1
|
Muñiz-Trejo R, Park Y, Thornton JW. Robustness of Ancestral Sequence Reconstruction to Among-site and Among-lineage Evolutionary Heterogeneity. Mol Biol Evol 2025; 42:msaf084. [PMID: 40203289 DOI: 10.1093/molbev/msaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Ancestral sequence reconstruction is typically performed using homogeneous evolutionary models, which assume that the same substitution propensities affect all sites and lineages. These assumptions are routinely violated: heterogeneous structural and functional constraints favor different amino acids at different sites, and these constraints often change among lineages as epistatic substitutions accrue at other sites. To evaluate how violations of the homogeneity assumption affect ancestral sequence reconstruction under realistic conditions, we developed site-specific substitution models and parameterized them using data from deep mutational scanning experiments on three protein families; we then used these models to perform ancestral sequence reconstruction on the empirical alignments and on alignments simulated under heterogeneous conditions derived from the experiments. Extensive among-site and -lineage heterogeneity is present in these datasets, but the sequences reconstructed from empirical alignments are almost identical when heterogeneous or homogeneous models are used for ancestral sequence reconstruction. Using models fit to deep mutational scanning data from distantly related proteins in which mutational effects are very different also has a minimal impact on ancestral sequence reconstruction. The rare differences occur primarily where phylogenetic signal is weak-at fast-evolving sites and nodes connected by long branches. When ancestral sequence reconstruction is performed on simulated data, errors in the reconstructed sequences become more likely as branch lengths increase, but incorporating heterogeneity into the model does not improve accuracy. These data establish that ancestral sequence reconstruction is robust to unincorporated realistic forms of evolutionary heterogeneity, because the primary determinant of ancestral sequence reconstruction is phylogenetic signal, not the substitution model. The best way to improve accuracy is therefore not to develop more elaborate models but to apply ancestral sequence reconstruction to densely sampled alignments that maximize phylogenetic signal at the nodes of interest.
Collapse
Affiliation(s)
- Ricardo Muñiz-Trejo
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Yeonwoo Park
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024; 83:1603-1613. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
3
|
Ramírez-Cuéllar J, Ferrari R, Sanz RT, Valverde-Santiago M, García-García J, Nacht AS, Castillo D, Le Dily F, Neguembor MV, Malatesta M, Bonnin S, Marti-Renom MA, Beato M, Vicent GP. LATS1 controls CTCF chromatin occupancy and hormonal response of 3D-grown breast cancer cells. EMBO J 2024; 43:1770-1798. [PMID: 38565950 PMCID: PMC11066098 DOI: 10.1038/s44318-024-00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
The cancer epigenome has been studied in cells cultured in two-dimensional (2D) monolayers, but recent studies highlight the impact of the extracellular matrix and the three-dimensional (3D) environment on multiple cellular functions. Here, we report the physical, biochemical, and genomic differences between T47D breast cancer cells cultured in 2D and as 3D spheroids. Cells within 3D spheroids exhibit a rounder nucleus with less accessible, more compacted chromatin, as well as altered expression of ~2000 genes, the majority of which become repressed. Hi-C analysis reveals that cells in 3D are enriched for regions belonging to the B compartment, have decreased chromatin-bound CTCF and increased fusion of topologically associating domains (TADs). Upregulation of the Hippo pathway in 3D spheroids results in the activation of the LATS1 kinase, which promotes phosphorylation and displacement of CTCF from DNA, thereby likely causing the observed TAD fusions. 3D cells show higher chromatin binding of progesterone receptor (PR), leading to an increase in the number of hormone-regulated genes. This effect is in part mediated by LATS1 activation, which favors cytoplasmic retention of YAP and CTCF removal.
Collapse
Affiliation(s)
- Julieta Ramírez-Cuéllar
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosario T Sanz
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - Marta Valverde-Santiago
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - Judith García-García
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain
| | - A Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, 08028, Spain
| | - Francois Le Dily
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sarah Bonnin
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
| | - Marc A Marti-Renom
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona, 08028, Spain
- ICREA, Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST) Barcelona, Barcelona, Spain.
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), C/ Baldiri Reixac, 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
4
|
Alzahrani AA, Saleh RO, Latypova A, Bokov DO, Kareem AH, Talib HA, Hameed NM, Pramanik A, Alawadi A, Alsalamy A. Therapeutic significance of long noncoding RNAs in estrogen receptor-positive breast cancer. Cell Biochem Funct 2024; 42:e3993. [PMID: 38532685 DOI: 10.1002/cbf.3993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Amaliya Latypova
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | - Hayder Abdullah Talib
- College of Agriculture, National University of Science and Technology, Dhi Qar, Dhi Qar, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Iraq
| | - Atreyi Pramanik
- Divison of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
5
|
Jin R, Forbes CM, Miller NL, Lafin J, Strand DW, Case T, Cates JM, Liu Q, Ramirez-Solano M, Mohler JL, Matusik RJ. Transcriptomic analysis of benign prostatic hyperplasia identifies critical pathways in prostatic overgrowth and 5-alpha reductase inhibitor resistance. Prostate 2024; 84:441-459. [PMID: 38168866 DOI: 10.1002/pros.24661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The medical therapy of prostatic symptoms (MTOPS) trial randomized men with symptoms of benign prostatic hyperplasia (BPH) and followed response of treatment with a 5α-reductase inhibitor (5ARI), an alpha-adrenergic receptor antagonist (α-blocker), the combination of 5ARI and α-blocker or no medical therapy (none). Medical therapy reduced risk of clinical progression by 66% but the reasons for nonresponse or loss of therapeutic response in some patients remains unresolved. Our previous work showed that prostatic glucocorticoid levels are increased in 5ARI-treated patients and that glucocorticoids can increased branching of prostate epithelia in vitro. To understand the transcriptomic changes associated with 5ARI treatment, we performed bulk RNA sequencing of BPH and control samples from patients who received 5ARI versus those that did not. Deconvolution analysis was performed to estimate cellular composition. Bulk RNA sequencing was also performed on control versus glucocorticoid-treated prostate epithelia in 3D culture to determine underlying transcriptomic changes associated with branching morphogenesis. METHOD Surgical BPH (S-BPH) tissue was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy while control tissue termed Incidental BPH (I-BPH) was obtained from the TZ of men undergoing radical prostatectomy for low-volume/grade prostatic adenocarcinoma confined to the peripheral zone. S-BPH patients were divided into four subgroups: men on no medical therapy (none: n = 7), α-blocker alone (n = 10), 5ARI alone (n = 6) or combination therapy (α-blocker and 5ARI: n = 7). Control I-BPH tissue was from men on no medical therapy (none: n = 8) or on α-blocker (n = 6). A human prostatic cell line in 3D culture that buds and branches was used to identify genes involved in early prostatic growth. Snap-frozen prostatic tissue taken at the time of surgery and 3D organoids were used for RNA-seq analysis. Bulk RNAseq data were deconvoluted using CIBERSORTx. Differentially expressed genes (DEG) that were statistically significant among S-BPH, I-BPH, and during budding and branching of organoids were used for pathway analysis. RESULTS Transcriptomic analysis between S-BPH (n = 30) and I-BPH (n = 14) using a twofold cutoff (p < 0.05) identified 377 DEG (termed BPH377) and a cutoff < 0.05 identified 3377 DEG (termed BPH3377). Within the S-BPH, the subgroups none and α-blocker were compared to patients on 5ARI to reveal 361 DEG (termed 5ARI361) that were significantly changed. Deconvolution analysis of bulk RNA seq data with a human prostate single cell data set demonstrated increased levels of mast cells, NK cells, interstitial fibroblasts, and prostate luminal cells in S-BPH versus I-BPH. Glucocorticoid (GC)-induced budding and branching of benign prostatic cells in 3D culture was compared to control organoids to identify early events in prostatic morphogenesis. GC induced 369 DEG (termed GC359) in 3D culture. STRING analysis divided the large datasets into 20-80 genes centered around a hub. In general, biological processes induced in BPH supported growth and differentiation such as chromatin modification and DNA repair, transcription, cytoskeleton, mitochondrial electron transport, ubiquitination, protein folding, and cholesterol synthesis. Identified signaling pathways were pooled to create a list of DEG that fell into seven hubs/clusters. The hub gene centrality was used to name the network including AP-1, interleukin (IL)-6, NOTCH1 and NOTCH3, NEO1, IL-13, and HDAC/KDM. All hubs showed connections to inflammation, chromatin structure, and development. The same approach was applied to 5ARI361 giving multiple networks, but the EGF and sonic hedgehog (SHH) hub was of particular interest as a developmental pathway. The BPH3377, 5ARI363, and GC359 lists were compared and 67 significantly changed DEG were identified. Common genes to the 3D culture included an IL-6 hub that connected to genes identified in BPH hubs that defined AP1, IL-6, NOTCH, NEO1, IL-13, and HDAC/KDM. CONCLUSIONS Reduction analysis of BPH and 3D organoid culture uncovered networks previously identified in prostatic development as being reinitiated in BPH. Identification of these pathways provides insight into the failure of medical therapy for BPH and new therapeutic targets for BPH/LUTS.
