable proponent in the future practice of medicine. It has been extensively studied and approved for use in the detection of colonic polyps. AI models based on clinical, laboratory, and radiomics have been developed to aid in the diagnosis and management of various PB disorders and its application is ever expanding. Despite promising results, these AI-based models need further external validation to be clinically applicable.
Collapse
Affiliation(s)
- Nikhil Bush
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mouen Khashab
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Venkata S Akshintala
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Lan T, Kuang S, Liang P, Ning C, Li Q, Wang L, Wang Y, Lin Z, Hu H, Yang L, Li J, Liu J, Li Y, Wu F, Chai H, Song X, Huang Y, Duan X, Zeng D, Li J, Cao H. MRI-based deep learning and radiomics for prediction of occult cervical lymph node metastasis and prognosis in early-stage oral and oropharyngeal squamous cell carcinoma: a diagnostic study. Int J Surg 2024; 110:4648-4659. [PMID: 38729119 PMCID: PMC11325978 DOI: 10.1097/js9.0000000000001578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION The incidence of occult cervical lymph node metastases (OCLNM) is reported to be 20-30% in early-stage oral cancer and oropharyngeal cancer. There is a lack of an accurate diagnostic method to predict occult lymph node metastasis and to help surgeons make precise treatment decisions. AIM To construct and evaluate a preoperative diagnostic method to predict OCLNM in early-stage oral and oropharyngeal squamous cell carcinoma (OC and OP SCC) based on deep learning features (DLFs) and radiomics features. METHODS A total of 319 patients diagnosed with early-stage OC or OP SCC were retrospectively enrolled and divided into training, test and external validation sets. Traditional radiomics features and DLFs were extracted from their MRI images. The least absolute shrinkage and selection operator (LASSO) analysis was employed to identify the most valuable features. Prediction models for OCLNM were developed using radiomics features and DLFs. The effectiveness of the models and their clinical applicability were evaluated using the area under the curve (AUC), decision curve analysis (DCA), and survival analysis. RESULTS Seventeen prediction models were constructed. The Resnet50 deep learning (DL) model based on the combination of radiomics and DL features achieves the optimal performance, with AUC values of 0.928 (95% CI: 0.881-0.975), 0.878 (95% CI: 0.766-0.990), 0.796 (95% CI: 0.666-0.927), and 0.834 (95% CI: 0.721-0.947) in the training, test, external validation set1, and external validation set2, respectively. Moreover, the Resnet50 model has great prediction value of prognosis in patients with early-stage OC and OP SCC. CONCLUSION The proposed MRI-based Resnet50 DL model demonstrated high capability in diagnosis of OCLNM and prognosis prediction in the early-stage OC and OP SCC. The Resnet50 model could help refine the clinical diagnosis and treatment of the early-stage OC and OP SCC.
Collapse
Affiliation(s)
- Tianjun Lan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Shijia Kuang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Peisheng Liang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou
| | - Chenglin Ning
- School of Biomedical Engineering, Southern Medical University, Guangzhou
| | - Qunxing Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Liansheng Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Youyuan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Zhaoyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Lingjie Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Jintao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Jingkang Liu
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Yanyan Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Hua Chai
- School of Mathematics and Big Data, Foshan University, Foshan, Guangdong
| | - Xinpeng Song
- School of Mathematics and Big Data, Foshan University, Foshan, Guangdong
| | - Yiqian Huang
- School of Mathematics and Big Data, Foshan University, Foshan, Guangdong
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Haotian Cao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| |
Collapse
|
7
|
Lou F, Li M, Chu T, Duan H, Liu H, Zhang J, Duan K, Liu H, Wei F. Comprehensive analysis of clinical data and radiomic features from contrast enhanced CT for differentiating benign and malignant pancreatic intraductal papillary mucinous neoplasms. Sci Rep 2024; 14:17218. [PMID: 39060387 PMCID: PMC11282090 DOI: 10.1038/s41598-024-68067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The primary aim of this investigation was to leverage radiomics features derived from contrast-enhanced abdominal computed tomography (CT) scans to devise a predictive model to discern the benign and malignant nature of intraductal papillary mucinous neoplasms (IPMNs). Radiomic signatures were meticulously crafted to delineate benign from malignant IPMNs by extracting pertinent features from contrast-enhanced CT images within a designated training cohort (n = 84). Subsequent validation was conducted with data from an independent test cohort (n = 37). The discriminative ability of the model was quantitatively evaluated through receiver operating characteristic (ROC) curve analysis, with the integration of carefully selected clinical features to improve the comparative analysis. Arterial-phase images were utilized to construct a model comprising 8 features for distinguishing between benign and malignant cases. The model achieved an accuracy of 0.891 [95% confidence interval (95% CI), 0.816-0.996] in the cross-validation set and 0.553 (95% CI 0.360-0.745) in the test set. Conversely, employing 9 features from the venous-phase resulted in a model with a cross-validation accuracy of 0.862 (95%CI 0.777-0.946) and a test set accuracy of 0.801 (95% CI 0.653-0.950).Integrating the identified clinical features with imaging features yielded a model with a cross-validation accuracy of 0.934 (95% CI 0.879-0.990) and a test set accuracy of 0.904 (95% CI 0.808-0.999), thereby further improving its discriminatory ability. Our findings distinctly illustrate that venous-phase radiomics features eclipse arterial-phase radiomic features in terms of predictive accuracy regarding the nature of IPMNs. Furthermore, the synthesis and meticulous screening of clinical features with radiomic data significantly increased the diagnostic efficacy of our model, underscoring the pivotal importance of a comprehensive and integrated approach for accurate risk stratification in IPMN management.
Collapse
Affiliation(s)
- Fengxiang Lou
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China
| | - Mingyang Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130000, China
| | - Tongjia Chu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China
| | - Haoyu Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China
| | - Huan Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China
| | - Kehang Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China
| | - Han Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
8
|
Kiemen AL, Dequiedt L, Shen Y, Zhu Y, Matos-Romero V, Forjaz A, Campbell K, Dhana W, Cornish T, Braxton AM, Wu P, Fishman EK, Wood LD, Wirtz D, Hruban RH. PanIN or IPMN? Redefining Lesion Size in 3 Dimensions. Am J Surg Pathol 2024; 48:839-845. [PMID: 38764379 PMCID: PMC11189722 DOI: 10.1097/pas.0000000000002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops from 2 known precursor lesions: a majority (∼85%) develops from pancreatic intraepithelial neoplasia (PanIN), and a minority develops from intraductal papillary mucinous neoplasms (IPMNs). Clinical classification of PanIN and IPMN relies on a combination of low-resolution, 3-dimensional (D) imaging (computed tomography, CT), and high-resolution, 2D imaging (histology). The definitions of PanIN and IPMN currently rely heavily on size. IPMNs are defined as macroscopic: generally >1.0 cm and visible in CT, and PanINs are defined as microscopic: generally <0.5 cm and not identifiable in CT. As 2D evaluation fails to take into account 3D structures, we hypothesized that this classification would fail in evaluation of high-resolution, 3D images. To characterize the size and prevalence of PanINs in 3D, 47 thick slabs of pancreas were harvested from grossly normal areas of pancreatic resections, excluding samples from individuals with a diagnosis of an IPMN. All patients but one underwent preoperative CT scans. Through construction of cellular resolution 3D maps, we identified >1400 ductal precursor lesions that met the 2D histologic size criteria of PanINs. We show that, when 3D space is considered, 25 of these lesions can be digitally sectioned to meet the 2D histologic size criterion of IPMN. Re-evaluation of the preoperative CT images of individuals found to possess these large precursor lesions showed that nearly half are visible on imaging. These findings demonstrate that the clinical classification of PanIN and IPMN fails in evaluation of high-resolution, 3D images, emphasizing the need for re-evaluation of classification guidelines that place significant weight on 2D assessment of 3D structures.
Collapse
Affiliation(s)
- Ashley L. Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lucie Dequiedt
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yu Shen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yutong Zhu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Valentina Matos-Romero
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Kurtis Campbell
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Will Dhana
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Toby Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Alicia M. Braxton
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC
| | - PeiHsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Elliot K. Fishman
- Department of Radiology and Radiological Science, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Laura D. Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Yuan Z, Li J, Yang L, Shi Y, Luo Y. The differential diagnosis of pancreatic cystic neoplasms with conventional ultrasound and contrast-enhanced ultrasound. Quant Imaging Med Surg 2024; 14:4304-4318. [PMID: 39022276 PMCID: PMC11250354 DOI: 10.21037/qims-24-154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 07/20/2024]
Abstract
Background Advances in imaging have improved the detection rate of pancreatic cystic neoplasms (PCNs), but clinical management varies depending on the pathological type of PCNs, and thus accurate differential diagnosis is of considerable clinical significance. We conducted this study to identify the clinical and sonographic features of PCNs with significance for differential diagnosis and to compare the diagnostic accuracy of conventional ultrasound and conventional ultrasound combined with contrast-enhanced ultrasound (CEUS) for PCNs. Methods From January 1, 2011, to December 31, 2022, a total of 100 patients with PCNs who underwent CEUS examination and were confirmed to have PCNs by postoperative pathology in West China Hospital of Sichuan University were included in this study. Results Of the clinical characteristics of PCNs, age and gender were found to be important differential diagnostic features. Moreover, communication of the lesion with the main pancreatic duct on conventional ultrasound and CEUS images was a critical feature in the differential diagnosis of intraductal papillary mucinous neoplasm (IPMN). The size of the lesion, the thickness of the cyst wall and the number of septa in conventional ultrasound images, the uniformity of the cyst wall thickness in CEUS images, and the enhancement pattern in the arterial phase were significant features for the differential diagnosis of serous cystic neoplasm (SCN). Cyst wall thickness and uniformity of the cyst wall thickness in conventional ultrasound images and cyst wall thickness and septa thickness in CEUS images were important features in the differential diagnosis of mucinous cystic neoplasm (MCN). The size and internal components of the lesion on conventional ultrasound images, internal components of the lesion, and the enhancement pattern in the arterial phase and rim enhancement on CEUS images were the key features in the differential diagnosis of solid pseudopapillary neoplasm (SPN). Conventional ultrasound combined with CEUS demonstrated significantly greater accuracy than did conventional ultrasound alone in the differential diagnosis of PCNs (66% vs. 79%; P=0.002). Conclusions PCN types differ in their clinical and ultrasound features. Conventional ultrasound combined with CEUS can better distinguish between different pathological types of PCNs than can conventional ultrasound alone.
