1
|
Rodella G, Préat V, Gallez B, Malfanti A. Design strategies for hyaluronic acid-based drug delivery systems in cancer immunotherapy. J Control Release 2025:113784. [PMID: 40294800 DOI: 10.1016/j.jconrel.2025.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Despite its robust therapeutic potential, cancer immunotherapy has provided little progress towards improved survival rates for patients bearing immunologically refractory tumors. The implementation of advanced drug delivery systems represents a powerful means of improving cancer immunotherapy by relieving immunosuppression and promoting immune response; however, the overall impact of these systems on immunotherapy currently remains modest. Hyaluronic acid represents a widely used polymer in drug delivery; meanwhile, recent studies linking hyaluronic acid to the immune system make this polymer an attractive component in the design of next-generation cancer immunotherapies. Herein, we review our current understanding of the immunological properties of hyaluronic acid and discuss them in the context of bioactive functions and immune-related interactions with receptors, immune, and cancer cells. We analyze the potential of hyaluronic acid as a component in advanced drug delivery systems, highlighting strategies for the design of more effective vaccines and cancer chemo-immunotherapies. Finally, we discuss critical considerations to facilitate design and clinical translation to overcome existing challenges and maximize therapeutic potential.
Collapse
Affiliation(s)
- Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; Departement of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
2
|
Ahmed SF, Sayed AI, Abdelfatah H, Abdel-Aziz LM. The efficacy of hyaluronic acid treatment on induced periodontitis in rats exposed to gamma radiation. Sci Rep 2025; 15:12312. [PMID: 40210622 PMCID: PMC11985954 DOI: 10.1038/s41598-024-82239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/03/2024] [Indexed: 04/12/2025] Open
Abstract
The periodontium is one of the radiation-sensitive tissues; the periodontal membrane's vascularity and cellularity were reduced, and the danger of losing periodontal attachment was raised. This study was performed to evaluate the efficacy of hyaluronic acid treatment on induced periodontitis in rats exposed to gamma radiation radiographically and histopathologically. A total number of 30 adult male Albino rats were divided randomly into five groups (n = 6). Group 1 (C): received neither irradiation nor treatment. Group 2 (P): was subjected to induced periodontitis. Group 3 (PT): subjected to induced periodontitis with hyaluronic acid treatment. Group 4 (RP): received a single dose of total cranium irradiation 20 Gy with induced periodontitis. Group 5 (RPT): received a single dose of total cranium irradiation 20 Gy with induced periodontitis and hyaluronic acid treatment. All animals were euthanized, and the outcomes of treatment were evaluated radiographically by cone beam computed tomography (CBCT) and histopathologically. Results: Comparison of the five groups about bone density by one-way ANOVA showed a significant difference among groups (P < 0.001). The highest bone density values were measured in Group (PT) (1245 ± 22.86), while the lowest bone density values were measured in Group (RP) (926 ± 31.47). Using post hoc analysis for pairwise comparisons showed that Group (PT) and Group (RPT) have significantly higher values than Group (P) and Group (RP) (P < 0.001). Histologically, the group (RPT) shows a new formation of irregular connective tissue fibers of the periodontal ligament (PDL) with an area of distortion, fibrous marrow spaces with wide osteocyte lacunae without nuclei, and Haversian canals with empty blood vessels. The radiographic and histopathological findings of using HA as a topical application in rats subjected to induced periodontitis and exposed to gamma radiation revealed enhanced healing ability of the periodontal tissue with restoration of the bone density. Depending on these results, HA could be used as an adjunct local delivery agent for periodontal-affected patients receiving radiotherapy.
Collapse
Affiliation(s)
- Salwa Farid Ahmed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amira Ibrahim Sayed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Heba Abdelfatah
- Oral and Dental Biology Department, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Lobna Mohamed Abdel-Aziz
- Oral Medicine, Periodontology, Oral Diagnosis and Radiology Department, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Marwan-Abdelbaset E, Samy-Kamal M, Tan D, Lu X. Microbial production of hyaluronic acid: The current advances, engineering strategies and trends. J Biotechnol 2025; 403:52-72. [PMID: 40154620 DOI: 10.1016/j.jbiotec.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Hyaluronic acid (HA) is a versatile biomolecule with applications in medicine, cosmetics, and pharmaceuticals. While traditionally extracted from animal tissues, HA is now predominantly produced through microbial fermentation. Microbial fermentation using strains such as Streptococcus zooepidemicus, Corynebacterium glutamicum, and Bacillus subtilis offers a more scalable and sustainable alternative to chemical and animal extraction methods. Recent studies reveal promising yields from engineered strains of Corynebacterium glutamicum and Bacillus subtilis, utilizing advanced metabolic and genetic techniques. Recent advancements in genetic and metabolic engineering, as well as synthetic biology, have addressed some challenges related to molecular weight, viscosity, and by-product formation. This review focuses on the microbial production of HA using engineered strains, encompassing producer organisms, metabolic engineering strategies, industrial-scale production, and key factors influencing molecular weight. Furthermore, it addresses the challenges and potential solutions associated with HA production. Additional research is necessary to develop more efficient and robust engineered strains that exhibit resistance to contamination and can utilize low-cost substrates, such as Pseudomonas putida and Halomonas spp. By overcoming these challenges, researchers can advance the industrial production of HA and expand its applications, thereby contributing to the growth of the HA market.