Collapse
Affiliation(s)
- Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor M Forbes
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Urology Department, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole L Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John Lafin
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Douglas W Strand
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marisol Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Valiño G, Dunlap K, Quintana L. Androgen receptors rapidly modulate non-breeding aggression in male and female weakly electric fish (Gymnotus omarorum). Horm Behav 2024; 159:105475. [PMID: 38154435 DOI: 10.1016/j.yhbeh.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The South American weakly electric fish, Gymnotus omarorum, displays territorial aggression year-round in both sexes. To examine the role of rapid androgen modulation in non-breeding aggression, we administered acetate cyproterone (CPA), a potent inhibitor of androgen receptors, to both male and females, just before staged agonistic interactions. Wild-caught fish were injected with CPA and, 30 min later, paired in intrasexual dyads. We then recorded the agonistic behavior which encompasses both locomotor displays and emission of social electric signals. We found that CPA had no discernible impact on the levels of aggression or the motivation to engage in aggressive behavior for either sex. However, CPA specifically decreased the expression of social electric signals in both males and female dyads. The effect was status-dependent as it only affected subordinate electrocommunication behavior, the emission of brief interruptions in their electric signaling ("offs"). This study is the first demonstration of a direct and rapid androgen effect mediated via androgen receptors on non-breeding aggression. Elucidating the mechanisms involved in non-breeding aggression in this teleost model allows us to better understand potentially conserved or convergent neuroendocrine mechanisms underlying aggression in vertebrates.
Collapse
Affiliation(s)
- Guillermo Valiño
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Kent Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Laura Quintana
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.
| |
Collapse
|
7
|
Font-Mateu J, Sanllehí P, Sot J, Abad B, Mateos N, Torreno-Pina JA, Ferrari R, Wright RHG, Garcia-Parajo MF, Joglar J, Goñi FM, Beato M. A progesterone derivative linked to a stable phospholipid activates breast cancer cell response without leaving the cell membrane. Cell Mol Life Sci 2024; 81:98. [PMID: 38386110 PMCID: PMC10884080 DOI: 10.1007/s00018-024-05116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
In hormone-responsive breast cancer cells, progesterone (P4) has been shown to act via its nuclear receptor (nPR), a ligand-activated transcription factor. A small fraction of progesterone receptor is palmitoylated and anchored to the cell membrane (mbPR) forming a complex with estrogen receptor alpha (ERα). Upon hormone exposure, either directly or via interaction with ERα, mbPR activates the SRC/RAS/ERK kinase pathway leading to phosphorylation of nPR by ERK. Kinase activation is essential for P4 gene regulation, as the ERK and MSK1 kinases are recruited by the nPR to its genomic binding sites and trigger chromatin remodeling. An interesting open question is whether activation of mbPR can result in gene regulation in the absence of ligand binding to intracellular progesterone receptor (iPR). This matter has been investigated in the past using P4 attached to serum albumin, but the attachment is leaky and albumin can be endocytosed and degraded, liberating P4. Here, we propose a more stringent approach to address this issue by ensuring attachment of P4 to the cell membrane via covalent binding to a stable phospholipid. This strategy identifies the actions of P4 independent from hormone binding to iPR. We found that a membrane-attached progestin can activate mbPR, the ERK signaling pathway leading to iPR phosphorylation, initial gene regulation and entry into the cell cycle, in the absence of detectable intracellular progestin.
Collapse
Affiliation(s)
- Jofre Font-Mateu
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Pol Sanllehí
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Jesús Sot
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Beatriz Abad
- SGIKER, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Nicolas Mateos
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
| | - Juan Andres Torreno-Pina
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roni H G Wright
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Maria F Garcia-Parajo
- The Barcelona Institute for Science and Technology (BIST), ICFO-Institut de Ciencies Fotòniques, 08860, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Jesús Joglar
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Félix M Goñi
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, 48940, Leioa, Spain.
- Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
8
|
Seo M, Choi J, Park J, Yu WJ, Kim S. Computational modeling approaches for developing a synergistic effect prediction model of estrogen agonistic activity. CHEMOSPHERE 2024; 349:140926. [PMID: 38092168 DOI: 10.1016/j.chemosphere.2023.140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The concerns regarding the potential health threats caused by estrogenic endocrine-disrupting chemicals (EDCs) and their mixtures manufactured by the chemical industry are increasing worldwide. Conventional experimental tests for understanding the estrogenic activity of mixtures are expensive and time-consuming. Although non-testing methods using computational modeling approaches have been developed to reduce the number of traditional tests, they are unsuitable for predicting synergistic effects because current prediction models consider only a single chemical. Thus, the development of predictive models is essential for predicting the mixture toxicity, including chemical interactions. However, selecting suitable computational modeling approaches to develop a high-performance prediction model requires considerable time and effort. In this study, we provide a suitable computational approach to develop a predictive model for the synergistic effects of estrogenic activity. We collected datasets on mixture toxicity based on the synergistic effect of estrogen agonistic activity in binary mixtures. Using the model deviation ratio approach, we classified the labels of the binary mixtures as synergistic or non-synergistic effects. We assessed five molecular descriptors, four machine learning-based algorithms, and a deep learning-based algorithm to provide a suitable computational modeling approach. Compared with other modeling approaches, the prediction model using the deep learning-based algorithm and chemical-protein network descriptors exhibited the best performance in predicting the synergistic effects. In conclusion, we developed a new high-performance binary classification model using a deep neural network and chemical-protein network-based descriptors. The developed model will be helpful for the preliminary screening of the synergistic effects of binary mixtures during the development process of chemical products.
Collapse
Affiliation(s)
- Myungwon Seo
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Jiwon Choi
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Jongseo Park
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Sunmi Kim
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
9
|
Chahdi A, Jorgez C, Seth A. Regulation of androgen receptor stability by the β 1 Pix/STUB1 complex. FASEB J 2024; 38:e23408. [PMID: 38197270 PMCID: PMC11832013 DOI: 10.1096/fj.202301100r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
The androgen receptor (AR) is essential in the development and differentiation of testes and male genitalia. AR expression is tightly regulated at the translational and posttranslational levels. AR posttranscriptional regulation is a major determinant of AR availability since AR is a direct target of E3 ubiquitin ligase STUB1. Our work indicated that the Rac/Cdc42 guanosine triphosphatase guanine nucleotide exchange factor, β1 Pix, enhanced AR levels after AR stimulation in HEK293 and HeLa cells. AR stimulation decreased AR ubiquitination which is accompanied by increased β1 Pix binding to AR. Ectopic expression of β1 Pix decreased AR ubiquitination in Tm4 and HEK293 cells. We demonstrated that the formation of a multimolecular complex comprised of AR/β1 Pix/STUB1 responded in a time-dependent manner to AR stimulation. β1 Pix binding dissociated STUB1 from AR and thus prevented STUB1 from catalyzing receptor ubiquitination. β1 Pix enhanced AR transcriptional activity and increased AR target gene expression. Irrespective of treatment, immunofluorescence analysis showed a strong nuclear colocalization of endogenous AR and endogenous βPix in Tm4 cells. However, using Tm4 cell fractionation, AR stimulation decreased βPix/AR association in the cytosolic fraction and increased binding of AR to βPix in the nuclear fraction. To support the role of β1 Pix in androgen regulation, we found that individuals lacking this gene have a significant increase in genitourinary malformations associated with androgen dysfunction. Our data indicate that β1 Pix is an important modulator of AR stability and ligand-dependent AR transcriptional activity. We propose that β1 Pix could serve as a promising therapeutic target to modulate AR signaling.
Collapse
Affiliation(s)
| | | | - Abhishek Seth
- Nemours Children’s Health, Orlando, FL, USA
- University of Central Florida, Orlando, FL
| |
Collapse
|
10
|
Gore IR, Gould E. Developmental and adult stress: effects of steroids and neurosteroids. Stress 2024; 27:2317856. [PMID: 38563163 PMCID: PMC11046567 DOI: 10.1080/10253890.2024.2317856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.
Collapse
Affiliation(s)
- Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
Ohdo S, Koyanagi S, Matsunaga N. Implications of biological clocks in pharmacology and pharmacokinetics of antitumor drugs. J Control Release 2023; 364:490-507. [PMID: 37918485 DOI: 10.1016/j.jconrel.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Mammalians' circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN). SCN control biological rhythms such as the sleep-wake rhythm and homeostatic functions of steroid hormones and their receptors. Alterations in these biological rhythms are implicated in the outcomes of pathogenic conditions such as depression, diabetes, and cancer. Chronotherapy is about optimizing treatment to combat risks and intensity of the disease symptoms that vary depending on the time of day. Thus, conditions/diseases such as allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease, prone to manifest severe symptoms depending on the time of day, would be benefited from chronotherapy. Monitoring rhythm, overcoming rhythm disruption, and manipulating the rhythms from the viewpoints of underlying molecular clocks are essential to enhanced chronopharmacotherapy. New drugs focused on molecular clocks are being developed to improve therapeutics. In this review, we provide a critical summary of literature reports concerning (a) the rationale/mechanisms for time-dependent dosing differences in therapeutic outcomes and safety of antitumor drugs, (b) the molecular pathways underlying biological rhythms, and (c) the possibility of pharmacotherapy based on the intra- and inter-individual variabilities from the viewpoints of the clock genes.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| | - Satoru Koyanagi
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Gonzalez-Uribe V, Romero-Tapia SJ, Castro-Rodriguez JA. Asthma Phenotypes in the Era of Personalized Medicine. J Clin Med 2023; 12:6207. [PMID: 37834850 PMCID: PMC10573947 DOI: 10.3390/jcm12196207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Asthma is a widespread disease affecting approximately 300-million people globally. This condition leads to significant morbidity, mortality, and economic strain worldwide. Recent clinical and laboratory research advancements have illuminated the immunological factors contributing to asthma. As of now, asthma is understood to be a heterogeneous disease. Personalized medicine involves categorizing asthma by its endotypes, linking observable characteristics to specific immunological mechanisms. Identifying these endotypic mechanisms is paramount in accurately profiling patients and tailoring therapeutic approaches using innovative biological agents targeting distinct immune pathways. This article presents a synopsis of the key immunological mechanisms implicated in the pathogenesis and manifestation of the disease's phenotypic traits and individualized treatments for severe asthma subtypes.