Collapse
Affiliation(s)
- Zhiqiang Yuan
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawu Li
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Lulu Yang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Yingyu Shi
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Luo
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Mao KZ, Ma C, Song B. Radiomics advances in the evaluation of pancreatic cystic neoplasms. Heliyon 2024; 10:e25535. [PMID: 38333791 PMCID: PMC10850586 DOI: 10.1016/j.heliyon.2024.e25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
With the development of medical imaging, the detection rate of pancreatic cystic neoplasms (PCNs) has increased greatly. Serous cystic neoplasm, solid pseudopapillary neoplasm, intraductal papillary mucinous neoplasm and mucinous cystic neoplasm are the main subtypes of PCN, and their treatment options vary greatly due to the different biological behaviours of the tumours. Different from conventional qualitative imaging evaluation, radiomics is a promising noninvasive approach for the diagnosis, classification, and risk stratification of diseases involving high-throughput extraction of medical image features. We present a review of radiomics in the diagnosis of serous cystic neoplasm and mucinous cystic neoplasm, risk classification of intraductal papillary mucinous neoplasm and prediction of solid pseudopapillary neoplasm invasiveness compared to conventional imaging diagnosis. Radiomics is a promising tool in the field of medical imaging, providing a noninvasive, high-performance model for preoperative diagnosis and risk stratification of PCNs and improving prospects regarding management of these diseases. Further studies are warranted to investigate MRI image radiomics in connection with PCNs to improve the diagnosis and treatment strategies in the management of PCN patients.
Collapse
Affiliation(s)
- Kuan-Zheng Mao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Pancreatic Surgery, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| | - Chao Ma
- Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
- College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Bin Song
- Department of Pancreatic Surgery, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
11
|
Lee DY, Shin J, Kim S, Baek SE, Lee S, Son NH, Park MS. Radiomics model versus 2017 revised international consensus guidelines for predicting malignant intraductal papillary mucinous neoplasms. Eur Radiol 2024; 34:1222-1231. [PMID: 37615762 DOI: 10.1007/s00330-023-10158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES To evaluate a CT-based radiomics model for identifying malignant pancreatic intraductal papillary mucinous neoplasms (IPMNs) and compare its performance with the 2017 international consensus guidelines (ICGs). MATERIALS AND METHODS We retrospectively included 194 consecutive patients who underwent surgical resection of pancreatic IPMNs between January 2008 and December 2020. Surgical histopathology was the reference standard for diagnosing malignancy. Using radiomics features from preoperative contrast-enhanced CT, a radiomics model was built with the least absolute shrinkage and selection operator by a five-fold cross-validation. CT and MR images were independently reviewed based on the 2017 ICGs by two abdominal radiologists, and the performances of the 2017 ICGs and radiomics model were compared. The areas under the curve (AUCs) were compared using the DeLong method. RESULTS A total of 194 patients with pancreatic IPMNs (benign, 83 [43%]; malignant, 111 [57%]) were chronologically divided into training (n = 141; age, 65 ± 8.6 years; 88 males) and validation sets (n = 53; age, 66 ± 9.7 years; 31 males). There was no statistically significant difference in the diagnostic performance of the 2017 ICGs between CT and MRI (AUC, 0.71 vs. 0.71; p = 0.93) with excellent intermodality agreement (k = 0.86). In the validation set, the CT radiomics model had higher AUC (0.85 vs. 0.71; p = 0.038), specificity (84.6% vs. 61.5%; p = 0.041), and positive predictive value (84.0% vs. 66.7%; p = 0.044) than the 2017 ICGs. CONCLUSION The CT radiomics model exhibited better diagnostic performance than the 2017 ICGs in classifying malignant IPMNs. CLINICAL RELEVANCE STATEMENT Compared with the radiologists' evaluation based on the 2017 international consensus guidelines, the CT radiomics model exhibited better diagnostic performance in classifying malignant intraductal papillary mucinous neoplasms. KEY POINTS • There is a paucity of comparisons between the 2017 international consensus guidelines (ICGs) and radiomics models for malignant intraductal papillary mucinous neoplasms (IPMNs). • The CT radiomics model developed in this study exhibited better diagnostic performance than the 2017 ICGs in classifying malignant IPMNs. • The radiomics model may serve as a valuable complementary tool to the 2017 ICGs, potentially allowing a more quantitative assessment of IPMNs.
Collapse
Affiliation(s)
- Doo Young Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeseung Shin
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University College of Medicine, 81 Irwon-Ro, Kangnam-Gu, Seoul, 06351, Republic of Korea.
| | - Sungwon Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Song-Ee Baek
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Suji Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Nak-Hoon Son
- Department of Statistics, Keimyung University, Daegu, Korea
| | - Mi-Suk Park
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Patel H, Zanos T, Hewitt DB. Deep Learning Applications in Pancreatic Cancer. Cancers (Basel) 2024; 16:436. [PMID: 38275877 PMCID: PMC10814475 DOI: 10.3390/cancers16020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Pancreatic cancer is one of the most lethal gastrointestinal malignancies. Despite advances in cross-sectional imaging, chemotherapy, radiation therapy, and surgical techniques, the 5-year overall survival is only 12%. With the advent and rapid adoption of AI across all industries, we present a review of applications of DL in the care of patients diagnosed with PC. A review of different DL techniques with applications across diagnosis, management, and monitoring is presented across the different pathological subtypes of pancreatic cancer. This systematic review highlights AI as an emerging technology in the care of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hardik Patel
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - Theodoros Zanos
- Northwell Health—The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
| | - D. Brock Hewitt
- Department of Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
13
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
14
|
Saleh M, Virarkar M, Mahmoud HS, Wong VK, Gonzalez Baerga CI, Parikh M, Elsherif SB, Bhosale PR. Radiomics analysis with three-dimensional and two-dimensional segmentation to predict survival outcomes in pancreatic cancer. World J Radiol 2023; 15:304-314. [PMID: 38058604 PMCID: PMC10696186 DOI: 10.4329/wjr.v15.i11.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Radiomics can assess prognostic factors in several types of tumors, but considering its prognostic ability in pancreatic cancer has been lacking. AIM To evaluate the performance of two different radiomics software in assessing survival outcomes in pancreatic cancer patients. METHODS We retrospectively reviewed pretreatment contrast-enhanced dual-energy computed tomography images from 48 patients with biopsy-confirmed pancreatic ductal adenocarcinoma who later underwent neoadjuvant chemoradiation and surgery. Tumors were segmented using TexRad software for 2-dimensional (2D) analysis and MIM software for 3D analysis, followed by radiomic feature extraction. Cox proportional hazard modeling correlated texture features with overall survival (OS) and progression-free survival (PFS). Cox regression was used to detect differences in OS related to pretreatment tumor size and residual tumor following treatment. The Wilcoxon test was used to show the relationship between tumor volume and the percent of residual tumor. Kaplan-Meier analysis was used to compare survival in patients with different tumor densities in Hounsfield units for both 2D and 3D analysis. RESULTS 3D analysis showed that higher mean tumor density [hazard ratio (HR) = 0.971, P = 0.041)] and higher median tumor density (HR = 0.970, P = 0.037) correlated with better OS. 2D analysis showed that higher mean tumor density (HR = 0.963, P = 0.014) and higher mean positive pixels (HR = 0.962, P = 0.014) correlated with better OS; higher skewness (HR = 3.067, P = 0.008) and higher kurtosis (HR = 1.176, P = 0.029) correlated with worse OS. Higher entropy correlated with better PFS (HR = 0.056, P = 0.036). Models determined that patients with increased tumor size greater than 1.35 cm were likely to have a higher percentage of residual tumors of over 10%. CONCLUSION Several radiomics features can be used as prognostic tools for pancreatic cancer. However, results vary between 2D and 3D analyses. Mean tumor density was the only variable that could reliably predict OS, irrespective of the analysis used.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Mayur Virarkar
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Hagar S Mahmoud
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Vincenzo K Wong
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Carlos Ignacio Gonzalez Baerga
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Miti Parikh
- Keck School of Medicine, University of South California, Los Angeles, CA 90033, United States
| | - Sherif B Elsherif
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Priya R Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
15
|
Balduzzi A, Janssen BV, De Pastena M, Pollini T, Marchegiani G, Marquering H, Stoker J, Verpalen I, Bassi C, Besselink MG, Salvia R, for the Pancreatobiliary and Hepatic Artificial Intelligence Research (PHAIR) consortium. Artificial intelligence-based models to assess the risk of malignancy on radiological imaging in patients with intraductal papillary mucinous neoplasm of the pancreas: scoping review. Br J Surg 2023; 110:1623-1627. [PMID: 37402951 PMCID: PMC10638536 DOI: 10.1093/bjs/znad201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Affiliation(s)
- Alberto Balduzzi
- Department of Surgery and Oncology, Unit of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Boris V Janssen
- Department of Surgery, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Amsterdam, the Netherlands
| | - Matteo De Pastena
- Department of Surgery and Oncology, Unit of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Tommaso Pollini
- Department of Surgery and Oncology, Unit of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Giovanni Marchegiani
- Department of Surgery and Oncology, Unit of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Henk Marquering
- Cancer Centre Amsterdam, Amsterdam, the Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap Stoker
- Cancer Centre Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Inez Verpalen
- Cancer Centre Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Claudio Bassi
- Department of Surgery and Oncology, Unit of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Centre Amsterdam, Amsterdam, the Netherlands
| | - Roberto Salvia
- Department of Surgery and Oncology, Unit of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | | |
Collapse
|
16
|
Jiang J, Chao WL, Cao T, Culp S, Napoléon B, El-Dika S, Machicado JD, Pannala R, Mok S, Luthra AK, Akshintala VS, Muniraj T, Krishna SG. Improving Pancreatic Cyst Management: Artificial Intelligence-Powered Prediction of Advanced Neoplasms through Endoscopic Ultrasound-Guided Confocal Endomicroscopy. Biomimetics (Basel) 2023; 8:496. [PMID: 37887627 PMCID: PMC10604893 DOI: 10.3390/biomimetics8060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the increasing rate of detection of incidental pancreatic cystic lesions (PCLs), current standard-of-care methods for their diagnosis and risk stratification remain inadequate. Intraductal papillary mucinous neoplasms (IPMNs) are the most prevalent PCLs. The existing modalities, including endoscopic ultrasound and cyst fluid analysis, only achieve accuracy rates of 65-75% in identifying carcinoma or high-grade dysplasia in IPMNs. Furthermore, surgical resection of PCLs reveals that up to half exhibit only low-grade dysplastic changes or benign neoplasms. To reduce unnecessary and high-risk pancreatic surgeries, more precise diagnostic techniques are necessary. A promising approach involves integrating existing data, such as clinical features, cyst morphology, and data from cyst fluid analysis, with confocal endomicroscopy and radiomics to enhance the prediction of advanced neoplasms in PCLs. Artificial intelligence and machine learning modalities can play a crucial role in achieving this goal. In this review, we explore current and future techniques to leverage these advanced technologies to improve diagnostic accuracy in the context of PCLs.