Collapse
Affiliation(s)
- Ehab Marwan-Abdelbaset
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed Samy-Kamal
- Department of Marine Sciences and Applied Biology, University of Alicante, Sciences Building V, San Vicente del Raspeig Campus, PO Box 99, Alicante 03080, Spain
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - XiaoYun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
4
|
Bonet IJM, Araldi D, Khomula EV, Bogen O, Green PG, Levine JD. G-protein-coupled estrogen receptor 30 regulation of signaling downstream of protein kinase Cε mediates sex dimorphism in hyaluronan-induced antihyperalgesia. Pain 2025; 166:539-556. [PMID: 39787533 PMCID: PMC11810595 DOI: 10.1097/j.pain.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/12/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACT High molecular weight hyaluronan (HMWH) inhibits hyperalgesia induced by diverse pronociceptive inflammatory mediators and their second messengers, in rats of both sexes. However, the hyperalgesia induced by ligands at 3 pattern recognition receptors, lipopolysaccharide (a toll-like receptor 4 agonist), lipoteichoic acid (a toll-like receptor 2/6 agonist), and nigericin (a NOD-like receptor family, pyrin domain containing 3 activator), and oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy are only attenuated in males. After gonadectomy or intrathecal administration of an antisense to G-protein-coupled estrogen receptor 30 (GPER) mRNA, HMWH produces antihyperalgesia in females. In nociceptors cultured from rats that had been treated with oxaliplatin, HMWH reverses nociceptor sensitization from male and GPER antisense-treated female, but not from gonad intact females. G-protein-coupled estrogen receptor-dependent sex dimorphism for HMWH-induced antihyperalgesia was also observed for the prolongation of prostaglandin E 2 (PGE 2 )-induced hyperalgesia in primed nociceptors. While in primed rats, HMWH inhibits early, protein kinase A-dependent hyperalgesia, 30 minutes post PGE 2 injection, in both sexes; measured 4 hours post-PGE 2 , HMWH inhibits the protein kinase Cε (PKCε)-dependent prolongation of PGE 2 hyperalgesia only in males and GPER antisense-treated females. In females, hyperalgesia induced by PKCε agonist, ψεRACK, in control but not in primed nociceptors, was inhibited by HMWH. Inhibitors of 2 GPER second messengers, extracellular-regulated kinase 1/2 and nonreceptor tyrosine kinase, also unmasked HMWH antihyperalgesia in females with oxaliplatin chemotherapy-induced peripheral neuropathy, a condition in which nociceptors are primed as well as sensitized. Our results support GPER-dependent sex dimorphism in HMWH-induced antihyperalgesia for pain induced by pattern recognition receptor agonists, and chronic inflammatory and neuropathic pain, mediated by changes in signaling downstream of PKCε in primed nociceptors.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Eugen V. Khomula
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Oliver Bogen
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Górniak I, Stephens Z, Erramilli SK, Gawda T, Kossiakoff AA, Zimmer J. Structural insights into translocation and tailored synthesis of hyaluronan. Nat Struct Mol Biol 2025; 32:161-171. [PMID: 39322765 PMCID: PMC11750622 DOI: 10.1038/s41594-024-01389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.
Collapse
Affiliation(s)
- Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Zachery Stephens
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Tomasz Gawda
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Atef LM, Mohammed GF, Al-Dhubaibi MS, Soliman M, Bahaj SS, Saleh YSN. Hybrid high and low molecular weight chains of hyaluronan for clitoral injection is an effective modality treatment for increasing female sexual satisfaction: an interventional, randomized-controlled parallel study. Sex Med 2024; 12:qfae067. [PMID: 39360229 PMCID: PMC11443283 DOI: 10.1093/sexmed/qfae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Hormonal, behavioral, psychological, surgical, and pharmacopsychological treatment approaches contribute to female sexual dysfunction (FSD). Aim: The study is conducted to assess the effectiveness of hyaluronan high and low molecular weight hybrid cooperative complexes (hybrid H-HA/L-HA) in treating females with SD and to compare the female sexual function index (FSFI), dermatological life quality index (DLQI), and female genital self-image scale (FGSIS) before and after therapy. Methods We divided the 60 female participants into two groups. Hybrid H-HA/L-HA was administered to form pili of 0.25 cc around the clitoris in the direction of clock positions of 12, 3, 6, and 9. In Skene's gland; 0.25 cc for each and 0.5 cc into the corpus/body of the clitoris. Two treatments were held 30 days apart.The same procedure was repeated on the control group, but with saline as a placebo. Outcomes Women completed self-report questionnaires assessing sexual functioning using the FSFI, DLQI, and FGSIS before and after therapy. Result There was a significant (P = 634.152; P < .05) increase in the study group's weekly sexual interactions compared with the controls. The study group showed statistically significant amelioration in desire, arousal, lubrication, orgasm, satisfaction domains, overall score, and a decrease in pain following the first and second injection sessions (P = .014, .031, .003, .001, .011, .004, and .011, respectively). A comparison of the results between the two groups revealed significant improvement were found (P = .025).There were significant improvements in the domains of the FGSIS compared with the controls (P = .026). The study group showed a substantial improvement in satisfaction with the way their genital area looked, comfort level when allowing a sexual partner to view their genital area, belief that their genitals smell perfectly fine without being self-conscious about them, and overall score (P = .022, .031, .003, .001, and .004, respectively) (P < .05).The hybrid H-HA/L-HA sessions resulted in significantly greater positive perceptions and feelings, leisure activities, interpersonal interactions, and general assessments (P = .021, .021, and .020, respectively) (P < .05). Clinical Implications Female individuals with SD experience sexual improvements after hybrid H-HA/L-HA injection. Strengths and Limitations This is the first study focusing on female individuals with SD. We recommend conducting the study on a larger population and including their partners. Conclusion Hybrid H-HA/L-HA injection for rejuvenating the clitoral injection appears to be a reliable and safe method for enhancing female genital self-image, sexuality, and quality of life.
Collapse
Affiliation(s)
- Lina Mohammed Atef
- Department of Dermatology, Venereology and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ghada Farouk Mohammed
- Department of Dermatology, Venereology and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammed Saleh Al-Dhubaibi
- Dermatology, Department of Medicine, College of Medicine, Shaqra University, Dawadmi, 11961, Saudi Arabia
| | - Mahmoud Soliman
- Department of Neuropsychiatry, Ain-Shams University, Cairo, 11772, Egypt
| | - Saleh Salem Bahaj
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, 72738, Yemen
| | - Yasser S N Saleh
- Department of Dermatology, Venereology and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Dermatology, Department of Medicine, College of Medicine, Shaqra University, Dawadmi, 11961, Saudi Arabia
| |
Collapse
|
7
|
Matalqah S, Lafi Z, Asha SY. Hyaluronic Acid in Nanopharmaceuticals: An Overview. Curr Issues Mol Biol 2024; 46:10444-10461. [PMID: 39329973 PMCID: PMC11431703 DOI: 10.3390/cimb46090621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Hyaluronic acid (HA) is a naturally occurring, long, unbranched polysaccharide that plays a critical role in maintaining skin structure and hydration. Its unique properties make it a valuable component in the field of nanopharmaceuticals. The combination of HA into nanopharmaceuticals enhances its ability to interact with various therapeutic agents, improving the delivery and efficacy of drugs. HA-based nanoparticles, including solid lipid nanoparticles, and polymeric nanogels, offer controlled release, enhanced stability, and targeted delivery of therapeutic agents. These innovations significantly improve therapeutic outcomes and reduce side effects, making HA an essential tool in modern medicine. In general, HA-modified liposomes enhance drug encapsulation and targeting, while HA-modified solid lipid nanoparticles (SLNs) provide a solid lipid core for drug encapsulation, offering controlled release and stability. This article provides an overview of the potential applications and recent advancements of HA in nanopharmaceuticals, emphasizing its significant impact on the evolving field of targeted drug delivery and advanced therapeutic strategies. By delving into the unique properties of HA and its compatibility with various therapeutic agents, this review underscores the promising potential of HA in revolutionizing nanopharmaceuticals.