Collapse
Affiliation(s)
- Victor Gonzalez-Uribe
- Alergia e Inmunología Clínica, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
- Facultad Mexicana de Medicina, Universidad La Salle México, Ciudad de Mexico 14000, Mexico
| | - Sergio J. Romero-Tapia
- Health Sciences Academic Division (DACS), Universidad Juárez Autónoma de Tabasco, Villahermosa 86040, Mexico;
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
13
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
14
|
Kumar R. Structure and functions of the N-terminal domain of steroid hormone receptors. VITAMINS AND HORMONES 2023; 123:399-416. [PMID: 37717992 DOI: 10.1016/bs.vh.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The steroid hormone receptors (SHRs) belong to the large superfamily of nuclear receptors that selectively modulate gene expression in response to specific hormone ligands. The SHRs are required in a broad range of normal physiological processes as well as associated with numerous pathological conditions. Over years, the understanding of the SHR biology and mechanisms of their actions on target cells have found many clinical applications and management of various endocrine-related disorders. However, the effectiveness of SHR-based therapies in endocrine-related cancers remain a clinical challenge. This, in part, is due to the lack of in-depth understanding of structural dynamics and functions of SHRs' intrinsically disordered N-terminal domain (NTD). Recent progress in delineating SHR structural information and their correlations with receptor action in a highly dynamic environment is ultimately helping to explain how diverse SHR signaling mechanisms can elicit selective biological effects. Recent developments are providing new insights of how NTD's structural flexibility plays an important role in SHRs' allosteric regulation leading to the fine tuning of target gene expression to more precisely control SHRs' cell/tissue-specific functions. In this review article, we are discussing the up-to-date knowledge about the SHR actions with a particular emphasis on the structure and functions of the NTD.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, United States.
| |
Collapse
|
15
|
Glucocorticoid-Responsive Tissue Plasminogen Activator (tPA) and Its Inhibitor Plasminogen Activator Inhibitor-1 (PAI-1): Relevance in Stress-Related Psychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054496. [PMID: 36901924 PMCID: PMC10003592 DOI: 10.3390/ijms24054496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.
Collapse
|
16
|
Nuclear receptor: Structure and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:209-227. [PMID: 36813359 DOI: 10.1016/bs.pmbts.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ligand-dependent transcription factors are nuclear receptors (NRs) that regulate various critical cellular processes such as reproduction, metabolism, development, etc. NRs are classified into (subgroup 0 to subgroup 6) seven superfamilies based on ligand-binding characteristics. All NRs share a general domain structure (A/B, C, D, and E) with distinct essential functions. NRs as monomers, homodimers, or heterodimers bind to consensus DNA sequences known as Hormone Response Elements (HREs). Furthermore, nuclear receptor-binding efficiency depends on minor differences in the sequences of HREs, spacing between the two half-sites, and the flanking sequence of the response elements. NRs can trans-activate and repress their target genes. In positively regulated genes, ligand-bound NRs recruit coactivators to activate the target gene expression, and unliganded NRs cause transcriptional repression. On the other hand, NRs repress gene expression by different mechanisms: (i) ligand-dependent transcriptional repression, (ii) ligand-independent transcriptional repression. This chapter will briefly explain NR superfamilies, their structures, molecular mechanism of action and their role in pathophysiological conditions, etc. That could enable the discovery of new receptors and their ligands and may elucidate their roles in various physiological processes. In addition, therapeutic agonists and antagonists would be developed to control the dysregulation of nuclear receptor signaling.
Collapse
|
17
|
Huanyu T, Jianghong S, Wei G, Jiawei Z, Hui G, Yunhe W. Environmental fate and toxicity of androgens: A critical review. ENVIRONMENTAL RESEARCH 2022; 214:113849. [PMID: 35843282 DOI: 10.1016/j.envres.2022.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Androgens are released by humans and livestock into the environment and which cause potent endocrine disruptions even at nanogram per liter levels. In this article, we reviewed updated research results on the structure, source, distribution characteristics and the fate of androgens in ecological systems; and emphasized the potential risk of androgens in aquatic organism. Androgens have moderately solubility in water (23.6-58.4 mg/L) and moderately hydrophobic (log Kow 2.75-4.40). The concentration of androgens in surface waters were mostly in ng/L ranges. The removal efficiencies of main wastewater treatment processes were about 70-100%, except oxidation ditch and stabilization ponds. Sludge adsorption and microbial degradation play important role in the androgens remove. The conjugated androgens were transformed into free androgens in environmental matrices. Global efforts to provide more toxicity data and establish standard monitoring methods need a revisit. Of the day available, there is an urgent need for comprehensive consideration of the impact of androgens on the environment and ecology.
Collapse
Affiliation(s)
- Tao Huanyu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Shi Jianghong
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guo Wei
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhang Jiawei
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, China
| | - Ge Hui
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wang Yunhe
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Knewtson KE, Ohl NR, Robinson JL. Estrogen Signaling Dictates Musculoskeletal Stem Cell Behavior: Sex Differences in Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:789-812. [PMID: 34409868 PMCID: PMC9419932 DOI: 10.1089/ten.teb.2021.0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sexual dimorphisms in humans and other species exist in visually evident features such as body size and less apparent characteristics, including disease prevalence. Current research is adding to a growing understanding of sex differences in stem cell function and response to external stimuli, including sex hormones such as estrogens. These differences are proving significant and directly impact both the understanding of stem cell processes in tissue repair and the clinical implementation of stem cell therapies. Adult stem cells of the musculoskeletal system, including those used for development and repair of muscle, bone, cartilage, fibrocartilage, ligaments, and tendons, are no exception. Both in vitro and in vivo studies have found differences in stem cell number, proliferative and differentiation capabilities, and response to estrogen treatment between males and females of many species. Maintaining the stemness and reducing senescence of adult stem cells is an important topic with implications in regenerative therapy and aging. As such, this review discusses the effect of estrogens on musculoskeletal system stem cell response in multiple species and highlights the research gaps that still need to be addressed. The following evidence from investigations of sex-related phenotypes in adult progenitor and stem cells are pieces to the big puzzle of sex-related effects on aging and disease and critical information for both fundamental tissue repair and regeneration studies and safe and effective clinical use of stem cells. Impact Statement This review summarizes current knowledge of sex differences in and the effects of estrogen treatment on musculoskeletal stem cells in the context of tissue engineering. Specifically, it highlights the impact of sex on musculoskeletal stem cell function and ability to regenerate tissue. Furthermore, it discusses the varying effects of estrogen on stem cell properties, including proliferation and differentiation, important to tissue engineering. This review aims to highlight the potential impact of estrogens and the importance of performing sex comparative studies in the field of tissue engineering.
Collapse
Affiliation(s)
- Kelsey E. Knewtson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Nathan R. Ohl
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L. Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Address correspondence to: Jennifer L. Robinson, PhD, Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 West 15th Street Room 4132, Lawrence, KS 66045, USA
| |
Collapse
|
19
|
Ohdo S, Koyanagi S, Matsunaga N. Chronopharmacology of immune-related diseases. Allergol Int 2022; 71:437-447. [PMID: 35850747 DOI: 10.1016/j.alit.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/01/2022] Open
Abstract
Clock genes, circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN), control various circadian rhythms in many biological processes such as physiology and behavior. Clock gene regulates many diseases such as cancer, immunological dysfunction, metabolic syndrome and sleep disorders etc. Chronotherapy is especially relevant, when the risk and/or intensity of the symptoms of disease vary predicably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease. Dosing time influences the effectiveness and toxicity of many drugs. The pharmacodynamics of medications as well as pharmacokinetics influences chronopharmacological phenomena. To escape from host immunity in the tumor microenvironment, cancer cells have acquired several pathways. Immune checkpoint therapy targeting programmed death 1 (PD-1) and its ligand (PD-L1) interaction had been approved for the treatment of patients with several types of cancers. Circadian expression of PD-1 is identified on tumor associated macrophages (TAMs), which is rationale for selecting the most appropriate time of day for administration of PD-1/PD-L1 inhibitors. The therapies for chronic kidney disease (CKD) are urgently needed because of a global health problem. The mechanism of the cardiac complications in mice with CKD had been related the GRP68 in circulating monocytes and serum accumulation of retinol. Development of a strategy to suppress retinol accumulation will be useful to prevent the cardiac complications of CKD. Therefore, we introduce an overview of the dosing time-dependent changes in therapeutic outcome and safety of drug for immune-related diseases.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Satoru Koyanagi
- Department of Glocal Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Hönes GS, Härting N, Mittag J, Kaiser FJ. TRα2—An Untuned Second Fiddle or Fine-Tuning Thyroid Hormone Action? Int J Mol Sci 2022; 23:ijms23136998. [PMID: 35806002 PMCID: PMC9266318 DOI: 10.3390/ijms23136998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Thyroid hormones (THs) control a wide range of physiological functions essential for metabolism, growth, and differentiation. On a molecular level, TH action is exerted by nuclear receptors (TRs), which function as ligand-dependent transcription factors. Among several TR isoforms, the function of TRα2 remains poorly understood as it is a splice variant of TRα with an altered C-terminus that is unable to bind T3. This review highlights the molecular characteristics of TRα2, proposed mechanisms that regulate alternative splicing and indications pointing towards an antagonistic function of this TR isoform in vitro and in vivo. Moreover, remaining knowledge gaps and major challenges that complicate TRα2 characterization, as well as future strategies to fully uncover its physiological relevance, are discussed.