Collapse
Affiliation(s)
- Joanna Jiang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei-Lun Chao
- Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Troy Cao
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Stacey Culp
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Bertrand Napoléon
- Department of Gastroenterology, Jean Mermoz Private Hospital, 69008 Lyon, France
| | - Samer El-Dika
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA
| | - Jorge D. Machicado
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Pannala
- Division of Gastroenterology and Hepatology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Shaffer Mok
- Division of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anjuli K. Luthra
- Division of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Venkata S. Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Thiruvengadam Muniraj
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Ahmed TM, Kawamoto S, Hruban RH, Fishman EK, Soyer P, Chu LC. A primer on artificial intelligence in pancreatic imaging. Diagn Interv Imaging 2023; 104:435-447. [PMID: 36967355 DOI: 10.1016/j.diii.2023.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Artificial Intelligence (AI) is set to transform medical imaging by leveraging the vast data contained in medical images. Deep learning and radiomics are the two main AI methods currently being applied within radiology. Deep learning uses a layered set of self-correcting algorithms to develop a mathematical model that best fits the data. Radiomics converts imaging data into mineable features such as signal intensity, shape, texture, and higher-order features. Both methods have the potential to improve disease detection, characterization, and prognostication. This article reviews the current status of artificial intelligence in pancreatic imaging and critically appraises the quality of existing evidence using the radiomics quality score.
Collapse
Affiliation(s)
- Taha M Ahmed
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Sol Goldman Pancreatic Research Center, Department of Pathology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Philippe Soyer
- Université Paris Cité, Faculté de Médecine, Department of Radiology, Hôpital Cochin-APHP, 75014, 75006, Paris, France, 7501475006
| | - Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Huang C, Chopra S, Bolan CW, Chandarana H, Harfouch N, Hecht EM, Lo GC, Megibow AJ. Pancreatic Cystic Lesions: Next Generation of Radiologic Assessment. Gastrointest Endosc Clin N Am 2023; 33:533-546. [PMID: 37245934 DOI: 10.1016/j.giec.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pancreatic cystic lesions are frequently identified on cross-sectional imaging. As many of these are presumed branch-duct intraductal papillary mucinous neoplasms, these lesions generate much anxiety for the patients and clinicians, often necessitating long-term follow-up imaging and even unnecessary surgical resections. However, the incidence of pancreatic cancer is overall low for patients with incidental pancreatic cystic lesions. Radiomics and deep learning are advanced tools of imaging analysis that have attracted much attention in addressing this unmet need, however, current publications on this topic show limited success and large-scale research is needed.
Collapse
Affiliation(s)
- Chenchan Huang
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA.
| | - Sumit Chopra
- Department of Radiology, NYU Grossman School of Medicine, 650 First Avenue, 4th Floor, New York, NY 10016, USA
| | - Candice W Bolan
- Department of Radiology, Mayo Clinic in Florida, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Hersh Chandarana
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Nassier Harfouch
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| | - Elizabeth M Hecht
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 8a, New York, NY 10021, USA
| | - Grace C Lo
- Department of Radiology, New York Presbyterian - Weill Cornell Medicine, 520 East 70th Street, Starr 7a, New York, NY 10021, USA
| | - Alec J Megibow
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Avenue, 3F, New York, NY 10016, USA
| |
Collapse
|
19
|
Jiang J, Chao WL, Culp S, Krishna SG. Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cystic Lesions and Adenocarcinoma. Cancers (Basel) 2023; 15:2410. [PMID: 37173876 PMCID: PMC10177524 DOI: 10.3390/cancers15092410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer is projected to become the second leading cause of cancer-related mortality in the United States by 2030. This is in part due to the paucity of reliable screening and diagnostic options for early detection. Amongst known pre-malignant pancreatic lesions, pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs) are the most prevalent. The current standard of care for the diagnosis and classification of pancreatic cystic lesions (PCLs) involves cross-sectional imaging studies and endoscopic ultrasound (EUS) and, when indicated, EUS-guided fine needle aspiration and cyst fluid analysis. However, this is suboptimal for the identification and risk stratification of PCLs, with accuracy of only 65-75% for detecting mucinous PCLs. Artificial intelligence (AI) is a promising tool that has been applied to improve accuracy in screening for solid tumors, including breast, lung, cervical, and colon cancer. More recently, it has shown promise in diagnosing pancreatic cancer by identifying high-risk populations, risk-stratifying premalignant lesions, and predicting the progression of IPMNs to adenocarcinoma. This review summarizes the available literature on artificial intelligence in the screening and prognostication of precancerous lesions in the pancreas, and streamlining the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Joanna Jiang
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei-Lun Chao
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Ceter, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Faur AC, Lazar DC, Ghenciu LA. Artificial intelligence as a noninvasive tool for pancreatic cancer prediction and diagnosis. World J Gastroenterol 2023; 29:1811-1823. [PMID: 37032728 PMCID: PMC10080704 DOI: 10.3748/wjg.v29.i12.1811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Pancreatic cancer (PC) has a low incidence rate but a high mortality, with patients often in the advanced stage of the disease at the time of the first diagnosis. If detected, early neoplastic lesions are ideal for surgery, offering the best prognosis. Preneoplastic lesions of the pancreas include pancreatic intraepithelial neoplasia and mucinous cystic neoplasms, with intraductal papillary mucinous neoplasms being the most commonly diagnosed. Our study focused on predicting PC by identifying early signs using noninvasive techniques and artificial intelligence (AI). A systematic English literature search was conducted on the PubMed electronic database and other sources. We obtained a total of 97 studies on the subject of pancreatic neoplasms. The final number of articles included in our study was 44, 34 of which focused on the use of AI algorithms in the early diagnosis and prediction of pancreatic lesions. AI algorithms can facilitate diagnosis by analyzing massive amounts of data in a short period of time. Correlations can be made through AI algorithms by expanding image and electronic medical records databases, which can later be used as part of a screening program for the general population. AI-based screening models should involve a combination of biomarkers and medical and imaging data from different sources. This requires large numbers of resources, collaboration between medical practitioners, and investment in medical infrastructures.
Collapse
Affiliation(s)
- Alexandra Corina Faur
- Department of Anatomy and Embriology, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Timișoara 300041, Timiș, Romania
| | - Daniela Cornelia Lazar
- Department V of Internal Medicine I, Discipline of Internal Medicine IV, University of Medicine and Pharmacy “Victor Babes” Timișoara, Timișoara 300041, Timiș, Romania
| | - Laura Andreea Ghenciu
- Department III, Discipline of Pathophysiology, “Victor Babeș” University of Medicine and Pharmacy, Timișoara 300041, Timiș, Romania
| |
Collapse
|
21
|
Deng Y, Lan L, You L, Chen K, Peng L, Zhao W, Song B, Wang Y, Ji Z, Zhou X. Automated CT Pancreas Segmentation for Acute Pancreatitis Patients by combining a Novel Object Detection Approach and U-Net. Biomed Signal Process Control 2023; 81:104430. [PMID: 37304128 PMCID: PMC10249746 DOI: 10.1016/j.bspc.2022.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute pancreatitis is an inflammatory disorder of the pancreas. Medical imaging, such as computed tomography (CT), has been widely used to detect volume changes in the pancreas for acute pancreatitis diagnosis. Many pancreas segmentation methods have been proposed but no methods for pancreas segmentation from acute pancreatitis patients. The segmentation of an inflamed pancreas is more challenging than the normal pancreas due to the following two reasons. 1) The inflamed pancreas invades surrounding organs and causes blurry boundaries. 2) The inflamed pancreas has higher shape, size, and location variability than the normal pancreas. To overcome these challenges, we propose an automated CT pancreas segmentation approach for acute pancreatitis patients by combining a novel object detection approach and U-Net. Our approach includes a detector and a segmenter. Specifically, we develop an FCN-guided region proposal network (RPN) detector to localize the pancreatitis regions. The detector first uses a fully convolutional network (FCN) to reduce the background interference of medical images and generates a fixed feature map containing the acute pancreatitis regions. Then the RPN is employed on the feature map to precisely localize the acute pancreatitis regions. After obtaining the location of pancreatitis, the U-Net segmenter is used on the cropped image according to the bounding box. The proposed approach is validated using a collected clinical dataset with 89 abdominal contrast-enhanced 3D CT scans from acute pancreatitis patients. Compared with other start-of-the-art approaches for normal pancreas segmentation, our method achieves better performance on both localization and segmentation in acute pancreatitis patients.