Collapse
Affiliation(s)
- Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
8
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
9
|
Ikari A, Ito Y, Taniguchi K, Shibata MA, Kimura K, Iwamoto M, Lee SW. Role of CD44-Positive Extracellular Vesicles Derived from Highly Metastatic Mouse Mammary Carcinoma Cells in Pre-Metastatic Niche Formation. Int J Mol Sci 2024; 25:9742. [PMID: 39273689 PMCID: PMC11395953 DOI: 10.3390/ijms25179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Malignant breast cancers pose a notable challenge when it comes to treatment options. Recently, research has implicated extracellular vesicles (EVs) secreted by cancer cells in the formation of a pre-metastatic niche. Small clumps of CD44-positive breast cancer cells are efficiently transferred through CD44-CD44 protein homophilic interaction. This study aims to examine the function of CD44-positive EVs in pre-metastatic niche formation in vitro and to suggest a more efficacious EV formulation. We used mouse mammary carcinoma cells, BJMC3879 Luc2 (Luc2 cells) as the source of CD44-positive EVs and mouse endothelial cells (UV2 cells) as the recipient cells in the niche. Luc2 cells exhibited an enhanced secretion of EVs expressing CD44 and endothelial growth factors (VEGF-A, -C) under 20% O2 (representative of the early stage of tumorigenesis) compared to its expression under 1% O2 (in solid tumor), indicating that pre-metastatic niche formation occurs in the early stage. Furthermore, UV2 endothelial cells expressing CD44 demonstrated a high level of engulfment of EVs that had been supplemented with hyaluronan, and the proliferation of UV2 cells occurred following the engulfment of EVs. These results suggest that anti-VEGF-A and -C encapsulated, CD44-expressing, and hyaluronan-coated EVs are more effective for tumor metastasis.
Collapse
Affiliation(s)
- Ayana Ikari
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| | - Masa-Aki Shibata
- Department of Anatomy & Cell Biology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Kosei Kimura
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Mitsuhiko Iwamoto
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| |
Collapse
|
10
|
Lorenzi C, Leggeri A, Cammarota I, Carosi P, Mazzetti V, Arcuri C. Hyaluronic Acid in Bone Regeneration: Systematic Review and Meta-Analysis. Dent J (Basel) 2024; 12:263. [PMID: 39195107 DOI: 10.3390/dj12080263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
AIM The aim of this systematic review and meta-analysis was to assess possible histomorphometric differences in new bone formation and in remaining graft particles when hyaluronic acid (HA) was added and mixed with graft materials in bone regeneration. MATERIALS AND METHODS This review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) of the National Institute of Health Research (registration number CRD42024530030). Electronic research was performed, and involved studies published up to 29 February 2024 using a specific word combination. The primary outcome was to assess possible histomorphometric differences in new bone formation and in remaining graft particles when HA was added and mixed with graft materials in bone regeneration. The search resulted in 138 potential studies. Meta-analyses were performed using the fixed and random effects model to identify significant changes in new bone formation and in the remaining graft particles. RESULTS After screening procedures, only three randomized controlled trials fulfilled the inclusion criteria and were selected for qualitative and quantitative analysis. The effect size of HA in the new bone formation was not statistically significant at 95% CI (Z = 1.734, p-value = 0.083, 95 % CI -,399; 6516). The effect size of HA in the remaining graft particles was not statistically significant at 95% CI (Z = -1.042, p-value = 0.297, CI -,835; 255). CONCLUSIONS Within the limitations of the present systematic review and meta-analysis, the addition of HA to bone graft did not result in significant changes in bone regeneration procedures in terms of new bone formation and residues, even if the included studies showed encouraging and promising results.
Collapse
Affiliation(s)
- Claudia Lorenzi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Leggeri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Cammarota
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Paolo Carosi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Mazzetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudio Arcuri
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
11
|
Medic N, Boldin I, Berisha B, Matijak-Kronschachner B, Aminfar H, Schwantzer G, Müller-Lierheim WGK, van Setten GB, Horwath-Winter J. Application frequency - key indicator for the efficiency of severe dry eye disease treatment - evidence for the importance of molecular weight of hyaluronan in lubricating agents. Acta Ophthalmol 2024; 102:e663-e671. [PMID: 38131131 DOI: 10.1111/aos.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Lubricant eye drops are the main therapeutic resource for dry eye disease (DED), with each drop representing the equivalent of ocular surface disease treatment. Thus, any reduction in the frequency of eye drop application reflects a degree of therapeutic success. Considering also the socioeconomic burden of DED, we investigated eye drop application frequency (DF) as a parameter to potentially track the success of therapy in severe DED. Hyaluronan (HA)-containing eye drops have become the first choice for tear substitution in many countries, and recent data indicate that the average molecular weight (Mw) of HA determines the therapeutic efficacy of such eye drops. This post-hoc subgroup analysis of a previously published multicentre prospective randomized open-label study, HYLAN M, is set out to compare the effects of very high Mw HA (hylan A) eye drops to comparator eye drops, containing lower Mw HA (control). METHODS Patients with severe DED (n = 47), recruited as part of the larger HYLAN M prospective, multicentre, open-label study, were randomized into two groups: hylan A and control group. In the hylan A group, 24 patients replaced their HA-containing eye drops with eye drops containing 0.15% hylan A, whereas the 23 control patients continued to use comparator HA eye drops. The DF was recorded daily by all participants over 8 weeks, and other subjective and objective parameters of DED were assessed at the time of inclusion (baseline), as well as at week 4 and 8. RESULTS There was a significant decrease in DF in the hylan A users between the baseline and week 4 (p = 0.004), remaining stable until week 8. Indeed, in contrast to the baseline, the hylan A group had a significantly lower DF than the control group at weeks 4 (p = 0.018) and 8 (p = 0.008). Likewise, the ocular surface disease index (OSDI) improved significantly between the time of inclusion and week 4 (p < 0.001) in hylan A users, remaining stable until week 8. The OSDI was similar in both groups at the baseline but it was significantly lower in the hylan A group than in the control group at week 4 (p = 0.002), remaining lower at week 8. Such a decrease in the DF and OSDI was not witnessed in the control group at any time point. The objective parameters assessed did not differ significantly within or between the two groups. CONCLUSION When treating severe DED, the DF can be significantly reduced by using very high Mw HA (3 MDa) lubricant eye drops, which better alleviate DED symptoms and decrease the OSDI scores. These drops not only provide an attractive and comfortable alternative for patients with severe DED but also offer the possibility of reducing the disease's socioeconomic burden, both for affected individuals and society as a whole.