Collapse
Affiliation(s)
- Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- Correspondence:
| | - Nina Härting
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (N.H.); (F.J.K.)
| | - Jens Mittag
- Institute for Endocrinology and Diabetes-Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;
| | - Frank J. Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (N.H.); (F.J.K.)
| |
Collapse
|
21
|
Su CC, Gao CM, Peng FT, Jou TS, Wang IJ. Host Immune Response and Associated Clinical Features in a Primary Cytomegalovirus Eye Infection Model Using Anterior Chamber Inoculation. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35579904 PMCID: PMC9123510 DOI: 10.1167/iovs.63.5.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the pathogenesis of cytomegalovirus (CMV)-associated anterior segment infection in immunocompetent hosts and evaluate the effects of ganciclovir and glucocorticoid treatment in management of the disease. Methods We used an inoculation model to reproduce CMV anterior segment infection in immunocompetent rats. Flow cytometry, cytokine analysis, histopathological sections, and quantitative polymerase chain reaction were performed to investigate the immune response after CMV infection. The effects of ganciclovir and glucocorticoid treatment were also assessed. Results Anterior chamber inoculation of CMV in rats provoked characteristic pathological features of human CMV anterior segment infection. The innate and adaptive immunity sequentially developed in an anterior segment after inoculation, and the elevation of intraocular pressure (IOP) was highly associated with ocular infiltration and inflammation. Early ocular immune response reduced virus DNA in the anterior segment and alleviated viral lymphadenopathy. Early intervention with ganciclovir enhanced the release of cytokines associated with T response and facilitated recruitment of NKT and T cells in drainage lymph nodes. Glucocorticoid treatment, alone or combined with ganciclovir, decreased elevation of IOP but also impeded DNA clearance. Conclusions The inoculation model reproduced characteristic pathological features of human CMV anterior segment infection. The use of glucocorticoid in current practice may hinder viral clearance, and ganciclovir therapy can assist cytokine expression to combat the virus.
Collapse
Affiliation(s)
- Chien-Chia Su
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Mao Gao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Ti Peng
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzuu-Shuh Jou
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Novel insights into the SPOP E3 ubiquitin ligase: From the regulation of molecular mechanisms to tumorigenesis. Biomed Pharmacother 2022; 149:112882. [PMID: 35364375 DOI: 10.1016/j.biopha.2022.112882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated protein degradation is the primary biological process by which protein abundance is regulated and protein homeostasis is maintained in eukaryotic cells. Speckle-type pox virus and zinc finger (POZ) protein (SPOP) is a typical substrate adaptor of the Cullin 3-RING ligase (CRL3) family; it serves as a bridge between the Cullin 3 (Cul3) scaffold protein and its substrates. In recent years, SPOP has received increasing attention because of its versatility in its regulatory pathways and the diversity of tumor types involved. Mechanistically, SPOP substrates are involved in a wide range of biological processes, and abnormalities in SPOP function perturb downstream biological processes and promote tumorigenesis. Additionally, liquid-liquid phase separation (LLPS), a potential mechanism of membraneless organelle formation, was recently found to mediate the self-triggered colocalization of substrates with higher-order oligomers of SPOP. Herein, we summarize the structure of SPOP and the specific mechanisms by which it mediates the efficient ubiquitination of substrates. Additionally, we review the biological functions of SPOP, the regulation of SPOP expression, the role of SPOP in tumorigenesis and its therapeutic value.
Collapse
|
23
|
Oxfeldt M, Dalgaard LB, Farup J, Hansen M. Sex Hormones and Satellite Cell Regulation in Women. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:9065923. [PMID: 38655160 PMCID: PMC11022763 DOI: 10.1155/2022/9065923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 04/26/2024]
Abstract
Recent years have seen growing scholarly interest in female physiology in general. Moreover, particular attention has been devoted to how concentrations of female sex hormones vary during the menstrual cycle and menopausal transition and how hormonal contraception and hormonal therapy influence skeletal muscle tissue. While much effort has been paid to macro outcomes, such as muscle function or mass, rather less attention has been paid to mechanistic work that may help explain the underlying mechanism through which sex hormones regulate skeletal muscle tissue. Evidence from animal studies shows a strong relationship between the female sex hormone estrogen and satellite cells (SCs), a population of muscle stem cells involved in skeletal muscle regulation. A few human studies investigating this relationship have been published only recently. Thus, the purpose of this study was to bring an updated review on female sex hormones and their role in SC regulation. First, we describe how SCs regulate skeletal muscle maintenance and repair and introduce sex hormone signaling within the muscle. Second, we present evidence from animal studies elucidating how estrogen deficiency and supplementation influence SCs. Third, we present results from investigations from human trials including women whose concentrations of female hormones differ due to menopause, hormone therapy, hormonal contraceptives, and the menstrual cycle. Finally, we discuss research and methodological recommendations for future studies aiming at elucidating the link between female sex hormones and SCs with respect to aging and training.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Chung C, Abboud K. Targeting the androgen receptor signaling pathway in advanced prostate cancer. Am J Health Syst Pharm 2022; 79:1224-1235. [PMID: 35390118 DOI: 10.1093/ajhp/zxac105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DISCLAIMER In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE This article summarizes current androgen receptor (AR)-directed therapies that have received regulatory approval for the treatment of advanced prostate adenocarcinoma (herein referred to as prostate cancer, PC). SUMMARY PC is an androgen-dependent malignancy in which ligands including testosterone and dihydrotestosterone bind to AR, initiating androgen-AR complex translocation to the nucleus followed by AR-mediated transcription of target genes. Androgen deprivation therapy (ADT), including gonadotropin hormone-releasing hormone (GnRH) agonists with or without AR antagonists (antiandrogens), GnRH antagonists, or bilateral orchiectomy, forms the backbone of treatment for patients with metastatic castration-naive PC and/or castration-resistant PC (CRPC). ADT is also an option for high-risk, early-stage PC after prostatectomy and/or radiation. While ADT is often very effective as initial therapy, resistance ultimately develops despite suppression of gonadal and/or adrenal androgens, leading to CRCPC, which is characterized by mechanisms such as reactivation of the AR signaling pathway, AR overexpression, and gene mutations in the ligand-binding domain of AR that lead to disease progression, resulting in increased symptom burden and ultimately death. However, disease in patients with CRPC is still dependent on androgen signaling, and these patients continue on ADT to maintain a castrate level of serum testosterone. Novel hormonal therapies including agents that target AR directly (eg, AR antagonists) are often added to ADT in this setting. Targeting the AR signaling pathway led to the development of second-generation AR antagonists, examples of which include enzalutamide, apalutamide, and darolutamide. These agents do not exhibit partial agonism or possess a higher affinity for AR and are not postulated to improve survival outcomes relative to their first-generation counterparts for patients with CRPC. Lastly, the emergence of ADT, including second-generation AR antagonists, has led to the development of supportive care for treatment-related adverse effects. CONCLUSION Major advances have been made in targeting the AR signaling pathway in patients with advanced PC. Further studies are warranted to identify the optimal sequencing of therapies to maximize treatment benefit. Mitigation of treatment-related adverse effects presents new opportunities to advance clinical pharmacy practice.
Collapse
|
25
|
Wu J, Shen G, Liu D, Xu H, Jiao M, Zhang Y, Lin Y, Zhao P. The Response of the Estrogen-Related Receptor to 20-Hydroxyecdysone in Bombyx mori: Insight Into the Function of Estrogen-Related Receptor in Insect 20-Hydroxyecdysone Signaling Pathway. Front Physiol 2022; 12:785637. [PMID: 35115955 PMCID: PMC8804299 DOI: 10.3389/fphys.2021.785637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Estrogen-related receptor (ERR) is an orphan nuclear receptor that was first discovered in animals, and play an important role in metabolism, development, and reproduction. Despite extensive research on the function of ERR, its transcriptional regulation mechanism remains unclear. In this study, we obtained the upstream region of Bombyx mori ERR (BmERR) and confirmed the promoter activity of this region. Interestingly, we found that 10 and 50 nM 20-hydroxyecdysone (20E) up-regulated the transcriptional activity of BmERR promoter. In addition, eight putative ecdysone response elements (EcREs) were predicted in the upstream sequence of BmERR. Based on their positions, the upstream sequence of BmERR was truncated into different fragments. Finally, an EcRE-like sequence (5′-AGTGCAGTAAACTGT-3′) was identified. Electrophoretic mobility shift assay (EMSA) and cell transfection experiments confirmed that this motif specifically binds to the complex formed between ecdysone receptor (BmEcR) and the ultraspiracle (BmUSP), a key complex in the 20E signaling pathway. Interference of BmERR or BmEcR mRNA in the embryonic cells of Bombyx mori significantly affected the expression of BmEcR and BmUSP. Overall, these results suggested that an EcRE element was identified from BmERR, and this will help understanding the detailed regulatory mechanism of ERR in insects.