Collapse
Affiliation(s)
- Yang Deng
- School of Biomedical Engineering & Suzhou Institute for Advanced, University of Science and Technology of China, Suzhou 215123, China
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lan Lan
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- IT Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei You
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kai Chen
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Li Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiwei Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
22
|
Artificial Intelligence-The Rising Star in the Field of Gastroenterology and Hepatology. Diagnostics (Basel) 2023; 13:diagnostics13040662. [PMID: 36832150 PMCID: PMC9955763 DOI: 10.3390/diagnostics13040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Artificial intelligence (AI) is a term that covers a multitude of techniques that are used in a manner that tries to reproduce human intelligence. AI is helpful in various medical specialties that use imaging for diagnostic purposes, and gastroenterology is no exception. In this field, AI has several applications, such as detecting and classifying polyps, detecting the malignancy in polyps, diagnosing Helicobacter pylori infection, gastritis, inflammatory bowel disease, gastric cancer, esophageal neoplasia, and pancreatic and hepatic lesions. The aim of this mini-review is to analyze the currently available studies regarding AI in the field of gastroenterology and hepatology and to discuss its main applications as well as its main limitations.
Collapse
|
23
|
Egger ME. Incremental Improvements in the Ability to Distinguish High-Risk Intraductal Papillary Mucinous Neoplasms. Ann Surg Oncol 2023; 30:3186-3187. [PMID: 36735083 DOI: 10.1245/s10434-023-13202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Michael E Egger
- Division of Surgical Oncology, The Hiram C Polk, Jr. MD Department of Surgery, Louisville, KY, USA.
| |
Collapse
|
24
|
Lu J, Jiang N, Zhang Y, Li D. A CT based radiomics nomogram for differentiation between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:979437. [PMID: 36937433 PMCID: PMC10014827 DOI: 10.3389/fonc.2023.979437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives The purpose of this study was to develop and validate an CT-based radiomics nomogram for the preoperative differentiation of focal-type autoimmune pancreatitis from pancreatic ductal adenocarcinoma. Methods 96 patients with focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma have been enrolled in the study (32 and 64 cases respectively). All cases have been confirmed by imaging, clinical follow-up and/or pathology. The imaging data were considered as: 70% training cohort and 30% test cohort. Pancreatic lesions have been manually delineated by two radiologists and image segmentation was performed to extract radiomic features from the CT images. Independent-sample T tests and LASSO regression were used for feature selection. The training cohort was classified using a variety of machine learning-based classifiers, and 5-fold cross-validation has been performed. The classification performance was evaluated using the test cohort. Multivariate logistic regression analysis was then used to develop a radiomics nomogram model, containing the CT findings and Rad-Score. Calibration curves have been plotted showing the agreement between the predicted and actual probabilities of the radiomics nomogram model. Different patients have been selected to test and evaluate the model prediction process. Finally, receiver operating characteristic curves and decision curves were plotted, and the radiomics nomogram model was compared with a single model to visually assess its diagnostic ability. Results A total of 158 radiomics features were extracted from each image. 7 features were selected to construct the radiomics model, then a variety of classifiers were used for classification and multinomial logistic regression (MLR) was selected to be the optimal classifier. Combining CT findings with radiomics model, a prediction model based on CT findings and radiomics was finally obtained. The nomogram model showed a good sensitivity and specificity with AUCs of 0.87 and 0.83 in training and test cohorts, respectively. The areas under the curve and decision curve analysis showed that the radiomics nomogram model may provide better diagnostic performance than the single model and achieve greater clinical net benefits than the CT finding model and radiomics signature model individually. Conclusions The CT image-based radiomics nomogram model can accurately distinguish between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma patients and provide additional clinical benefits.
Collapse
Affiliation(s)
- Jia Lu
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Nannan Jiang
- Department of Radiology, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuqing Zhang
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Daowei Li
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
- *Correspondence: Daowei Li,
| |
Collapse
|
25
|
Chu LC, Park S, Soleimani S, Fouladi DF, Shayesteh S, He J, Javed AA, Wolfgang CL, Vogelstein B, Kinzler KW, Hruban RH, Afghani E, Lennon AM, Fishman EK, Kawamoto S. Classification of pancreatic cystic neoplasms using radiomic feature analysis is equivalent to an experienced academic radiologist: a step toward computer-augmented diagnostics for radiologists. Abdom Radiol (NY) 2022; 47:4139-4150. [PMID: 36098760 PMCID: PMC10548448 DOI: 10.1007/s00261-022-03663-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE A wide array of benign and malignant lesions of the pancreas can be cystic and these cystic lesions can have overlapping imaging appearances. The purpose of this study is to compare the diagnostic accuracy of a radiomics-based pancreatic cyst classifier to an experienced academic radiologist. METHODS In this IRB-approved retrospective single-institution study, patients with surgically resected pancreatic cysts who underwent preoperative abdominal CT from 2003 to 2016 were identified. Pancreatic cyst(s) and background pancreas were manually segmented, and 488 radiomics features were extracted. Random forest classification based on radiomics features, age, and gender was evaluated with fourfold cross-validation. An academic radiologist blinded to the final pathologic diagnosis reviewed each case and provided the most likely diagnosis. RESULTS 214 patients were included (64 intraductal papillary mucinous neoplasms, 33 mucinous cystic neoplasms, 60 serous cystadenomas, 24 solid pseudopapillary neoplasms, and 33 cystic neuroendocrine tumors). The radiomics-based machine learning approach showed AUC of 0.940 in pancreatic cyst classification, compared with AUC of 0.895 for the radiologist. CONCLUSION Radiomics-based machine learning achieved equivalent performance as an experienced academic radiologist in the classification of pancreatic cysts. The high diagnostic accuracy can potentially maximize the efficiency of healthcare utilization by maximizing detection of high-risk lesions.
Collapse
Affiliation(s)
- Linda C Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Seyoun Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sahar Soleimani
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel F Fouladi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shahab Shayesteh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ammar A Javed
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Christopher L Wolfgang
- Department of Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Bert Vogelstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elham Afghani
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Marie Lennon
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Satomi Kawamoto
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Liang X, He W, Huang C, Feng Z, Guan X, Liu Y, Sun Z, Li Z. Preoperative prediction of invasive behavior of pancreatic solid pseudopapillary neoplasm by MRI-based multiparametric radiomics models. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3782-3791. [PMID: 35976419 DOI: 10.1007/s00261-022-03639-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE A log-combined model was developed to predict the invasive behavior of pancreatic solid pseudopapillary neoplasm (pSPN) based on clinical and radiomic features extracted from multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS A total of 111 patients with pathologically confirmed pSPN who underwent preoperative plain and contrast-enhanced MRI were included, and divided into an invasive group (n = 34) and non-invasive group (n = 77). Clinical features and laboratory data related to pSPN invasive behavior were analyzed. Regions of interest were delineated based on T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1WI (CE-T1WI) to extract radiomic features. Correlation analysis was performed for these features, followed by L1_based feature selection (C = 0.15). A logistic regression algorithm was used to construct models based on each of the four sequences and a log-combined model was used to integrate the sequences. A receiver operating characteristic (ROC) curve was plotted to evaluate the model performance, and the Brier score was used to assess the overall accuracy of the model predictions. RESULTS The area under the ROC curve was 0.68, 0.73, 0.71, and 0.49 for Log-T1WI, Log-T2WI, Log-DWI, and Log-CE models, respectively, and 0.81 for the log-combined model. The accuracy, precision, sensitivity, and specificity of the log-combined model were 0.77, 0.88, 0.75, and 0.78, respectively. The best performance was obtained with the log-combined model with a Brier score of 0.18. Tumor location was identified as a significant clinical feature in comparison between the two groups (p < 0.05), and invasive pSPN was more frequent in the tail of the pancreas. CONCLUSION The log-combined model based on multiparametric MRI and clinical features can be used as a non-invasive diagnostic tool for preoperative prediction of pSPN invasive behavior and to facilitate the development of individualized treatment strategies and monitoring management plans.