Collapse
Affiliation(s)
- Nika Medic
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Ingrid Boldin
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Bujar Berisha
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | | | - Haleh Aminfar
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Gerold Schwantzer
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Gysbert-Botho van Setten
- Department of Clinical Neuroscience, St. Eriks Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
12
|
Fujisawa S, Takagi K, Yamaguchi-Tanaka M, Sato A, Miki Y, Miyashita M, Tada H, Ishida T, Suzuki T. Clinicopathological significance of hyaluronan and hyaluronidase 2 (HYAL2) in breast cancer. Pathol Res Pract 2024; 260:155434. [PMID: 38991455 DOI: 10.1016/j.prp.2024.155434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Hyaluronan (HA), as a component of extracellular matrix, has pivotal roles in both physiological and pathological condition. In breast cancer, while high molecular weight HA is produced by hyaluronan synthase, it is degraded by hyaluronidases (hyaluronidase-1 (HYAL1) and hyaluronidase-2 (HYAL2)) into low molecular weight HA (LMW HA), which is considered to have pro-tumorigenic effects in human malignancies. However, HA and HYAL2, the rate-limiting enzyme of HA degradation, have not been comprehensively examined in breast cancer and clinicopathological significance of LMW HA remains to be elucidated in breast cancer. We therefore histochemically localized HA as well as HYAL2 in 116 breast cancer tissues. In addition, we examined size-dependent function of HA on breast cancer cell proliferation and migration using MCF-7 and MDA-MB-231 breast cancer cell lines. HA was localized in both the stroma and breast carcinoma cells, while HYAL2 was predominantly localized in breast carcinoma cells. HA was significantly correlated with cell proliferation and invasion ability as well as increased risk of recurrence especially in HYAL2 positive group. On the other hand, HYAL2 was correlated with breast cancer cell proliferation and increased risk of recurrence. In addition, in vitro analyses revealed that lower molecular weight HA increased sphere forming ability and migration in MCF-7 and MDA-MB-231, whereas higher molecular weight HA inhibited them. It was concluded that HA needs to be degraded by HYAL2 to exert pro-tumorigenic effects and comprehensive HA/HYAL2 status serves as a potent prognostic factor in breast cancer.
Collapse
Affiliation(s)
- Shiori Fujisawa
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mio Yamaguchi-Tanaka
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Personalized Medicine Center and Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pathology, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
13
|
Gao P, Wang L, Wang S, Li G, Yi C, Wang Y, Li L, Zhang A, Zhou H, Han L. The activity of hyaD contributed to the virulence of avian Pasteurella multocida. Microb Pathog 2024; 193:106768. [PMID: 38960217 DOI: 10.1016/j.micpath.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fowl cholera is an infectious disease that affects both poultry and wild birds, characterized by hemorrhagic and septicemic symptoms, caused by Pasteurella multocida (P. multocida), and leading to substantial economic losses in the poultry sector. The development of genetic engineering vaccines against avian P. multocida encountered early-stage challenges due to the limited availability of effective gene editing tools. Presently, NgAgoDM-enhanced homologous recombination stands as a potent technique for achieving efficient gene knockout in avian P. multocida. Hence, this study employed NgAgoDM-enhanced homologous recombination to target and knockout hyaE (239-359aa), hyaD, hexABC, and hexD, denoted as ΔhyaE (239-359aa), ΔhyaD, ΔhexABC, and ΔhexD, respectively. Additionally, we generated a hyaD recovery strain with two point mutations, designated as mhyaD. Thus, this study systematically examined the impact of capsular synthetic gene clusters on the pathogenicity of P. multocida. Moreover, the study demonstrated the critical role of hyaD activity in the virulence of avian P. multocida. This study offers novel insights for enhancing attenuated vaccines further.
Collapse
Affiliation(s)
- Peiying Gao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Libo Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shan Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Guohong Li
- Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Chenyang Yi
- Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Yuhua Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Long Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
14
|
Khan SA, Nidhi F, Leal AF, Celik B, Herreño-Pachón AM, Saikia S, Benincore-Flórez E, Ago Y, Tomatsu S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv Clin Chem 2024; 122:1-52. [PMID: 39111960 DOI: 10.1016/bs.acc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours Children's Health, Wilmington, DE, United States
| | - Fnu Nidhi
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | - Andrés Felipe Leal
- Nemours Children's Health, Wilmington, DE, United States; Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Betul Celik
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Sampurna Saikia
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Yasuhiko Ago
- Nemours Children's Health, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Vitale DL, Parnigoni A, Viola M, Karousou E, Sevic I, Moretto P, Passi A, Alaniz L, Vigetti D. Deciphering Drug Resistance: Investigating the Emerging Role of Hyaluronan Metabolism and Signaling and Tumor Extracellular Matrix in Cancer Chemotherapy. Int J Mol Sci 2024; 25:7607. [PMID: 39062846 PMCID: PMC11276752 DOI: 10.3390/ijms25147607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Arianna Parnigoni
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden;
| | - Manuela Viola
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Evgenia Karousou
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Paola Moretto
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| |
Collapse
|
16
|
Murphy CA, Serafin A, Collins MN. Development of 3D Printable Gelatin Methacryloyl/Chondroitin Sulfate/Hyaluronic Acid Hydrogels as Implantable Scaffolds. Polymers (Basel) 2024; 16:1958. [PMID: 39065275 PMCID: PMC11281044 DOI: 10.3390/polym16141958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The development of biomaterials tailored for various tissue engineering applications has been increasingly researched in recent years; however, stimulating cells to synthesise the extracellular matrix (ECM) is still a significant challenge. In this study, we investigate the use of ECM-like hydrogel materials composed of Gelatin methacryloyl (GelMA) and glycosaminoglycans (GAG), such as hyaluronic acid (HA) and chondroitin sulphate (CS), to provide a biomimetic environment for tissue repair. These hydrogels are fully characterised in terms of physico-chemical properties, including compression, swelling behaviour, rheological behaviour and via 3D printing trials. Furthermore, porous scaffolds were developed through freeze drying, producing a scaffold morphology that better promotes cell proliferation, as shown by in vitro analysis with fibroblast cells. We show that after cell seeding, freeze-dried hydrogels resulted in significantly greater amounts of DNA by day 7 compared to the GelMA hydrogel. Furthermore, freeze-dried constructs containing HA or HA/CS were found to have a significantly higher metabolic activity than GelMA alone.
Collapse
Affiliation(s)
- Caroline A. Murphy
- Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.M.); (A.S.)
| | - Aleksandra Serafin
- Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.M.); (A.S.)
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maurice N. Collins
- Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.M.); (A.S.)