Collapse
Affiliation(s)
- Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Die Liu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Haoran Xu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Mengyao Jiao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yungui Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- *Correspondence: Ying Lin,
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Ping Zhao,
| |
Collapse
|
26
|
La Greca A, Bellora N, Le Dily F, Jara R, Nacht AS, Quilez Oliete J, Villanueva JL, Vidal E, Merino G, Fresno C, Tarifa Reischle I, Vallejo G, Vicent GP, Fernández E, Beato M, Saragüeta P. Chromatin topology defines estradiol-primed progesterone receptor and PAX2 binding in endometrial cancer cells. eLife 2022; 11:66034. [PMID: 35018885 PMCID: PMC8887898 DOI: 10.7554/elife.66034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/11/2022] [Indexed: 11/15/2022] Open
Abstract
Estrogen (E2) and Progesterone (Pg), via their specific receptors (ERalpha and PR), are major determinants in the development and progression of endometrial carcinomas, However, their precise mechanism of action and the role of other transcription factors involved are not entirely clear. Using Ishikawa endometrial cancer cells, we report that E2 treatment exposes a set of progestin-dependent PR binding sites which include both E2 and progestin target genes. ChIP-seq results from hormone-treated cells revealed a non-random distribution of PAX2 binding in the vicinity of these estrogen-promoted PR sites. Altered expression of hormone regulated genes in PAX2 knockdown cells suggests a role for PAX2 in fine-tuning ERalpha and PR interplay in transcriptional regulation. Analysis of long-range interactions by Hi-C coupled with ATAC-seq data showed that these regions, that we call ‘progestin control regions’ (PgCRs), exhibited an open chromatin state even before hormone exposure and were non-randomly associated with regulated genes. Nearly 20% of genes potentially influenced by PgCRs were found to be altered during progression of endometrial cancer. Our findings suggest that endometrial response to progestins in differentiated endometrial tumor cells results in part from binding of PR together with PAX2 to accessible chromatin regions. What maintains these regions open remains to be studied.
Collapse
Affiliation(s)
| | - Nicolás Bellora
- National Scientific and Technical Research Council (CONICET), Institute of Nuclear Technologies for Health, Bariloche, Argentina
| | - François Le Dily
- Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
| | - Rodrigo Jara
- Biology and Experimental Medicine Institute, Buenos Aires, Argentina
| | | | | | | | - Enrique Vidal
- Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
| | - Gabriela Merino
- Bioscience Data Mining Group, Córdoba University, Córdoba, Argentina
| | - Cristóbal Fresno
- Bioscience Data Mining Group, Córdoba University, Córdoba, Argentina
| | | | - Griselda Vallejo
- Biology and Experimental Medicine Institute, Buenos Aires, Argentina
| | | | - Elmer Fernández
- Bioscience Data Mining Group, Córdoba University, Córdoba, Argentina
| | - Miguel Beato
- Gene Regulation, Centre for Genomic Regulation, Barcelona, Spain
| | | |
Collapse
|
27
|
Wright RHG, Vastolo V, Oliete JQ, Carbonell-Caballero J, Beato M. Global signalling network analysis of luminal T47D breast cancer cells in response to progesterone. Front Endocrinol (Lausanne) 2022; 13:888802. [PMID: 36034422 PMCID: PMC9403329 DOI: 10.3389/fendo.2022.888802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breast cancer cells enter into the cell cycle following progestin exposure by the activation of signalling cascades involving a plethora of enzymes, transcription factors and co-factors that transmit the external signal from the cell membrane to chromatin, ultimately leading to a change of the gene expression program. Although many of the events within the signalling network have been described in isolation, how they globally team up to generate the final cell response is unclear. METHODS In this study we used antibody microarrays and phosphoproteomics to reveal a dynamic global signalling map that reveals new key regulated proteins and phosphor-sites and links between previously known and novel pathways. T47D breast cancer cells were used, and phospho-sites and pathways highlighted were validated using specific antibodies and phenotypic assays. Bioinformatic analysis revealed an enrichment in novel signalling pathways, a coordinated response between cellular compartments and protein complexes. RESULTS Detailed analysis of the data revealed intriguing changes in protein complexes involved in nuclear structure, epithelial to mesenchyme transition (EMT), cell adhesion, as well as transcription factors previously not associated with breast cancer cell proliferation. Pathway analysis confirmed the key role of the MAPK signalling cascade following progesterone and additional hormone regulated phospho-sites were identified. Full network analysis shows the activation of new signalling pathways previously not associated with progesterone signalling in T47D breast cancer cells such as ERBB and TRK. As different post-translational modifications can mediate complex crosstalk mechanisms and massive PARylation is also rapidly induced by progestins, we provide details of important chromatin regulatory complexes containing both phosphorylated and PARylated proteins. CONCLUSIONS This study contributes an important resource for the scientific community, as it identifies novel players and connections meaningful for breast cancer cell biology and potentially relevant for cancer management.
Collapse
Affiliation(s)
- Roni H. G. Wright
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- *Correspondence: Roni H. G. Wright, ; Miguel Beato,
| | - Viviana Vastolo
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Quilez Oliete
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - José Carbonell-Caballero
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- *Correspondence: Roni H. G. Wright, ; Miguel Beato,
| |
Collapse
|
28
|
Cabrera-Busto J, Mancera JM, Ruiz-Jarabo I. Cortisol and Dexamethasone Mediate Glucocorticoid Actions in the Lesser Spotted Catshark (Scyliorhinus canicula). BIOLOGY 2021; 11:biology11010056. [PMID: 35053054 PMCID: PMC8772811 DOI: 10.3390/biology11010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Simple Summary For the first time, glucocorticoid actions of corticosteroids are evidenced in vivo and ex vivo in sharks, highlighting the importance of carbohydrate metabolism in situations of high-energy expenditure in this taxonomical group. Long-term (7 days) in vivo administration of dexamethasone (DEX, a synthetic glucocorticoid) decreased 1α-hydroxycorticosterone (1α-OHB, the main corticosteroid hormone in sharks), while also modified carbohydrates metabolism in liver and white muscle. Short-term (1 to 5 h) ex vivo incubation of liver and muscle explants with cortisol (corticosteroid not present in sharks) and DEX revealed glucose secretion mediated by glucocorticoid receptors (GR), as seen by the employment of mifepristone (a GR inhibitor). Abstract Corticosteroids are hormones produced in vertebrates exerting gluco- and mineralocorticoid actions (GC and MC) mediated by specific receptors (GR and MR, respectively). In elasmobranchs, the major circulating corticosteroid is the 1α-hydroxycorticosterone (1α-OHB). This hormone acts as a MC, but to date its role as a GC has not been established. As there is no 1α-OHB standard available, here we employed a set of in vivo and ex vivo approaches to test GC actions of other corticosteroids in the lesser spotted catshark (Scyliorhinus canicula). Dexamethasone (DEX, a synthetic corticosteroid) slow-release implants decreased plasma 1α-OHB levels after 7 days, and modified carbohydrates metabolism in liver and white muscle (energy stores and metabolic enzymes). In addition, ex vivo culture of liver and white muscle explants confirmed GC actions of corticosteroids not naturally present in sharks (cortisol and DEX) by increasing glucose secretion from these tissues. Dose–response curves induced by cortisol and DEX, altogether with the use of specific GR inhibitor mifepristone, confirmed the involvement of GR mediating glucose secretion. This study highlights the influence of corticosteroids in the glucose balance of S. canicula, though the role of 1α-OHB as a GC hormone in sharks should be further confirmed.
Collapse
Affiliation(s)
- Juncal Cabrera-Busto
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
| | - Juan M. Mancera
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
| | - Ignacio Ruiz-Jarabo
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
- Department of Physiology, Faculty of Biological Sciences, University Complutense Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913944984
| |
Collapse
|
29
|
Austin JR, Li K, Rodríguez RR, Lantvit DD, Murphy BT, Burdette JE. Irilone, a Red Clover Isoflavone, Combined with Progesterone Enhances PR Signaling through the Estrogen and Glucocorticoid Receptors. JOURNAL OF NATURAL PRODUCTS 2021; 84:3090-3099. [PMID: 34813298 PMCID: PMC9152987 DOI: 10.1021/acs.jnatprod.1c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trifolium pratense L. (red clover) is a popular botanical supplement used for women's health. Irilone isolated from red clover previously demonstrated progestogenic potentiation activity. In this study, irilone enhanced progesterone signaling was determined to not occur due to post-translational phosphorylation or by reducing progesterone receptor (PR) protein levels but instead increased PR protein levels in T47D breast cancer cells, which could be blocked by estrogen receptor (ER) antagonists, suggesting an ER dependent effect. Further, irilone increased luciferase activity from a hormone responsive element in a cell line that lacked ER and PR but expressed the glucocorticoid receptor (GR). A siRNA knockdown of GR in Ishikawa PR-B endometrial cancer cells reduced irilone's ability to enhance progesterone signaling. In an ovariectomized CD-1 mouse model, irilone did not induce uterine epithelial cell proliferation. The mechanism of action of irilone gives insight into PR crosstalk with other steroid hormone receptors, which can be important for understanding botanicals that are used for women's health.