Collapse
Affiliation(s)
- Xiuqun Liang
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Radiology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wenguang He
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310007, Zhejiang, China
| | - Chencui Huang
- Department of Research Collaboration, R&D center, Beijing Deepwise & League of PHD Technology Co, Ltd, Beijing, 100080, China
| | - Zhan Feng
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaohui Guan
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Radiology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Ying Liu
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Radiology, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Zeyong Sun
- Department of Radionuclide, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Radionuclide, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Zhi Li
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310007, Zhejiang, China.
| |
Collapse
|
27
|
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931-6954. [PMID: 36276650 PMCID: PMC9576619 DOI: 10.7150/thno.77949] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic cancer is the deadliest disease, with a five-year overall survival rate of just 11%. The pancreatic cancer patients diagnosed with early screening have a median overall survival of nearly ten years, compared with 1.5 years for those not diagnosed with early screening. Therefore, early diagnosis and early treatment of pancreatic cancer are particularly critical. However, as a rare disease, the general screening cost of pancreatic cancer is high, the accuracy of existing tumor markers is not enough, and the efficacy of treatment methods is not exact. In terms of early diagnosis, artificial intelligence technology can quickly locate high-risk groups through medical images, pathological examination, biomarkers, and other aspects, then screening pancreatic cancer lesions early. At the same time, the artificial intelligence algorithm can also be used to predict the survival time, recurrence risk, metastasis, and therapy response which could affect the prognosis. In addition, artificial intelligence is widely used in pancreatic cancer health records, estimating medical imaging parameters, developing computer-aided diagnosis systems, etc. Advances in AI applications for pancreatic cancer will require a concerted effort among clinicians, basic scientists, statisticians, and engineers. Although it has some limitations, it will play an essential role in overcoming pancreatic cancer in the foreseeable future due to its mighty computing power.
Collapse
Affiliation(s)
- Bowen Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haoran Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuting Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dingyue Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingya Shi
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
28
|
Update on quantitative radiomics of pancreatic tumors. Abdom Radiol (NY) 2022; 47:3118-3160. [PMID: 34292365 DOI: 10.1007/s00261-021-03216-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Radiomics is a newer approach for analyzing radiological images obtained from conventional imaging modalities such as computed tomography, magnetic resonance imaging, endoscopic ultrasonography, and positron emission tomography. Radiomics involves extracting quantitative data from the images and assessing them to identify diagnostic or prognostic features such as tumor grade, resectability, tumor response to neoadjuvant therapy, and survival. The purpose of this review is to discuss the basic principles of radiomics and provide an overview of the current clinical applications of radiomics in the field of pancreatic tumors.
Collapse
|
29
|
Anta JA, Martínez-Ballestero I, Eiroa D, García J, Rodríguez-Comas J. Artificial intelligence for the detection of pancreatic lesions. Int J Comput Assist Radiol Surg 2022; 17:1855-1865. [PMID: 35951286 DOI: 10.1007/s11548-022-02706-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Pancreatic cancer is one of the most lethal neoplasms among common cancers worldwide, and PCLs are well-known precursors of this type of cancer. Artificial intelligence (AI) could help to improve and speed up the detection and classification of pancreatic lesions. The aim of this review is to summarize the articles addressing the diagnostic yield of artificial intelligence applied to medical imaging (computed tomography [CT] and/or magnetic resonance [MR]) for the detection of pancreatic cancer and pancreatic cystic lesions. METHODS We performed a comprehensive literature search using PubMed, EMBASE, and Scopus (from January 2010 to April 2021) to identify full articles evaluating the diagnostic accuracy of AI-based methods processing CT or MR images to detect pancreatic ductal adenocarcinoma (PDAC) or pancreatic cystic lesions (PCLs). RESULTS We found 20 studies meeting our inclusion criteria. Most of the AI-based systems used were convolutional neural networks. Ten studies addressed the use of AI to detect PDAC, eight studies aimed to detect and classify PCLs, and 4 aimed to predict the presence of high-grade dysplasia or cancer. CONCLUSION AI techniques have shown to be a promising tool which is expected to be helpful for most radiologists' tasks. However, methodologic concerns must be addressed, and prospective clinical studies should be carried out before implementation in clinical practice.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.,Department of Gastroenterology, University Hospital, 12 Octubre. Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Iván Martínez-Ballestero
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain
| | - Daniel Eiroa
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.,Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d'Hebrón, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Javier García
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain
| | - Júlia Rodríguez-Comas
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.
| |
Collapse
|
30
|
Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB (Oxford) 2022; 24:1341-1350. [PMID: 35283010 PMCID: PMC9355916 DOI: 10.1016/j.hpb.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most patients recur after resection of intrahepatic cholangiocarcinoma (IHC). We studied whether machine-learning incorporating radiomics and tumor size could predict intrahepatic recurrence within 1-year. METHODS This was a retrospective analysis of patients with IHC resected between 2000 and 2017 who had evaluable computed tomography imaging. Texture features (TFs) were extracted from the liver, tumor, and future liver remnant (FLR). Random forest classification using training (70.3%) and validation cohorts (29.7%) was used to design a predictive model. RESULTS 138 patients were included for analysis. Patients with early recurrence had a larger tumor size (7.25 cm [IQR 5.2-8.9] vs. 5.3 cm [IQR 4.0-7.2], P = 0.011) and a higher rate of lymph node metastasis (28.6% vs. 11.6%, P = 0.041), but were not more likely to have multifocal disease (21.4% vs. 17.4%, P = 0.643). Three TFs from the tumor, FD1, FD30, and IH4 and one from the FLR, ACM15, were identified by feature selection. Incorporation of TFs and tumor size achieved the highest AUC of 0.84 (95% CI 0.73-0.95) in predicting recurrence in the validation cohort. CONCLUSION This study demonstrates that radiomics and machine-learning can reliably predict patients at risk for early intrahepatic recurrence with good discrimination accuracy.
Collapse
|
31
|
de la Pinta C. Radiomics in pancreatic cancer for oncologist: Present and future. Hepatobiliary Pancreat Dis Int 2022; 21:356-361. [PMID: 34961674 DOI: 10.1016/j.hbpd.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Radiomics is changing the world of medicine and more specifically the world of oncology. Early diagnosis and treatment improve the prognosis of patients with cancer. After treatment, the evaluation of the response will determine future treatments. In oncology, every change in treatment means a loss of therapeutic options and this is key in pancreatic cancer. Radiomics has been developed in oncology in the early diagnosis and differential diagnosis of benign and malignant lesions, in the evaluation of response, in the prediction of possible side effects, marking the risk of recurrence, survival and prognosis of the disease. Some studies have validated its use to differentiate normal tissues from tumor tissues with high sensitivity and specificity, and to differentiate cystic lesions and pancreatic neuroendocrine tumor grades with texture parameters. In addition, these parameters have been related to survival in patients with pancreatic cancer and to response to radiotherapy and chemotherapy. This review aimed to establish the current status of the use of radiomics in pancreatic cancer and future perspectives.
Collapse
Affiliation(s)
- Carolina de la Pinta
- Radiation Oncology Department, Ramón y Cajal University Hospital, IRYCIS, Alcalá University, 28034 Madrid, Spain.
| |
Collapse
|
32
|
Quantitative MRI of Pancreatic Cystic Lesions: A New Diagnostic Approach. Healthcare (Basel) 2022; 10:healthcare10061039. [PMID: 35742090 PMCID: PMC9222599 DOI: 10.3390/healthcare10061039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
The commonly used magnetic resonance (MRI) criteria can be insufficient for discriminating mucinous from non-mucinous pancreatic cystic lesions (PCLs). The histological differences between PCLs’ fluid composition may be reflected in MRI images, but cannot be assessed by visual evaluation alone. We investigate whether additional MRI quantitative parameters such as signal intensity measurements (SIMs) and radiomics texture analysis (TA) can aid the differentiation between mucinous and non-mucinous PCLs. Fifty-nine PCLs (mucinous, n = 24; non-mucinous, n = 35) are retrospectively included. The SIMs were performed by two radiologists on T2 and diffusion-weighted images (T2WI and DWI) and apparent diffusion coefficient (ADC) maps. A total of 550 radiomic features were extracted from the T2WI and ADC maps of every lesion. The SIMs and TA features were compared between entities using univariate, receiver-operating, and multivariate analysis. The SIM analysis showed no statistically significant differences between the two groups (p = 0.69, 0.21–0.43, and 0.98 for T2, DWI, and ADC, respectively). Mucinous and non-mucinous PLCs were successfully discriminated by both T2-based (83.2–100% sensitivity and 69.3–96.2% specificity) and ADC-based (40–85% sensitivity and 60–96.67% specificity) radiomic features. SIMs cannot reliably discriminate between PCLs. Radiomics have the potential to augment the common MRI diagnosis of PLCs by providing quantitative and reproducible imaging features, but validation is required by further studies.
Collapse
|
33
|
Ebrahimian S, Singh R, Netaji A, Madhusudhan KS, Homayounieh F, Primak A, Lades F, Saini S, Kalra MK, Sharma S. Characterization of Benign and Malignant Pancreatic Lesions with DECT Quantitative Metrics and Radiomics. Acad Radiol 2022; 29:705-713. [PMID: 34412944 DOI: 10.1016/j.acra.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES To compare dual energy CT (DECT) quantitative metrics and radiomics for differentiating benign and malignant pancreatic lesions on contrast enhanced abdomen CT. MATERIALS AND METHODS Our study included 103 patients who underwent contrast-enhanced DECT for assessing focal pancreatic lesions at one of the two hospitals (Site A: age 68 ± 12 yrs; malignant = 41, benign = 18; Site B: age 46 ± 2 yrs; malignant = 23, benign = 21). All malignant lesions had histologic confirmation, and benign lesions were stable on follow up CT (>12 months) or had characteristic benign features on MRI. Arterial-phase, low- and high-kV DICOM images were processed with the DECT Tumor Analysis (DETA) to obtain DECT quantitative metrics such as HU, iodine and water content from a region of interest (ROI) over focal pancreatic lesions. Separately, we obtained DECT radiomics from the same ROI. Data were analyzed with multiple logistic regression and receiver operating characteristics to generate area under the curve (AUC) for best predictive variables. RESULTS DECT quantitative metrics and radiomics had AUCs of 0.98-0.99 at site A and 0.89-0.94 at site B data for classifying benign and malignant pancreatic lesions. There was no significant difference in the AUCs and accuracies of DECT quantitative metrics and radiomics from lesion rims and volumes among patients at both sites (p > 0.05). Supervised learning-based model with data from the two sites demonstrated best AUCs of 0.94 (DECT radiomics) and 0.90 (DECT quantitative metrics) for characterizing pancreatic lesions as benign or malignant. CONCLUSION Compared to complex DECT radiomics, quantitative DECT information provide a simpler but accurate method of differentiating benign and malignant pancreatic lesions.