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research, D02 PN40 Dublin, Ireland
| |
Collapse
|
17
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
18
|
Bianchini E, Ashley Sin YJ, Lee YJ, Lin C, Anil U, Hamill C, Cowman MK, Kirsch T. The Role of Hyaluronan/Receptor for Hyaluronan-Mediated Motility Interactions in the Modulation of Macrophage Polarization and Cartilage Repair. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1047-1061. [PMID: 38403161 PMCID: PMC11156159 DOI: 10.1016/j.ajpath.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Hyaluronan (HA), a negatively charged linear glycosaminoglycan, is a key macromolecular component of the articular cartilage extracellular matrix. The differential effects of HA are determined by a spatially/temporally regulated display of HA receptors, such as CD44 and receptor for hyaluronan-mediated motility (RHAMM). HA signaling through CD44 with RHAMM has been shown to stimulate inflammation and fibrotic processes. This study shows an increased expression of RHAMM in proinflammatory macrophages. Interfering with HA/RHAMM interactions using a 15-mer RHAMM-mimetic, HA-binding peptide, together with high-molecular-weight (HMW) HA reduced the expression and release of inflammatory markers and increased the expression of anti-inflammatory markers in proinflammatory macrophages. HA/RHAMM interactions were interfered in vivo during the regeneration of a full-thickness cartilage defect after microfracture surgery in rabbits using three intra-articular injections of 15-mer RHAMM-mimetic. HA-binding peptide together with HMWHA reduced the number of proinflammatory macrophages and increased the number of anti-inflammatory macrophages in the injured knee joint and greatly improved the repair of the cartilage defect compared with intra-articular injections of HMWHA alone. These findings suggest that HA/RHAMM interactions play a key role in cartilage repair/regeneration via stimulating inflammatory and fibrotic events, including increasing the ratio of proinflammatory/anti-inflammatory macrophages. Interfering with these interactions reduced inflammation and greatly improved cartilage repair.
Collapse
Affiliation(s)
- Emilia Bianchini
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
| | - Yun Jin Ashley Sin
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
| | - You Jin Lee
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Charles Lin
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Utkarsh Anil
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Cassie Hamill
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York; Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Thorsten Kirsch
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York; Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
19
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
20
|
Lagunas-Rangel FA. Naked mole-rat hyaluronan. Biochimie 2024; 220:58-66. [PMID: 38158036 DOI: 10.1016/j.biochi.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Naked mole rats (NMRs) are renowned for their exceptional longevity and remarkable maintenance of health throughout their lifetime. Their subterranean lifestyle has led to adaptations that have resulted in elevated levels of a very high molecular weight hyaluronan in their tissues. Hyaluronan, a glycosaminoglycan, is a key component of the extracellular matrix, which plays a critical role in maintaining tissue structure and regulating cell signaling pathways. This phenomenon in NMRs is attributed to a higher processing and production capacity by some of their hyaluronan synthases, along with lower degradation by certain hyaluronidases. Furthermore, this adaptation indirectly confers several advantages to NMRs, such as the preservation of skin elasticity and youthful appearance, accelerated wound healing, protection against oxidative stress, and resistance to conditions such as cancer and arthritis, largely attributable to CD44 signaling and other intricate mechanisms. Thus, the main objective of this study was to conduct a comprehensive study of the distinctive features of NMR hyaluronan, particularly emphasizing the currently known molecular mechanisms that contribute to its beneficial properties. Furthermore, this research delves into the potential applications of NMR hyaluronan in both cosmetic and therapeutic fields, as well as the challenges involved.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
21
|
Verma S, Moreno IY, Prinholato da Silva C, Sun M, Cheng X, Gesteira TF, Coulson-Thomas VJ. Endogenous TSG-6 modulates corneal inflammation following chemical injury. Ocul Surf 2024; 32:26-38. [PMID: 38151073 PMCID: PMC11056311 DOI: 10.1016/j.jtos.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) is upregulated in various pathophysiological contexts, where it has a diverse repertoire of immunoregulatory functions. Herein, we investigated the expression and function of TSG-6 during corneal homeostasis and after injury. METHODS Human corneas, eyeballs from BALB/c (TSG-6+/+), TSG-6+/- and TSG-6-/- mice, human immortalized corneal epithelial cells and murine corneal epithelial progenitor cells were prepared for immunostaining and real time PCR analysis of endogenous expression of TSG-6. Mice were subjected to unilateral corneal debridement or alkali burn (AB) injuries and wound healing assessed over time using fluorescein stain, in vivo confocal microscopy and histology. RESULTS TSG-6 is endogenously expressed in the human and mouse cornea and established corneal epithelial cell lines and is upregulated after injury. A loss of TSG-6 has no structural and functional effect in the cornea during homeostasis. No differences were noted in the rate of corneal epithelial wound closure between BALB/c, TSG-6+/- and TSG-6-/- mice. TSG-6-/- mice presented decreased inflammatory response within the first 24 h of injury and accelerated corneal wound healing following AB when compared to control mice. CONCLUSION TSG-6 is endogenously expressed in the cornea and upregulated after injury where it propagates the inflammatory response following chemical injury.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, United States; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, Houston, TX, United States
| | | | - Mingxia Sun
- College of Optometry, University of Houston, Houston, TX, United States
| | - Xuhong Cheng
- College of Optometry, University of Houston, Houston, TX, United States
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States
| | | |
Collapse
|
22
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
23
|
Freise C, Biskup K, Blanchard V, Schnorr J, Taupitz M. Inorganic Phosphate-Induced Extracellular Vesicles from Vascular Smooth Muscle Cells Contain Elevated Levels of Hyaluronic Acid, Which Enhance Their Interaction with Very Small Superparamagnetic Iron Oxide Particles. Int J Mol Sci 2024; 25:2571. [PMID: 38473817 DOI: 10.3390/ijms25052571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Patients with chronic kidney disease (CKD) have a high prevalence of hyperphosphatemia, where uremic toxins like inorganic phosphate (Pi) induce a cardiovascular remodeling. Related disorders like atherosclerosis bear the risk of increased morbidity and mortality. We previously found that Pi stimulates the synthesis and sulfation of the negatively charged glycosaminoglycans (GAGs) heparan sulfate and chondroitin sulfate in vascular smooth muscle cells (VSMC). Similar GAG alterations were detected in VSMC-derived exosome-like extracellular vesicles (EV). These EV showed a strong interaction with very small superparamagnetic iron oxide particles (VSOP), which are used as imaging probes for experimental magnetic resonance imaging (MRI). Hyaluronic acid (HA) represents another negatively charged GAG which is supposed to function as binding motif for VSOP as well. We investigated the effects of Pi on the amounts of HA in cells and EV and studied the HA-dependent interaction between VSOP with cells and EV. Rat VSMC were treated with elevated concentrations of Pi. CKD in rats was induced by adenine feeding. EV were isolated from culture supernatants and rat plasma. We investigated the role of HA in binding VSOP to cells and EV via cell-binding studies, proton relaxometry, and analysis of cellular signaling, genes, proteins, and HA contents. Due to elevated HA contents, VSMC and EV showed an increased interaction with VSOP after Pi stimulation. Amongst others, Pi induced hyaluronan synthase (HAS)2 expression and activation of the Wnt pathway in VSMC. An alternative upregulation of HA by iloprost and an siRNA-mediated knockdown of HAS2 confirmed the importance of HA in cells and EV for VSOP binding. The in vitro-derived data were validated by analyses of plasma-derived EV from uremic rats. In conclusion, the inorganic uremic toxin Pi induces HA synthesis in cells and EV, which leads to an increased interaction with VSOP. HA might therefore be a potential molecular target structure for improved detection of pathologic tissue changes secondary to CKD like atherosclerosis or cardiomyopathy using EV, VSOP and MRI.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Karina Biskup
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
24
|
Yu C, Yuan H, Xu Y, Luo Y, Wu ZH, Zhong JJ, Xiao JH. Hyaluronan delays human amniotic epithelial stem cell senescence by regulating CD44 isoform switch to activate AKT/mTOR signals. Biomed Pharmacother 2024; 170:116100. [PMID: 38159379 DOI: 10.1016/j.biopha.2023.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The replicative senescence of human amniotic epithelial stem cells (hAECs) is a major concern towards its clinical application. This study found that a 300-kDa hyaluronic acid (HA) could effectively delay the replicative senescence of hAECs, as indicated by the downregulation of cellular senescence markers and alteration of the cell cycle, and substantially improve the differentiation capacities of hAECs. HA was confirmed to regulate the CD44 isoform switch by upregulating the CD44s and downregulating the CD44v, thus exerting an anti-aging effect. We further found that HA induced the upregulation of hyaluronan synthase (HAS) 2, resulting in the activation of epithelial splicing regulatory protein 1 (ESRP1) and alternative splicing of CD44 mRNA, thereby promoting CD44s expression and inhibiting CD44v expression. Knockdown of HAS2 blocked ESRP1 expression and attenuated the anti-aging effects of HA. Hermes-1, a specific blocker of CD44, caused partial loss of the anti-aging effect of HA, upregulated senescence markers, and downregulated stemness markers. Furthermore, CD44s receptor activation was shown to initiate the AKT/mTOR downstream signaling. Conclusively, the study suggested that HA delayed hAEC senescence by regulating CD44 isoform switch to activate the AKT/mTOR signaling pathway, and there is potential for the clinical application of hAECs in combination with HA.