Collapse
Affiliation(s)
- Julia R. Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Rocío Rivera Rodríguez
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
30
|
Zaurin R, Ferrari R, Nacht AS, Carbonell J, Le Dily F, Font-Mateu J, de Llobet Cucalon LI, Vidal E, Lioutas A, Beato M, Vicent GP. A set of accessible enhancers enables the initial response of breast cancer cells to physiological progestin concentrations. Nucleic Acids Res 2021; 49:12716-12731. [PMID: 34850111 PMCID: PMC8682742 DOI: 10.1093/nar/gkab1125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
Here, we report that in T47D breast cancer cells 50 pM progestin is sufficient to activate cell cycle entry and the progesterone gene expression program. At this concentration, equivalent to the progesterone blood levels found around the menopause, progesterone receptor (PR) binds only to 2800 genomic sites, which are accessible to ATAC cleavage prior to hormone exposure. These highly accessible sites (HAs) are surrounded by well-organized nucleosomes and exhibit breast enhancer features, including estrogen receptor alpha (ERα), higher FOXA1 and BRD4 (bromodomain containing 4) occupancy. Although HAs are enriched in RAD21 and CTCF, PR binding is the driving force for the most robust interactions with hormone-regulated genes. HAs show higher frequency of 3D contacts among themselves than with other PR binding sites, indicating colocalization in similar compartments. Gene regulation via HAs is independent of classical coregulators and ATP-activated remodelers, relying mainly on MAP kinase activation that enables PR nuclear engagement. HAs are also preferentially occupied by PR and ERα in breast cancer xenografts derived from MCF-7 cells as well as from patients, indicating their potential usefulness as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Roser Zaurin
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Ana Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Jose Carbonell
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Francois Le Dily
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Jofre Font-Mateu
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Lara Isabel de Llobet Cucalon
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Enrique Vidal
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Antonios Lioutas
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Guillermo P Vicent
- Center for Genomic Regulation (CRG), Barcelona, 08003, Spain.,Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Barcelona, 08003, Spain
| |
Collapse
|
31
|
TRPV6 is a potential regulator of bone resorption in bone loss induced by estrogen deficiency. iScience 2021; 24:103261. [PMID: 34778726 PMCID: PMC8577076 DOI: 10.1016/j.isci.2021.103261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/20/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
The precise effect of estrogen (E2) on osteoclast function is still poorly understood. The aim of this study was to investigate the potential role of transient receptor potential vanilloid 6 (TRPV6) in E2-mediated osteoclast function and to characterize the relevant underlying mechanisms. Here, we found that Trpv6 is drastically decreased in ovariectomy operation animals and the administration of E2 results in an increased expression of Trpv6 in osteoclasts. In contrast, Trpv6 depletion significantly blocked the inhibitory effects of E2 on bone resorption activity, and silencing Trpv6 alleviated E2-induced osteoclast apoptosis. In addition, we found that E2 regulates the transcription of Trpv6 through ERα, by interacting with C/EBPβ and NF-κB. Chip assay analysis indicated that C/EBPβ regulates Trpv6 transcription by binding to Trpv6 promoter fragments −1,866 nt to −1,761 nt and −2,685 nt to −2,580 nt, whereas NF-κB binds to the −953 nt to −851 nt region. We conclude that TRPV6 has a significant effect on E2-mediated osteoclast function. E2 induces Trpv6 expression in osteoclasts TRPV6 was involved in the effect of E2-mediated osteoclast function E2 regulates the transcription of Trpv6 through Erα in osteoclasts
Collapse
|
32
|
Molecular Proof of a Clinical Concept: Expression of Estrogen Alpha-, Beta-Receptors and G Protein-Coupled Estrogen Receptor 1 (GPER) in Histologically Assessed Common Nevi, Dysplastic Nevi and Melanomas. Medicina (B Aires) 2021; 57:medicina57111228. [PMID: 34833446 PMCID: PMC8621316 DOI: 10.3390/medicina57111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives: Epidemiologic data show significant differences in melanoma incidence and outcomes between sexes. The role of hormonal receptors in the pathogenesis of melanocytic lesions remains unclear, thus we performed this study aiming to assess estrogen receptors expression in different melanocytic lesions. Materials and Methods: We performed a cross-sectional study that included 73 consecutively excised melanocytic lesions. Estrogen receptor alpha (ERα), beta (ERβ), and G-protein coupled estrogen receptor (GPER) expression was analyzed in melanocytes and keratinocytes of common nevi, dysplastic nevi, melanoma, healthy skin margin, and in sebaceous and sweat gland cells. Results: ERβ expression was higher in dysplastic nevi margin melanocytes compared to common nevi (p = 0.046) and in dysplastic nevi keratinocytes compared to melanoma keratinocytes (p = 0.021). ERβ expression was significantly higher in margin melanocytes compared to melanoma melanocytes (p = 0.009). No difference in ERβ expression was shown between melanocytes of three types of lesions. GPER expression was higher in nuclei and cytoplasm of dysplastic nevi (p = 0.02 and p = 0.036 respectively) and at the margin compared to melanoma. GPER expression was lower in sebaceous glands of tissue surrounding common nevi (p = 0.025) compared to dysplastic nevi. GPER expression was higher in skin margin tissue melanocytes (p = 0.016 nuclear, p = 0.029 cytoplasmic) compared to melanoma melanocytes. There were no differences in ERα expression between the melanocytic lesions. Conclusion: Further large-scale studies are warranted to investigate the potential role of ERβ and GPER in the pathogenesis of melanocytic lesions.
Collapse
|
33
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
34
|
Patel A, Bhatt M, Soni A, Sharma P. Identification of steroidal saponins from Tribulus terrestris and their in silico docking studies. J Cell Biochem 2021; 122:1665-1685. [PMID: 34337761 DOI: 10.1002/jcb.30113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
Tribulus terrestris is known to possess many pharmacological properties, most notably its anticancer activities, owing to its rich steroidal saponin contents. Even though many reports are available elucidating the anticancer potential of the herb, we, for the very first time have attempted to isolate and identified the active compound present in seed crude saponin extract and confers its in silico docking ability with various cellular targets proteins. High performance thin layer chromatography confirms the presence of active saponins in leaf and seed saponin extracts which were further fractionated by silica gel column chromatography. Fractions collected were assessed for cytotoxicity on human breast cancer cells. High resolution liquid chromatography and mass spectroscopy was employ to identify the active components present in fraction with highest cytotoxicity. Intriguingly, Nautigenin type of steriodal saponin was identified to present in the active fraction of seed extract (SF11) and the identified compound was further analyzed for its in silico docking interaction using PyRx AutodockVina. Docking studies revealed the high binding affinity of Nuatigenin at significant sites with apoptotic proteins Bcl-2, Bax, caspase-3, caspase-8, p53 and apoptosis inducing factor along with cell surface receptors estrogen receptor, projesterone receptor, epidermal growth factor receptor, and human epidermal growth factor receptor-2. Thus, the conclusions were drawn that saponin fraction of Tribulus terrestis possesses active compounds having anticancer property and specifically, Nuatigenin saponin can be considered as an important therapeutic drug for the breast cancer treatment.
Collapse
Affiliation(s)
- Apurva Patel
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mital Bhatt
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Anjali Soni
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Preeti Sharma
- Department of Biotechnology, Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
35
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
36
|
Paumo HK, Dalhatou S, Katata-Seru LM, Kamdem BP, Tijani JO, Vishwanathan V, Kane A, Bahadur I. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Ohdo S. Chrono-Drug Discovery and Development Based on Circadian Rhythm of Molecular, Cellular and Organ Level. Biol Pharm Bull 2021; 44:747-761. [PMID: 34078807 DOI: 10.1248/bpb.b21-00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paired suprachiasmatic nuclei (SCN) is the circadian pacemaker in mammals. Clock genes ultimately regulates a vast array of circadian rhythms involved in biological, physiological and behavioral process. The clock genes are closely related to sleep disorders, metabolic syndromes, and cancer diseases. Monitoring rhythm, overcoming rhythm disruption, and manipulating rhythm from the perspective of the clock genes play an important role to improve chronopharmacotherapy. Such an approach should be achieved by overcoming the new challenges in drug delivery systems that match the circadian rhythm (Chrono-DDS). Gene and antibody delivery, targeting specific molecules for certain diseases have been focused in recent studies on pharmacotherapy. One of important candidates should also be clock genes. New drugs targeting the molecular clock are being developed to manage diseases in humans. The circadian dynamics of cancer stem cells are controlled by the tumor microenvironment and provide proof for its implication in chronotherapy against triple-negative breast cancer. To examine the relationship between the circadian clock and chronic kidney disease (CKD) exacervation leads to clarify the novel molecular mechanisms causing renal malfunction in mice with CKD. A novel inhibitor of cell cycle regulatory factors has been identified and the inhibitor repressed renal inflammation in a CKD mouse model. Therefore, this review aims to introduce the role of the molecular clock in the time-dependent dosing changes in the therapeutic effect and safety of a drug and the possibility of drug discovery and development based on the molecular clock.
Collapse
Affiliation(s)
- Shigehiro Ohdo
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
38
|
Guo J, Wang J, Sun W, Liu X. The advances of post-stroke depression: 2021 update. J Neurol 2021; 269:1236-1249. [PMID: 34052887 DOI: 10.1007/s00415-021-10597-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Post-stroke depression (PSD) is one of common and serious sequelae of stroke. Approximately, one in three stroke survivors suffered from depression after stroke. It heavily affected functional rehabilitation, which leaded to poor quality of life. What is worse, it is strongly associated with high mortality. In this review, we aimed to derive a comprehensive and integrated understanding of PSD according to recently published papers and previous classic articles. Based on the considerable number of studies, we found that within 2 years incidence of PSD has a range from 11 to 41%. Many factors contribute to the occurrence of PSD, including the history of depression, stroke severity, lesion location, and so on. Currently, the diagnosis of PSD is mainly based on the DSM guidelines and combined with various depression scales. Unfortunately, we lack a unified mechanism to explain PSD which mechanisms now involve dysregulation of hypothalamic-pituitary-adrenal (HPA) axis, increased inflammatory factors, decreased levels of monoamines, glutamate-mediated excitotoxicity, and abnormal neurotrophic response. At present, both pharmacotherapy and psychological therapies are employed in treating PSD. Although great advance has been made by researchers, there are still a lot of issues need to be addressed. Especially, the mechanism of PSD is not completely clear.