Collapse
Affiliation(s)
- Shadi Ebrahimian
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Ramandeep Singh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Arjunlokesh Netaji
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Kumble Seetharama Madhusudhan
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Andrew Primak
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania
| | | | - Sanjay Saini
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 75 Blossom court, Boston, MA 02114.
| | - Sanjay Sharma
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
35
|
Cheng S, Shi H, Lu M, Wang C, Duan S, Xu Q, Shi H. Radiomics Analysis for Predicting Malignant Potential of Intraductal Papillary Mucinous Neoplasms of the Pancreas: Comparison of CT and MRI. Acad Radiol 2022; 29:367-375. [PMID: 34112528 DOI: 10.1016/j.acra.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES To compare the performance of CT and MRI radiomics for predicting the malignant potential of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas, and to investigate their value compared to the revised 2017 international consensus Fukuoka guidelines. MATERIALS AND METHODS Sixty patients with surgically confirmed IPMNs (37 malignant and 23 benign) were included. Radiomics features were extracted from arterial and venous phase images of CT and T2-weighted images of MRI, respectively. Intraclass correlation coefficients for the radiomics features were calculated to assess the interobserver reproducibility. The least absolute shrinkage and selection operator algorithm was used for feature selection. Radiomics models were constructed based on selected features with logistic regression (LR) and support vector machine (SVM). A clinical and imaging model was constructed based on independent predictors of the revised 2017 Fukuoka guidelines determined in multivariate logistic regression with forward elimination. RESULTS The reproducibility of MRI radiomics features was higher than that of CT radiomics features, regardless of arterial or venous phase features (all p < 0.001). MRI radiomics models achieved improved AUCs (0.879 with LR and 0.940 with SVM, respectively), than that of CT radiomics models (0.811 with LR and 0.864 with SVM, respectively). All radiomics models provided better predictive performance than the clinical and imaging model (AUC = 0.764). CONCLUSION The MRI radiomics models with higher reproducibility radiomics features performed better than CT radiomics models for predicting the malignant potential of IPMNs. The performance of radiomics models was superior to the clinical and imaging model based on Fukuoka guidelines.
Collapse
|
36
|
Chen HY, Deng XY, Pan Y, Chen JY, Liu YY, Chen WJ, Yang H, Zheng Y, Yang YB, Liu C, Shao GL, Yu RS. Pancreatic Serous Cystic Neoplasms and Mucinous Cystic Neoplasms: Differential Diagnosis by Combining Imaging Features and Enhanced CT Texture Analysis. Front Oncol 2022; 11:745001. [PMID: 35004272 PMCID: PMC8733460 DOI: 10.3389/fonc.2021.745001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Objective To establish a diagnostic model by combining imaging features with enhanced CT texture analysis to differentiate pancreatic serous cystadenomas (SCNs) from pancreatic mucinous cystadenomas (MCNs). Materials and Methods Fifty-seven and 43 patients with pathology-confirmed SCNs and MCNs, respectively, from one center were analyzed and divided into a training cohort (n = 72) and an internal validation cohort (n = 28). An external validation cohort (n = 28) from another center was allocated. Demographic and radiological information were collected. The least absolute shrinkage and selection operator (LASSO) and recursive feature elimination linear support vector machine (RFE_LinearSVC) were implemented to select significant features. Multivariable logistic regression algorithms were conducted for model construction. Receiver operating characteristic (ROC) curves for the models were evaluated, and their prediction efficiency was quantified by the area under the curve (AUC), 95% confidence interval (95% CI), sensitivity and specificity. Results Following multivariable logistic regression analysis, the AUC was 0.932 and 0.887, the sensitivity was 87.5% and 90%, and the specificity was 82.4% and 84.6% with the training and validation cohorts, respectively, for the model combining radiological features and CT texture features. For the model based on radiological features alone, the AUC was 0.84 and 0.91, the sensitivity was 75% and 66.7%, and the specificity was 82.4% and 77% with the training and validation cohorts, respectively. Conclusion This study showed that a logistic model combining radiological features and CT texture features is more effective in distinguishing SCNs from MCNs of the pancreas than a model based on radiological features alone.
Collapse
Affiliation(s)
- Hai-Yan Chen
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Xue-Ying Deng
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Yao Pan
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie-Yu Chen
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Yun-Ying Liu
- Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wu-Jie Chen
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Hong Yang
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Yao Zheng
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Yong-Bo Yang
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Cheng Liu
- Research Institute of Artificial Intelligence in Healthcare, Hangzhou YITU Healthcare Technology Co. Ltd., Hangzhou, China
| | - Guo-Liang Shao
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institue of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Machine learning principles applied to CT radiomics to predict mucinous pancreatic cysts. Abdom Radiol (NY) 2022; 47:221-231. [PMID: 34636933 DOI: 10.1007/s00261-021-03289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Current diagnostic and treatment modalities for pancreatic cysts (PCs) are invasive and are associated with patient morbidity. The purpose of this study is to develop and evaluate machine learning algorithms to delineate mucinous from non-mucinous PCs using non-invasive CT-based radiomics. METHODS A retrospective, single-institution analysis of patients with non-pseudocystic PCs, contrast-enhanced computed tomography scans within 1 year of resection, and available surgical pathology were included. A quantitative imaging software platform was used to extract radiomics. An extreme gradient boosting (XGBoost) machine learning algorithm was used to create mucinous classifiers using texture features only, or radiomic/radiologic and clinical combined models. Classifiers were compared using performance scoring metrics. Shapely additive explanation (SHAP) analyses were conducted to identify variables most important in model construction. RESULTS Overall, 99 patients and 103 PCs were included in the analyses. Eighty (78%) patients had mucinous PCs on surgical pathology. Using multiple fivefold cross validations, the texture features only and combined XGBoost mucinous classifiers demonstrated an area under the curve of 0.72 ± 0.14 and 0.73 ± 0.14, respectively. By SHAP analysis, root mean square, mean attenuation, and kurtosis were the most predictive features in the texture features only model. Root mean square, cyst location, and mean attenuation were the most predictive features in the combined model. CONCLUSION Machine learning principles can be applied to PC texture features to create a mucinous phenotype classifier. Model performance did not improve with the combined model. However, specific radiomic, radiologic, and clinical features most predictive in our models can be identified using SHAP analysis.
Collapse
|
38
|
Gao J, Han F, Wang X, Duan S, Zhang J. Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm. Front Oncol 2021; 11:699812. [PMID: 34926238 PMCID: PMC8672034 DOI: 10.3389/fonc.2021.699812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to develop and verify a multi-phase (MP) computed tomography (CT)-based radiomics nomogram to differentiate pancreatic serous cystic neoplasms (SCNs) from mucinous cystic neoplasms (MCNs), and to compare the diagnostic efficacy of radiomics models for different phases of CT scans. Materials and Methods A total of 170 patients who underwent surgical resection between January 2011 and December 2018, with pathologically confirmed pancreatic cystic neoplasms (SCN=115, MCN=55) were included in this single-center retrospective study. Radiomics features were extracted from plain scan (PS), arterial phase (AP), and venous phase (VP) CT scans. Algorithms were performed to identify the optimal features to build a radiomics signature (Radscore) for each phase. All features from these three phases were analyzed to develop the MP-Radscore. A combined model comprised the MP-Radscore and imaging features from which a nomogram was developed. The accuracy of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration tests, and decision curve analysis. Results For each scan phase, 1218 features were extracted, and the optimal ones were selected to construct the PS-Radscore (11 features), AP-Radscore (11 features), and VP-Radscore (12 features). The MP-Radscore (14 features) achieved better performance based on ROC curve analysis than any single phase did [area under the curve (AUC), training cohort: MP-Radscore 0.89, PS-Radscore 0.78, AP-Radscore 0.83, VP-Radscore 0.85; validation cohort: MP-Radscore 0.88, PS-Radscore 0.77, AP-Radscore 0.83, VP-Radscore 0.84]. The combination nomogram performance was excellent, surpassing those of all other nomograms in both the training cohort (AUC, 0.91) and validation cohort (AUC, 0.90). The nomogram also performed well in the calibration and decision curve analyses. Conclusions Radiomics for arterial and venous single-phase models outperformed the plain scan model. The combination nomogram that incorporated the MP-Radscore, tumor location, and cystic number had the best discriminatory performance and showed excellent accuracy for differentiating SCN from MCN.