Collapse
Affiliation(s)
- Chao Yu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Huan Yuan
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yan Xu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Zuo-Hui Wu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| | - Jian-Jiang Zhong
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| |
Collapse
|
25
|
Costa FR, Santos MDS, Martins RA, Costa CB, Hamdan PC, Da Silva MB, Azzini GOM, Pires L, Menegassi Z, Santos GS, Lana JF. The Synergistic Effects of Hyaluronic Acid and Platelet-Rich Plasma for Patellar Chondropathy. Biomedicines 2023; 12:6. [PMID: 38275367 PMCID: PMC10813186 DOI: 10.3390/biomedicines12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Musculoskeletal disorders are increasingly prevalent worldwide, causing significant socioeconomic burdens and diminished quality of life. Notably, patellar chondropathy (PC) is among the most widespread conditions affecting joint structures, resulting in profound pain and disability. Hyaluronic acid (HA) and platelet-rich plasma (PRP) have emerged as reliable, effective, and minimally invasive alternatives. Continuous research spanning from laboratory settings to clinical applications demonstrates the numerous advantages of both products. These encompass lubrication, anti-inflammation, and stimulation of cellular behaviors linked to proliferation, differentiation, migration, and the release of essential growth factors. Cumulatively, these benefits support the rejuvenation of bone and cartilaginous tissues, which are otherwise compromised due to the prevailing degenerative and inflammatory responses characteristic of tissue damage. While existing literature delves into the physical, mechanical, and biological facets of these products, as well as their commercial variants and distinct clinical uses, there is limited discussion on their interconnected roles. We explore basic science concepts, product variations, and clinical strategies. This comprehensive examination provides physicians with an alternative insight into the pathophysiology of PC as well as biological mechanisms stimulated by both HA and PRP that contribute to tissue restoration.
Collapse
Affiliation(s)
- Fábio Ramos Costa
- Department of Orthopedics, FC Sports Traumatology Clinic, Salvador 40296-210, Brazil; (F.R.C.); (C.B.C.)
| | | | | | - Cláudia Bruno Costa
- Department of Orthopedics, FC Sports Traumatology Clinic, Salvador 40296-210, Brazil; (F.R.C.); (C.B.C.)
| | - Paulo César Hamdan
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Marcos Britto Da Silva
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Gabriel Ohana Marques Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - Zartur Menegassi
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, Brazil
| |
Collapse
|
26
|
Wang S, Li D, Zou M, Wu J, Wang X, Yang Y, Li X, Yang W. Efficacy of autologous platelet-rich plasma combined with a non-cross-linked hyaluronic acid compound in the treatment of female androgenetic alopecia: A retrospective, case-series study. J Cosmet Dermatol 2023; 22:3268-3275. [PMID: 37337401 DOI: 10.1111/jocd.15861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Female androgenetic alopecia (FAGA) is a condition that affects women and involves the gradual loss of terminal hair in specific areas of the scalp. The limited treatment options for FAGA necessitate the development of new strategies. This study aimed to evaluate the potential benefit of using a combination therapy composed of autologous platelet-rich plasma (PRP) and a non-cross-linked hyaluronic acid (HA) compound in the treatment of FAGA. METHODS This was a retrospective, case-series study, which enrolled nine female patients with FAGA between September 2021 and December 2022. The non-cross-linked HA compound (Hearty®, Imeik Technology Development Co., Ltd.) and PRP were implanted into the areas of hair loss over four treatment sessions separated by 4-week intervals. Patients were monitored for overall improvement in their hair loss, hair count, treatment satisfaction, and adverse events at 1, 3, and 6 months follow-up. RESULTS The improvement rates, subjectively evaluated by the study physician, were 88.89% at the 1-month and 100% at the 3-month follow-up, relative to baseline. Moreover, the quantitative evaluation results showed that the FAGA patients' hair density increased by 54.51% at the 1-month and by 77.25% at the 3-month follow-up. CONCLUSION The combination of PRP and non-cross-linked HA compound appeared to be a certain positive effective procedure for FAGA without serious adverse event. We envisage that this work will contribute to the development of new treatment options for women suffering from this condition.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Medical, Imeik Technology Development Co., Ltd., Beijing, China
| | - Dongmei Li
- Department of Medical Cosmetology, Beijing Huaxia Medical Beauty Hospital, Beijing, China
| | - Muyan Zou
- Department of Medical, Imeik Technology Development Co., Ltd., Beijing, China
| | - Jiaxu Wu
- Department of Medical, Imeik Technology Development Co., Ltd., Beijing, China
| | - Xuehan Wang
- Department of Medical Cosmetology, Beijing Huaxia Medical Beauty Hospital, Beijing, China
| | - Yu Yang
- Department of Medical Cosmetology, Beijing Huaxia Medical Beauty Hospital, Beijing, China
| | - Xin Li
- Department of Medical, Imeik Technology Development Co., Ltd., Beijing, China
| | - Wei Yang
- Department of Medical Cosmetology, Beijing Huaxia Medical Beauty Hospital, Beijing, China
| |
Collapse
|
27
|
Bonet IJM, Araldi D, Green PG, Levine JD. Topical coapplication of hyaluronan with transdermal drug delivery enhancers attenuates inflammatory and neuropathic pain. Pain 2023; 164:2653-2664. [PMID: 37467181 PMCID: PMC10794581 DOI: 10.1097/j.pain.0000000000002993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 07/21/2023]
Abstract