Collapse
Affiliation(s)
- Jianglong Guo
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Jinjing Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Sun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Xinfeng Liu
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
39
|
Ma P, Zhang Y, Liang Q, Yin Y, Wang S, Han R, Huo C, Deng H. Mifepristone (RU486) inhibits dietary lipid digestion by antagonizing the role of glucocorticoid receptor on lipase transcription. iScience 2021; 24:102507. [PMID: 34308280 PMCID: PMC8257970 DOI: 10.1016/j.isci.2021.102507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Lipid digestion and absorption are tightly regulated to cope with metabolic demands among tissues. How these processes are coordinated is not well characterized. Here, we found that mifepristone (RU486) prevents lipid digestion both in flies and mice. In flies, RU486 administration suppresses lipid digestion by transcriptional downregulating Magro in guts. Similarly, intestinal lipid uptake in mice was also suppressed by RU486 through the glucocorticoid receptor (GR). Further studies showed that the pancreatic lipase Pnlip is a direct transcriptional target of GR in pancreas tissues. Glucocorticoid levels in mice fed a high fat diet (HFD) are significantly lower than those fed on a conventional diet, and RU486 administration inhibits HFD-induced obesity both in mice and flies. Our findings identified a novel mechanism of RU486 functions as a GR antagonist systematically regulating lipid metabolism, providing new insight on the role of Glucocorticoid/GR in Cushing disease, diabetes, and other related metabolic syndromes. RU486 suppresses lipid digestion both in mice and flies. In flies, lipase Magro is transcriptionally suppressed by RU486 through dERR. In mice, intestinal lipid digestion is inhibited by RU486 through (GR)/PTL pathway in pancreas. RU486 alleviates high fat diet-induced obesity both in flies and mice.
Collapse
Affiliation(s)
- Peng Ma
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Yao Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Qiying Liang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Youjie Yin
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Saifei Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Ruolei Han
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Chunyu Huo
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| |
Collapse
|
40
|
Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Krüppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J Proteomics 2021; 242:104257. [PMID: 33957312 DOI: 10.1016/j.jprot.2021.104257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Recent studies reported that JH-regulated phosphorylation status of the JH-receptor complex contributes to its transcription activity in Aedes aegypti. However, phosphorylation sites of these proteins have not yet been identified. In this study, we found that the fusion of an EGFP tag to Ae. aegypti Kr-h1 (AaKr-h1) and Met (AaMet) improved their stability in mosquito Aag-2 cells, which allowed their purification. The liquid chromatography and tandem mass spectrometry analysis of the purified AaKr-h1 showed that the phosphoserine residue at position 694, located in the evolutionarily conserved SVIQ motif, is dephosphorylated when the cells are exposed to JH. The AaKr-h1 dephosphorylation mutant (S694V) showed significantly higher activity in inducing the luciferase gene regulated by JH response elements. The phosphorylation profile of Met also changed after exposing Aag-2 cells to JH III. The Ser-77 and Ser-710 residues of Met were phosphorylated after JH III treatment. In contrast, the two phosphoserine residues at positions 73 and 747 were dephosphorylated after JH III treatment. JH exposure also induced transient and reversible phosphorylation of Thr-664 and Ser-723 residues. Overall, these data show that JH induces changes in post-translational modifications of AaMet and AaKr-h1. SIGNIFICANCE: Female Aedes aegypti mosquitoes are known to vector many disease agents, including Zika virus, dengue virus chikungunya virus, and Mayaro and yellow fever virus. In the present study, we developed an efficient method to prepare Ae. aegypti Met and Kr-h1, which are typically difficult to produce and purify, using a mosquito cell line expression system. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches were utilized to map the phosphorylation profiles of the isolated proteins. We then monitored the changes induced by JH activation in the phosphorylation profiles to check if the JH modulates post-translation modification of its key transcription factors. We found that the JH induced alterations in the phosphorylation profiles of the multiple residues of AaMet. In contrast, activation of the JH signaling pathway was accompanied by dephosphorylation of AaKr-h1 at phosphoserine-694, increasing its transcriptional activity. In addition, S694 of AaKr-h1 was located in the RMSSVIQYA motif highly conserved in orthologous proteins from other insect species. These results can help us further understand how JH modulates its key transcription factors and provide a basis for the development of novel insect control strategies.
Collapse
|
41
|
Sheikh O, Yokota T. Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 2021; 30:167-176. [PMID: 33393390 DOI: 10.1080/13543784.2021.1868434] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin (DMD) gene. Most patients die from respiratory failure or cardiomyopathy. There are significant unmet needs for treatments for DMD as the standard of care is principally limited to symptom relief through treatments including steroids. AREAS COVERED This review summarizes safety and efficacy in promising areas of DMD therapeutics - small molecules, stop codon readthrough, gene replacement, and exon skipping - under clinical examination from 2015-2020 as demonstrated in the NIH Clinical Trials and PubMed search engines. EXPERT OPINION Currently, steroids persist as the most accessible medicine for DMD. Stop-codon readthrough, gene replacement, and exon-skipping therapies all aim to restore dystrophin expression. Of these strategies, gene replacement therapy has recently gained momentum while exon-skipping retains great traction. The FDA approval of three exon-skipping antisense oligonucleotides illustrate this regulatory momentum, though the effectiveness and sequence design of eteplirsen remain controversial. Cell-penetrating peptides promise to more efficaciously treat DMD-related cardiomyopathy.The recent success of antisense therapies, however, poses major regulatory challenges. To fully realize the benefits of exon-skipping, including cocktail oligonucleotide-mediated multiple exon-skipping and oligonucleotide drugs for very rare mutations, regulatory challenges need to be addressed in coordination with scientific advances.
Collapse
Affiliation(s)
- Omar Sheikh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Canada
| |
Collapse
|
42
|
Wepler M, Preuss JM, Merz T, McCook O, Radermacher P, Tuckermann JP, Vettorazzi S. Impact of downstream effects of glucocorticoid receptor dysfunction on organ function in critical illness-associated systemic inflammation. Intensive Care Med Exp 2020; 8:37. [PMID: 33336296 PMCID: PMC7746781 DOI: 10.1186/s40635-020-00325-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are stress hormones that regulate developmental and physiological processes and are among the most potent anti-inflammatory drugs to suppress chronic and acute inflammation. GCs act through the glucocorticoid receptor (GR), a ubiquitously expressed ligand-activated transcription factor, which translocates into the nucleus and can act via two different modes, as a GR monomer or as a GR dimer. These two modes of action are not clearly differentiated in practice and may lead to completely different therapeutic outcomes. Detailed aspects of GR mechanisms are often not taken into account when GCs are used in different clinical scenarios. Patients, with critical illness-related corticosteroid insufficiency, treated with natural or synthetic GCs are still missing a clearly defined therapeutic strategy. This review discusses the different modes of GR function and its importance on organ function in vivo.
Collapse
Affiliation(s)
- Martin Wepler
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany. .,Department of Anesthesia, University Hospital Ulm, Ulm, Germany.
| | - Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital Ulm, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| |
Collapse
|
43
|
Yu MS, Lee J, Lee Y, Na D. 2-D chemical structure image-based in silico model to predict agonist activity for androgen receptor. BMC Bioinformatics 2020; 21:245. [PMID: 33106158 PMCID: PMC7586653 DOI: 10.1186/s12859-020-03588-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abnormal activation of human nuclear hormone receptors disrupts endocrine systems and thereby affects human health. There have been machine learning-based models to predict androgen receptor agonist activity. However, the models were constructed based on limited numerical features such as molecular descriptors and fingerprints. RESULT In this study, instead of the numerical features, 2-D chemical structure images of compounds were used to build an androgen receptor toxicity prediction model. The images may provide unknown features that were not represented by conventional numerical features. As a result, the new strategy resulted in a construction of highly accurate prediction model: Mathews correlation coefficient (MCC) of 0.688, positive predictive value (PPV) of 0.933, sensitivity of 0.519, specificity of 0.998, and overall accuracy of 0.981 in 10-fold cross-validation. Validation on a test dataset showed MCC of 0.370, sensitivity of 0.211, specificity of 0.991, PPV of 0.882, and overall accuracy of 0.801. Our chemical image-based prediction model outperforms conventional models based on numerical features. CONCLUSION Our constructed prediction model successfully classified molecular images into androgen receptor agonists or inactive compounds. The result indicates that 2-D molecular mimetic diagram would be used as another feature to construct molecular activity prediction models.