Collapse
Affiliation(s)
- Jiahao Gao
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Han
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoshuang Wang
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Shaofeng Duan
- Department of Life Sciences, GE Healthcare, Shanghai, China
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, China.,Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
40
|
Zhao W, Liu S, Cong L, Zhao Y. Imaging Features for Predicting High-Grade Dysplasia or Malignancy in Branch Duct Type Intraductal Papillary Mucinous Neoplasm of the Pancreas: A Systematic Review and Meta-Analysis. Ann Surg Oncol 2021; 29:1297-1312. [PMID: 34554343 DOI: 10.1245/s10434-021-10662-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The consensus guidelines for branch-duct intraductal papillary mucinous neoplasm (BD-IPMN) of the pancreas are mostly based on imaging features. This study aimed to determine imaging features and their diagnostic accuracy for predicting high-grade dysplasia (HGD)/malignancy in BD-IPMN, including mixed type. METHODS The PubMed, Embase, and Cochrane databases were searched, and data were extracted from relevant studies. As the main diagnostic accuracy index, diagnostic odds ratios (DORs) of imaging features for diagnosing HGD/malignancy in BD-IPMNs were pooled using the random-effects model. A bivariate random-effects approach was used to construct summary receiver operating characteristic curves for sensitivity and specificity estimation. RESULTS The pooled DOR was the highest for the enhanced solid component/mural nodule (MN) (DOR, 12.21; 95 % confidence interval [CI], 6.14-24.27), followed by a main pancreatic duct (MPD) diameter of 10 mm or greater (DOR, 7.93; 95 % CI, 3.02-20.83), solid component (DOR, 4.85; 95 % CI, 2.49-9.42), lymphadenopathy (DOR, 4.84; 95 % CI, 1.11-21.06), MN (DOR, 4.48; 95 % CI, 3.15-6.39), an MPD diameter of 5 mm or greater (DOR, 3.69; 95 % CI, 2.62-5.19), abrupt change in MPD caliber with distal pancreatic atrophy (DOR, 2.65; 95 % CI, 1.66-4.24), thickened/enhancing walls (DOR, 2.38; 95 % CI, 1.57-3.60), and cyst size of 3 cm or larger (DOR, 1.98; 95 % CI, 1.48-2.64). The largest area under the curve (0.89 and 0.95, respectively) and high specificity (0.95 and 0.98, respectively) also were found for enhanced solid component/MN and an MPD diameter of 10 mm or greater, albeit with low sensitivity (0.38 and 0.14, respectively). CONCLUSIONS The aforementioned imaging features could aid in predicting HGD/malignancy of BD-IPMN. Furthermore, enhanced solid component/MN and an MPD diameter of 10 mm or greater were the most important predictors of HGD/malignancy in BD-IPMN and should be considered as indications for surgery.
Collapse
Affiliation(s)
- Wenjing Zhao
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of General Surgery, Affiliated Hospital of Qingdao University, Shandong, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
41
|
Karmazanovsky G, Gruzdev I, Tikhonova V, Kondratyev E, Revishvili A. Computed tomography-based radiomics approach in pancreatic tumors characterization. LA RADIOLOGIA MEDICA 2021; 126:10.1007/s11547-021-01405-0. [PMID: 34386897 DOI: 10.1007/s11547-021-01405-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022]
Abstract
Radiomics (or texture analysis) is a new imaging analysis technique that allows calculating the distribution of texture features of pixel and voxel values depend on the type of ROI (3D or 2D), their relationships in the image. Depending on the software, up to several thousand texture elements can be obtained. Radiomics opens up wide opportunities for differential diagnosis and prognosis of pancreatic neoplasias. The aim of this review was to highlight the main diagnostic advantages of texture analysis in different pancreatic tumors. The review describes the diagnostic performance of radiomics in different pancreatic tumor types, application methods, and problems. Texture analysis in PDAC is able to predict tumor grade and associates with lymphovascular invasion and postoperative margin status. In pancreatic neuroendocrine tumors, texture features strongly correlate with differentiation grade and allows distinguishing it from the intrapancreatic accessory spleen. In pancreatic cystic lesions, radiomics is able to accurately differentiate MCN from SCN and distinguish clinically insignificant lesions from IPMNs with advanced neoplasia. In conclusion, the use of the CT radiomics approach provides a higher diagnostic performance of CT imaging in pancreatic tumors differentiation and prognosis. Future studies should be carried out to improve accuracy and facilitate radiomics workflow in pancreatic imaging.
Collapse
Affiliation(s)
- Grigory Karmazanovsky
- Deparment of Radiology, A.V. Vishnevsky National Medical Research Centre of Surgery, Bolshaya Serpukhovskaya str. 27, 117997, Moscow, Russia
- Radiology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan Gruzdev
- Deparment of Radiology, A.V. Vishnevsky National Medical Research Centre of Surgery, Bolshaya Serpukhovskaya str. 27, 117997, Moscow, Russia.
| | - Valeriya Tikhonova
- Deparment of Radiology, A.V. Vishnevsky National Medical Research Centre of Surgery, Bolshaya Serpukhovskaya str. 27, 117997, Moscow, Russia
| | - Evgeny Kondratyev
- Deparment of Radiology, A.V. Vishnevsky National Medical Research Centre of Surgery, Bolshaya Serpukhovskaya str. 27, 117997, Moscow, Russia
| | - Amiran Revishvili
- Arrhythmology Department, A.V. Vishnevsky National Medical Research Centre of Surgery, Bolshaya Serpukhovskaya str. 27, 117997, Moscow, Russia
| |
Collapse
|
42
|
Cystic pancreatic lesions: MR imaging findings and management. Insights Imaging 2021; 12:115. [PMID: 34374885 PMCID: PMC8355307 DOI: 10.1186/s13244-021-01060-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic pancreatic lesions (CPLs) are frequently casual findings in radiological examinations performed for other reasons in patients with unrelated symptoms. As they require different management according to their histological nature, differential diagnosis is essential. Radiologist plays a key role in the diagnosis and management of these lesions as imaging is able to correctly characterize most of them and thus address to a correct management. The first step for a correct characterization is to look for a communication between the CPLs and the main pancreatic duct, and then, it is essential to evaluate the morphology of the lesions. Age, sex and a history of previous pancreatic pathologies are important information to be used in the differential diagnosis. As some CPLs with different pathologic backgrounds can show the same morphological findings, differential diagnosis can be difficult, and thus, the final diagnosis can require other techniques, such as endoscopic ultrasound, endoscopic ultrasound-fine needle aspiration and endoscopic ultrasound-through the needle biopsy, and multidisciplinary management is important for a correct management.
Collapse
|
43
|
Permuth JB, Vyas S, Li J, Chen DT, Jeong D, Choi JW. Comparison of Radiomic Features in a Diverse Cohort of Patients With Pancreatic Ductal Adenocarcinomas. Front Oncol 2021; 11:712950. [PMID: 34367997 PMCID: PMC8339963 DOI: 10.3389/fonc.2021.712950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background Significant racial disparities in pancreatic cancer incidence and mortality rates exist, with the highest rates in African Americans compared to Non-Hispanic Whites and Hispanic/Latinx populations. Computer-derived quantitative imaging or “radiomic” features may serve as non-invasive surrogates for underlying biological factors and heterogeneity that characterize pancreatic tumors from African Americans, yet studies are lacking in this area. The objective of this pilot study was to determine if the radiomic tumor profile extracted from pretreatment computed tomography (CT) images differs between African Americans, Non-Hispanic Whites, and Hispanic/Latinx with pancreatic cancer. Methods We evaluated a retrospective cohort of 71 pancreatic cancer cases (23 African American, 33 Non-Hispanic White, and 15 Hispanic/Latinx) who underwent pretreatment CT imaging at Moffitt Cancer Center and Research Institute. Whole lesion semi-automated segmentation was performed on each slice of the lesion on all pretreatment venous phase CT exams using Healthmyne Software (Healthmyne, Madison, WI, USA) to generate a volume of interest. To reduce feature dimensionality, 135 highly relevant non-texture and texture features were extracted from each segmented lesion and analyzed for each volume of interest. Results Thirty features were identified and significantly associated with race/ethnicity based on Kruskal-Wallis test. Ten of the radiomic features were highly associated with race/ethnicity independent of tumor grade, including sphericity, volumetric mean Hounsfield units (HU), minimum HU, coefficient of variation HU, four gray level texture features, and two wavelet texture features. A radiomic signature summarized by the first principal component partially differentiated African American from non-African American tumors (area underneath the curve = 0.80). Poorer survival among African Americans compared to Non-African Americans was observed for tumors with lower volumetric mean CT [HR: 3.90 (95% CI:1.19–12.78), p=0.024], lower GLCM Avg Column Mean [HR:4.75 (95% CI: 1.44,15.37), p=0.010], and higher GLCM Cluster Tendency [HR:3.36 (95% CI: 1.06–10.68), p=0.040], and associations persisted in volumetric mean CT and GLCM Avg Column after adjustment for key clinicopathologic factors. Conclusions This pilot study identified several textural radiomics features associated with poor overall survival among African Americans with PDAC, independent of other prognostic factors such as grade. Our findings suggest that CT radiomic features may serve as surrogates for underlying biological factors and add value in predicting clinical outcomes when integrated with other parameters in ongoing and future studies of cancer health disparities.
Collapse
Affiliation(s)
- Jennifer B Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Shraddha Vyas
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Daniel Jeong
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jung W Choi
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
44
|
Pancreatic cyst characterization: maximum axial diameter does not measure up. HPB (Oxford) 2021; 23:1105-1112. [PMID: 33317934 DOI: 10.1016/j.hpb.2020.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Unidimensional size is commonly used to risk stratify pancreatic cysts (PCs) despite inconsistent performance. The current study aimed to determine if unidimensional size, demonstrated by maximum axial diameter (MAD), is an appropriate surrogate measurement for volume and surface area. METHODS Patients with cross-sectional imaging of PCs from 2012 to 2013 were identified. Cyst MAD, volume, and surface area were measured using quantitative imaging software. Non-pseudocystic PCs >1 cm were selected for inclusion to assess MAD correlation with volume and surface area. Cysts imaged twice >1 year apart were selected to evaluate volumetric growth rate. RESULTS In total, 195 cysts were included. Overall, MAD was strongly correlated with volume (r = 0.83) and surface area (r = 0.93). However, cysts 1-2 cm and 2-3 cm were weakly correlated with volume and surface area: r = 0.78, 0.57 and 0.82, 0.61, respectively. Cyst volumes and surface areas varied widely within unidimensional size groups with 51% and 40% of volumes and surface areas overlapping unidimensional size groups, respectively. Estimated changes in volume poorly predicted measured changes in volume with 42% of cysts having >100% absolute percent difference. CONCLUSIONS Pancreatic cyst volume and surface area may be useful adjunct measurements to risk stratify patients and surveil cyst changes and deserves further study.