ABSTRACT We have previously shown that intradermal injection of high-molecular-weight hyaluronan (500-1200 kDa) produces localized antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the therapeutic effect of topical hyaluronan, when combined with each of 3 transdermal drug delivery enhancers (dimethyl sulfoxide [DMSO], protamine or terpene), in preclinical models of inflammatory and neuropathic pain. Topical application of 500 to 1200 kDa hyaluronan (the molecular weight range used in our previous studies employing intradermal administration), dissolved in 75% DMSO in saline, markedly reduced prostaglandin E 2 (PGE 2 ) hyperalgesia, in male and female rats. Although topical 500- to 1200-kDa hyaluronan in DMSO vehicle dose dependently, also markedly, attenuated oxaliplatin chemotherapy-and paclitaxel chemotherapy-induced painful peripheral neuropathy (CIPN) in male rats, it lacked efficacy in female rats. However, following ovariectomy or intrathecal administration of an oligodeoxynucleotide antisense to G-protein-coupled estrogen receptor (GPR30) mRNA, CIPN in female rats was now attenuated by topical hyaluronan. Although topical coadministration of 150 to 300, 300 to 500, or 1500 to 1750 kDa hyaluronan with DMSO also attenuated CIPN, a slightly lower-molecular-weight hyaluronan (70-120 kDa) did not. The topical administration of a combination of hyaluronan with 2 other transdermal drug delivery enhancers, protamine and terpene, also attenuated CIPN hyperalgesia, an effect that was more prolonged than with DMSO vehicle. Repeated administration of topical hyaluronan prolonged the duration of antihyperalgesia. Our results support the use of topical hyaluronan, combined with chemically diverse nontoxic skin penetration enhancers, to induce marked antihyperalgesia in preclinical models of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Ivan J. M. Bonet
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Dionéia Araldi
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paul G. Green
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Preventative & Restorative Dental Sciences and Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jon D. Levine
- Department of Oral & Maxillofacial Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Departments of Medicine and Oral & Maxillofacial Surgery, and Division of Neuroscience, UCSF Pain and Addiction Research Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
29
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|
30
|
Shir-az O, Berl A, Mann D, Bilal BS, Levy Y, Shalom A. Treatment of Scleroderma-Related Microstomia Using Hyaluronic Acid: An Interventional Study. Life (Basel) 2023; 13:2176. [PMID: 38004316 PMCID: PMC10671914 DOI: 10.3390/life13112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Systemic sclerosis (SSc) or scleroderma is a rare, systemic, autoimmune connective tissue disease. It causes increased collagen synthesis, leading to multi-organ sclerosis, including the skin and joints. Patients' overall health and quality of life are harmed dramatically. Involvement of the face and, especially, the oral opening can limit patients' ability to speak and eat, oral hygiene, and cosmetic appearance. Profhilo® (NAHYCO®) is an over-the-counter product consisting of pure hyaluronic acid. It is used to improve skin quality by increasing collagen production and adipocyte vitality. This interventional study evaluated the results of perioral injections of hyaluronic acid in terms of improved skin quality, elasticity, and increased oral opening. Patients diagnosed with SSc received an injection of one syringe of Profhilo® (2 mL of hyaluronic acid) at each of two clinic visits at one-month intervals. The oral opening was measured between the upper and lower central incisors before and after treatment. Quality of life was assessed using the modified Rodnan Skin Score and Health Assessment Questionnaire-Disability Index. A total of 14 patients received the first treatment, and 11 received the second treatment. The mean oral opening increased from 31.6 mm (range 17-50 mm) prior to therapy to 35.8 mm (range 21-56) 2 months following the second injection. Statistical analysis showed that there was a significant increase in the oral opening as observed one week (36.2 mm, p = 0.011), one month (36.2 mm, p = 0.007), and three months (31.6 mm, p = 0.023) after the second injection, at the 5-month follow-up. Treatment of SSc patients' perioral area with Profhilo® can result in significant improvements in oral opening and quality of life.
Collapse
Affiliation(s)
- Ofir Shir-az
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (O.S.-a.); (D.M.); (B.S.B.); (A.S.)
- The Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (O.S.-a.); (D.M.); (B.S.B.); (A.S.)
- The Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Din Mann
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (O.S.-a.); (D.M.); (B.S.B.); (A.S.)
- The Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Biader Samih Bilal
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (O.S.-a.); (D.M.); (B.S.B.); (A.S.)
- The Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Yair Levy
- The Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (O.S.-a.); (D.M.); (B.S.B.); (A.S.)
- The Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
31
|
Xuan H, Wu S, Jin Y, Wei S, Xiong F, Xue Y, Li B, Yang Y, Yuan H. A Bioinspired Self-Healing Conductive Hydrogel Promoting Peripheral Nerve Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302519. [PMID: 37612810 PMCID: PMC10558694 DOI: 10.1002/advs.202302519] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Indexed: 08/25/2023]
Abstract
The development of self-healing conductive hydrogels is critical in electroactive nerve tissue engineering. Typical conductive materials such as polypyrrole (PPy) are commonly used to fabricate artificial nerve conduits. Moreover, the field of tissue engineering has advanced toward the use of products such as hyaluronic acid (HA) hydrogels. Although HA-modified PPy films are prepared for various biological applications, the cell-matrix interaction mechanisms remain poorly understood; furthermore, there are no reports on HA-modified PPy-injectable self-healing hydrogels for peripheral nerve repair. Therefore, in this study, a self-healing electroconductive hydrogel (HASPy) from HA, cystamine (Cys), and pyrrole-1-propionic acid (Py-COOH), with injectability, biodegradability, biocompatibility, and nerve-regenerative capacity is constructed. The hydrogel directly targets interleukin 17 receptor A (IL-17RA) and promotes the expression of genes and proteins relevant to Schwann cell myelination mainly by activating the interleukin 17 (IL-17) signaling pathway. The hydrogel is injected directly into the rat sciatic nerve-crush injury sites to investigate its capacity for nerve regeneration in vivo and is found to promote functional recovery and remyelination. This study may help in understanding the mechanism of cell-matrix interactions and provide new insights into the potential use of HASPy hydrogel as an advanced scaffold for neural regeneration.