Collapse
Affiliation(s)
- Myeong-Sang Yu
- School of Integrative Engineering, Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Jingyu Lee
- School of Integrative Engineering, Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Yongmin Lee
- School of Integrative Engineering, Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea, 06974
| | - Dokyun Na
- School of Integrative Engineering, Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea, 06974.
| |
Collapse
|
44
|
Hussain A, Gilloteaux J. The human testes: Estrogen and ageing outlooks. TRANSLATIONAL RESEARCH IN ANATOMY 2020. [DOI: 10.1016/j.tria.2020.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int J Mol Sci 2020; 21:E4193. [PMID: 32545494 PMCID: PMC7352601 DOI: 10.3390/ijms21124193] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects on BCa cells. While ERα promotes cancerous activities, ERβ isoform exhibits inhibitory effects on the same. ER-directed small molecule drug discovery for BCa has provided the FDA approved drugs tamoxifen, toremifene, raloxifene and fulvestrant that all bind to the estrogen binding site of the receptor. These ER-directed inhibitors are non-selective in nature and may eventually induce resistance in BCa cells as well as increase the risk of endometrial cancer development. Thus, there is an urgent need to develop novel drugs with alternative ERα targeting mechanisms that can overcome the limitations of conventional anti-ERα therapies. Several functional sites on ERα, such as Activation Function-2 (AF2), DNA binding domain (DBD), and F-domain, have been recently considered as potential targets in the context of drug research and discovery. In this review, we summarize methods of computer-aided drug design (CADD) that have been employed to analyze and explore potential targetable sites on ERα, discuss recent advancement of ERα inhibitor development, and highlight the potential opportunities and challenges of future ERα-directed drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.B.); (F.B.); (P.S.R.); (K.S.)
| |
Collapse
|
46
|
Sharma P, Tulsawani R. Ganoderma lucidum aqueous extract prevents hypobaric hypoxia induced memory deficit by modulating neurotransmission, neuroplasticity and maintaining redox homeostasis. Sci Rep 2020; 10:8944. [PMID: 32488040 PMCID: PMC7265456 DOI: 10.1038/s41598-020-65812-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 05/11/2020] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress due to hypobaric hypoxia at extreme altitudes causes severe neuronal damage and irreversible cognitive loss. Owing to contraindications of current drug therapies, the aim of the study was to investigate memory enhancing potential of aqueous extract of Ganoderma lucidum (GLAQ) and underlying neuroprotective mechanism using rat hypobaric hypoxia test model. Rats exposed to hypobaric hypoxia showed deranged spatial memory in morris water maze test with hippocampal damage and vasogenic cerebral edema. All these changes were prevented with GLAQ treatment. Blood and biochemical analysis revealed activation of hypoxic ventilatory response, red blood cells induction, reversal of electrolyte and redox imbalance, and restoration of cellular bioenergetic losses in GLAQ treated animals. Notably, GLAQ treatment ameliorated levels of neurotransmitters (catecholamines, serotonin, glutamate), prevented glucocorticoid and α-synuclein surge, improved neuroplasticity by upregulating CREB/p-CREB/BDNF expression via ERK1/ERK2 induction. Further, restoration of nuclear factor erythroid 2-related factor with stabilization of hypoxia inducible factors and inflammatory markers were evidenced in GLAQ treated rats which was additionally established in gene reporter array using an alternative HT22 cell test model. Conclusively, our studies provide novel insights into systemic to molecular level protective mechanism by GLAQ in combating hypobaric hypoxia induced oxidative stress and memory impairment.
Collapse
Affiliation(s)
- Purva Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajkumar Tulsawani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
47
|
Hasseli R, Frommer KW, Schwarz M, Hülser ML, Schreiyäck C, Arnold M, Diller M, Tarner IH, Lange U, Pons-Kühnemann J, Schönburg M, Rehart S, Müller-Ladner U, Neumann E. Adipokines and Inflammation Alter the Interaction Between Rheumatoid Arthritis Synovial Fibroblasts and Endothelial Cells. Front Immunol 2020; 11:925. [PMID: 32582145 PMCID: PMC7280538 DOI: 10.3389/fimmu.2020.00925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/21/2020] [Indexed: 01/05/2023] Open
Abstract
Objective: The long-distance migration of rheumatoid arthritis synovial fibroblasts (RASFs) in the severe combined immunodeficiency (SCID) mouse model of rheumatoid arthritis (RA) suggests that an interaction between RASFs and endothelial cells (EC) is critical in this process. Our objective was to assess whether immunomodulatory factors such as adipokines and antirheumatic drugs affect the adhesion of RASFs to ECs or the expression of surface molecules. Methods: Primary ECs or human umbilical vein endothelial cell (HUVEC) and primary RASFs were stimulated with adiponectin (10 μg/mL), visfatin (100 ng/mL), and resistin (20 ng/mL) or treated with methotrexate (1.5 and 1,000 μM) and the glucocorticoids prednisolone (1 μM) and dexamethasone (1 μM), respectively. The expression of adhesion molecules was analyzed by real-time polymerase chain reaction. The interaction of both cell types was analyzed under static (cell-to-cell binding assay) and dynamic conditions (flow-adhesion assay). Results: Under static conditions, adipokines increased mostly binding of RASFs to EC (adiponectin: 40%, visfatin: 28%, tumor necrosis factor α: 49%). Under flow conditions, visfatin increased RASF adhesion to HUVEC (e.g., 0.5 dyn/cm2: 75.2%). Reduced adhesion of RASFs to E-selectin was observed after treatment with dexamethasone (e.g., 0.9 dyn/cm2: −40%). In ECs, tumor necrosis factor α (TNF-α) increased expression of intercellular adhesion molecule 1 (20-fold) and vascular cell adhesion molecule 1 (77-fold), whereas P-selectin was downregulated after stimulation with TNF-α (−6-fold). Conclusion: The adhesion of RASFs to EC was increased by visfatin under static and flow conditions, whereas glucocorticoids were able to decrease adhesion to E-selectin. The process of migration and adhesion of RASFs to ECs could be enhanced by adipokines via adhesion molecules and seems to be targeted by therapeutic intervention with glucocorticoids.
Collapse
Affiliation(s)
- Rebecca Hasseli
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Klaus W Frommer
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Maria Schwarz
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Marie-Lisa Hülser
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Carina Schreiyäck
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Mona Arnold
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Magnus Diller
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Ingo H Tarner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Uwe Lange
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Joern Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, Justus-Liebig University Giessen, Giessen, Germany
| | - Markus Schönburg
- Department of Cardiac Surgery, Kerckhoff-Klinik, Bad Nauheim, Germany
| | - Stefan Rehart
- Department of Orthopedics and Trauma Surgery, Agaplesion Markus Hospital, Frankfurt, Germany
| | - Ulf Müller-Ladner
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| | - Elena Neumann
- Department of Internal Medicine and Rheumatology, Justus-Liebig-University Giessen, Kerckhoff, Bad Nauheim, Germany
| |
Collapse
|
48
|
Intermolecular interactions and charge density distribution of endocrine-disrupting molecules (xenoestrogens) with ERα: QM/MM perspective. Struct Chem 2020. [DOI: 10.1007/s11224-019-01452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Lucafò M, Franzin M, Decorti G, Stocco G. A patent review of anticancer glucocorticoid receptor modulators (2014-present). Expert Opin Ther Pat 2020; 30:313-324. [PMID: 32148111 DOI: 10.1080/13543776.2020.1740206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 01/11/2023]
Abstract
Introduction: Natural and synthetic glucocorticoids are widely employed in different diseases, among which are hematological and solid tumors. Their use is however associated with a number of serious side effects and by the occurrence of resistance. With the aim of separating their gene transactivating effect, more linked to side effects, from transrepressive properties, associated with therapeutic efficacy, a number of selective glucocorticoid modulators have been identified.Areas covered: This review summarizes the patent applications from 2014 to present in the field of selective glucocorticoid receptor modulators employed in cancer therapy. Only few patents have been identified, that concern the identification of new molecules or the method of use of already patented compounds. In addition, a discussion of the mechanism of action of these compounds is included.Expert opinion: Only a very limited number of patents have been applied that concern selective glucocorticoid receptor modulators and their use in cancer. Biological information is scarce for most of these patents; more research is necessary in this field in particular concerning clinical data in order to understand whether it is actually possible to improve the efficacy and therapeutic index of these compounds in cancer therapy.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Martina Franzin
- PhD Course in Reproductive and Developmental Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
50
|
Austin JR, Kirkpatrick BJ, Rodríguez RR, Johnson ME, Lantvit DD, Burdette JE. Baicalein Is a Phytohormone that Signals Through the Progesterone and Glucocorticoid Receptors. Discov Oncol 2020; 11:97-110. [PMID: 32146686 DOI: 10.1007/s12672-020-00382-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
Abstract
While flavonoids have been studied extensively for estrogen receptor activity, they have not been well studied for their ability to modify progesterone receptor (PR) and glucocorticoid receptor (GR) signaling. Three flavonoid compounds, tangeretin, wogonin, and baicalein, were selected for testing for PR and GR activity based on their structural similarity to known phytoprogesterone-like compounds. Each compound was docked in the binding pocket of PR and GR. Of these compounds, baicalein was predicted to be most likely to bind to both receptors. A fluorescence polarization competitive binding assay for PR and GR confirmed that baicalein binds to both the PR and GR with IC50 values of 15.30 μM and 19.26 μM, respectively. In Ishikawa PR-B and T47D cells, baicalein acted as a PR antagonist in a hormone response element (HRE) luciferase (Luc) assay. In OVCAR5 cells, which only express GR, baicalein was a GR agonist via an HRE/Luc assay and induced GR target genes, FKBP5 and GILZ. RU486, a PR and GR antagonist, abrogated baicalein's activity in OVCAR5 cells, confirming baicalein's activity is mediated through the GR. In vivo, baicalein administered intraperitoneally to female mice twice a week for 4 weeks at a dose of 25 mg/kg induced the GR target gene GILZ in the reproductive tract, which was blocked by RU486. In summary, baicalein has PR antagonist and GR agonist activity in vitro and demonstrates GR agonist activity in the uterus in vivo.
Collapse
Affiliation(s)
- Julia R Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brenna J Kirkpatrick
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Rocío Rivera Rodríguez
- Department of Chemistry, College of Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, 00925, Puerto Rico
| | - Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|