Collapse
|
45
|
Nguon LS, Seo K, Lim JH, Song TJ, Cho SH, Park JS, Park S. Deep Learning-Based Differentiation between Mucinous Cystic Neoplasm and Serous Cystic Neoplasm in the Pancreas Using Endoscopic Ultrasonography. Diagnostics (Basel) 2021; 11:diagnostics11061052. [PMID: 34201066 PMCID: PMC8229855 DOI: 10.3390/diagnostics11061052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.
Collapse
Affiliation(s)
- Leang Sim Nguon
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea; (L.S.N.); (K.S.)
| | - Kangwon Seo
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea; (L.S.N.); (K.S.)
| | - Jung-Hyun Lim
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Korea;
| | - Tae-Jun Song
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.-J.S.); (S.-H.C.)
| | - Sung-Hyun Cho
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (T.-J.S.); (S.-H.C.)
| | - Jin-Seok Park
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Korea;
- Correspondence: (J.-S.P.); (S.P.)
| | - Suhyun Park
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (J.-S.P.); (S.P.)
| |
Collapse
|
46
|
Li C, Wei R, Mao Y, Guo Y, Li J, Wang Y. Computer-aided differentiates benign from malignant IPMN and MCN with a novel feature selection algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4743-4760. [PMID: 34198463 DOI: 10.3934/mbe.2021241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In clinical practice, differentiating benign from malignant intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN) preoperatively is crucial for deciding future treating algorithm. However, it remains challenging as benign and malignant lesions usually show similarities in both imaging appearances and clinical indices. Therefore, a robust and accurate computer-aided diagnosis (CAD) system based on radiomics and clinical indices was proposed in this paper to solve this dilemma. In the proposed CAD system, 107 patients were enrolled, where 90 cases were randomly selected for the training set with 5-fold cross validation to build the diagnostic model, while 17 cases were remained for an independent testing set to validate the performance. 436 high-throughput radiomics features while 9 clinical indices were designed and extracted. A novel feature selection algorithm named BLR (Bootstrapping repeated LASSO with Random selections) was proposed to select the most effective features. Then the selected features were sent to Support Vector Machine (SVM) to differentiate the benign or malignant. In the cross-validation cohort and independent testing cohort, the area under receiver operating characteristic curve (AUC) of CAD scheme were 0.83 and 0.92, respectively. The results fully prove the proposed CAD system achieves significant effect in tumors diagnosis.
Collapse
Affiliation(s)
- Chengkang Li
- The School of Information Science and Technology of Fudan University, Shanghai 200433, China
| | - Ran Wei
- The School of Information Science and Technology of Fudan University, Shanghai 200433, China
| | - Yishen Mao
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yi Guo
- The School of Information Science and Technology of Fudan University, Shanghai 200433, China
- Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yuanyuan Wang
- The School of Information Science and Technology of Fudan University, Shanghai 200433, China
- Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| |
Collapse
|
47
|
Automated Detection of Pancreatic Cystic Lesions on CT Using Deep Learning. Diagnostics (Basel) 2021; 11:diagnostics11050901. [PMID: 34069328 PMCID: PMC8158747 DOI: 10.3390/diagnostics11050901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cystic lesions (PCL) are a frequent and underreported incidental finding on CT scans and can transform into neoplasms with devastating consequences. We developed and evaluated an algorithm based on a two-step nnU-Net architecture for automated detection of PCL on CTs. A total of 543 cysts on 221 abdominal CTs were manually segmented in 3D by a radiology resident in consensus with a board-certified radiologist specialized in abdominal radiology. This information was used to train a two-step nnU-Net for detection with the performance assessed depending on lesions' volume and location in comparison to three human readers of varying experience. Mean sensitivity was 78.8 ± 0.1%. The sensitivity was highest for large lesions with 87.8% for cysts ≥220 mm3 and for lesions in the distal pancreas with up to 96.2%. The number of false-positive detections for cysts ≥220 mm3 was 0.1 per case. The algorithm's performance was comparable to human readers. To conclude, automated detection of PCL on CTs is feasible. The proposed model could serve radiologists as a second reading tool. All imaging data and code used in this study are freely available online.
Collapse
|
48
|
Huang WP, Liu SY, Han YJ, Li LM, Liang P, Gao JB. Development of CT-Based Imaging Signature for Preoperative Prediction of Invasive Behavior in Pancreatic Solid Pseudopapillary Neoplasm. Front Oncol 2021; 11:677814. [PMID: 34079766 PMCID: PMC8166224 DOI: 10.3389/fonc.2021.677814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose It is challenging for traditional CT signs to predict invasiveness of pancreatic solid pseudopapillary neoplasm (pSPN). We aim to develop and evaluate CT-based radiomics signature to preoperatively predict invasive behavior in pSPN. Methods Eighty-five patients who had pathologically confirmed pSPN and preoperative contrasted-enhanced CT imaging in our hospital were retrospectively analyzed (invasive: 24; non-invasive: 61). 1316 radiomics features were separately extracted from delineated 2D or 3D ROIs in arterial and venous phases. 200% (SMOTE) was used to generate balanced dataset (invasive: 72, non-invasive: 96) for each phase, which was for feature selection and modeling. The model was internally validated in the original dataset. Inter-observer consistency analysis, spearman correlation, univariate analysis, LASSO regression and backward stepwise logical regression were mainly applied to screen the features, and 6 logistic regression models were established based on multi-phase features from 2D or 3D segmentations. The ROC analysis and Delong's test were mainly used for model assessment and AUC comparison. Results It retained 11, 8, 7 and 7 features to construct 3D-arterial, 3D-venous, 2D-arterial and 2D-venous model. Based on 3D ROIs, the arterial model (AUC: 0.914) performed better than venous (AUC: 0.815) and the arterial-venous combined model was slightly improved (AUC: 0.918). Based on 2D ROIs, the arterial model (AUC: 0.814) performed better than venous (AUC:0.768), while the arterial-venous combined model (AUC:0.893) performed better than any single-phase model. In addition, the 3D arterial model performed better than the best combined 2D model. The Delong's test showed that the significant difference of model AUC existed in arterial models in original dataset (p = 0.019) while not in arterial-venous combined model (p=0.49) as comparing 2D and 3D ROIs. Conclusion The arterial radiomics model constructed by 3D-ROI feature is potential to predict the invasiveness of pSPN preoperatively.
Collapse
Affiliation(s)
- Wen-Peng Huang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si-Yun Liu
- Pharmaceutical Diagnostics, General Electric Company (GE) Healthcare, Beijing, China
| | - Yi-Jing Han
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Ming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pan Liang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Bo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Abunahel BM, Pontre B, Kumar H, Petrov MS. Pancreas image mining: a systematic review of radiomics. Eur Radiol 2021; 31:3447-3467. [PMID: 33151391 DOI: 10.1007/s00330-020-07376-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To systematically review published studies on the use of radiomics of the pancreas. METHODS The search was conducted in the MEDLINE database. Human studies that investigated the applications of radiomics in diseases of the pancreas were included. The radiomics quality score was calculated for each included study. RESULTS A total of 72 studies encompassing 8863 participants were included. Of them, 66 investigated focal pancreatic lesions (pancreatic cancer, precancerous lesions, or benign lesions); 4, pancreatitis; and 2, diabetes mellitus. The principal applications of radiomics were differential diagnosis between various types of focal pancreatic lesions (n = 19), classification of pancreatic diseases (n = 23), and prediction of prognosis or treatment response (n = 30). Second-order texture features were most useful for the purpose of differential diagnosis of diseases of the pancreas (with 100% of studies investigating them found a statistically significant feature), whereas filtered image features were most useful for the purpose of classification of diseases of the pancreas and prediction of diseases of the pancreas (with 100% of studies investigating them found a statistically significant feature). The median radiomics quality score of the included studies was 28%, with the interquartile range of 22% to 36%. The radiomics quality score was significantly correlated with the number of extracted radiomics features (r = 0.52, p < 0.001) and the study sample size (r = 0.34, p = 0.003). CONCLUSIONS Radiomics of the pancreas holds promise as a quantitative imaging biomarker of both focal pancreatic lesions and diffuse changes of the pancreas. The usefulness of radiomics features may vary depending on the purpose of their application. Standardisation of image acquisition protocols and image pre-processing is warranted prior to considering the use of radiomics of the pancreas in routine clinical practice. KEY POINTS • Methodologically sound studies on radiomics of the pancreas are characterised by a large sample size and a large number of extracted features. • Optimisation of the radiomics pipeline will increase the clinical utility of mineable pancreas imaging data. • Radiomics of the pancreas is a promising personalised medicine tool in diseases of the pancreas.
Collapse
Affiliation(s)
| | - Beau Pontre
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
50
|
Chang KP, Lin SH, Chu YW. Artificial intelligence in gastrointestinal radiology: A review with special focus on recent development of magnetic resonance and computed tomography. Artif Intell Gastroenterol 2021; 2:27-41. [DOI: 10.35712/aig.v2.i2.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
|