Collapse
Affiliation(s)
- Hongyun Xuan
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| | - Shuyuan Wu
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| | - Yan Jin
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| | - Shuo Wei
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| | - Feng Xiong
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| | - Ye Xue
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| | - Biyun Li
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong UniversityNantongJiangsu226001P. R. China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu226001P. R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsNantong UniversityNantongJiangsu226001P. R. China
| | - Huihua Yuan
- School of Life SciencesNantong UniversityNantongJiangsu226019P. R. China
| |
Collapse
|
32
|
Parente E, Colannino G, Bilotta G, Espinola MSB, Proietti S, Oliva MM, Neri I, Aragona C, Unfer V. Effect of Oral High Molecular Weight Hyaluronic Acid (HMWHA), Alpha Lipoic Acid (ALA), Magnesium, Vitamin B6 and Vitamin D Supplementation in Pregnant Women: A Retrospective Observational Pilot Study. Clin Pract 2023; 13:1123-1129. [PMID: 37736936 PMCID: PMC10514820 DOI: 10.3390/clinpract13050100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Background-Pregnancy represents a nutritional challenge, since macro- and micronutrients intake can affect mother' health and influence negative outcomes. The aim of this retrospective pilot study is to evidence whether the oral supplementation with high molecular weight hyaluronic acid (HMWHA), in association with alpha lipoic acid (ALA), magnesium, vitamin B6 and vitamin D, in pregnant women, could reduce adverse effects, such as PTB, pelvic pain, contraction and hospitalization. Methods-Data were collected from n = 200 women treated daily with oral supplements of 200 mg HMWHA, 100 mg ALA, 450 mg magnesium, 2.6 mg vitamin B6 and 50 mcg vitamin D (treatment group) and from n = 50 women taking with oral supplements of 400 mg magnesium (control group). In both groups, supplementation started from the 7th gestational week until delivery. Results-Oral treatment with HMWHA, in association with ALA, magnesium, vitamin B6 and vitamin D in pregnant women, significantly reduced adverse events, such as PTB (p < 0.01), pelvic pain and contractions (p < 0.0001), miscarriages (p < 0.05) and admission to ER/hospitalization (p < 0.0001) compared with the control group. Conclusions-Despite HMWHA having been poorly used as a food supplement in pregnant women, our results open a reassuring scenario regarding its oral administration during pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isabella Neri
- Obstetrics Unit, Mother Infant Department, University Hospital Policlinico of Modena, 41124 Modena, Italy
| | | | - Vittorio Unfer
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| |
Collapse
|
33
|
Parnigoni A, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. Effects of Hyaluronan on Breast Cancer Aggressiveness. Cancers (Basel) 2023; 15:3813. [PMID: 37568628 PMCID: PMC10417239 DOI: 10.3390/cancers15153813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in breast cancer cells is critical for determining tumor aggressiveness and targeting therapies. The presence of such receptors allows for the use of antagonists that effectively reduce breast cancer growth and dissemination. However, the absence of such receptors in triple-negative breast cancer (TNBC) reduces the possibility of targeted therapy, making these tumors very aggressive with a poor outcome. Cancers are not solely composed of tumor cells, but also include several types of infiltrating cells, such as fibroblasts, macrophages, and other immune cells that have critical functions in regulating cancer cell behaviors. In addition to these cells, the extracellular matrix (ECM) has become an important player in many aspects of breast cancer biology, including cell growth, motility, metabolism, and chemoresistance. Hyaluronan (HA) is a key ECM component that promotes cell proliferation and migration in several malignancies. Notably, HA accumulation in the tumor stroma is a negative prognostic factor in breast cancer. HA metabolism depends on the fine balance between HA synthesis by HA synthases and degradation yielded by hyaluronidases. All the different cell types present in the tumor can release HA in the ECM, and in this review, we will describe the role of HA and HA metabolism in different breast cancer subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.P.); (P.M.); (M.V.); (E.K.); (A.P.)
| |
Collapse
|
34
|
Lana JF, Purita J, Everts PA, De Mendonça Neto PAT, de Moraes Ferreira Jorge D, Mosaner T, Huber SC, Azzini GOM, da Fonseca LF, Jeyaraman M, Dallo I, Santos GS. Platelet-Rich Plasma Power-Mix Gel (ppm)-An Orthobiologic Optimization Protocol Rich in Growth Factors and Fibrin. Gels 2023; 9:553. [PMID: 37504432 PMCID: PMC10379106 DOI: 10.3390/gels9070553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Platelet- and fibrin-rich orthobiologic products, such as autologous platelet concentrates, have been extensively studied and appreciated for their beneficial effects on multiple conditions. Platelet-rich plasma (PRP) and its derivatives, including platelet-rich fibrin (PRF), have demonstrated encouraging outcomes in clinical and laboratory settings, particularly in the treatment of musculoskeletal disorders such as osteoarthritis (OA). Although PRP and PRF have distinct characteristics, they share similar properties. The relative abundance of platelets, peripheral blood cells, and molecular components in these orthobiologic products stimulates numerous biological pathways. These include inflammatory modulation, augmented neovascularization, and the delivery of pro-anabolic stimuli that regulate cell recruitment, proliferation, and differentiation. Furthermore, the fibrinolytic system, which is sometimes overlooked, plays a crucial role in musculoskeletal regenerative medicine by regulating proteolytic activity and promoting the recruitment of inflammatory cells and mesenchymal stem cells (MSCs) in areas of tissue regeneration, such as bone, cartilage, and muscle. PRP acts as a potent signaling agent; however, it diffuses easily, while the fibrin from PRF offers a durable scaffolding effect that promotes cell activity. The combination of fibrin with hyaluronic acid (HA), another well-studied orthobiologic product, has been shown to improve its scaffolding properties, leading to more robust fibrin polymerization. This supports cell survival, attachment, migration, and proliferation. Therefore, the administration of the "power mix" containing HA and autologous PRP + PRF may prove to be a safe and cost-effective approach in regenerative medicine.
Collapse
Affiliation(s)
- José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13343-060, Brazil
| | | | | | | | | | - Tomas Mosaner
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | - Stephany Cares Huber
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Tamil Nadu 600095, India
| | - Ignacio Dallo
- SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, Unit of Biological Therapies and MSK Interventionism, 41013 Seville, Spain
| | - Gabriel Silva Santos
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| |
Collapse
|
35
|
Kocurkova A, Kerberova M, Nesporova K, Lehka K, Sandanusova M, Simek M, Velebny V, Kubala L, Ambrozova G. Endogenously produced hyaluronan contributes to the regulation of peritoneal adhesion development. Biofactors 2023; 49:940-955. [PMID: 37154260 DOI: 10.1002/biof.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Peritoneal adhesions are postsurgical fibrotic complications connected to peritoneal inflammation. The exact mechanism of development is unknown; however, an important role is attributed to activated mesothelial cells (MCs) overproducing macromolecules of extracellular matrix (ECM), including hyaluronic acid (HA). It was suggested that endogenously-produced HA contributes to the regulation of different fibrosis-related pathologies. However, little is known about the role of altered HA production in peritoneal fibrosis. We focused on the consequences of the increased turnover of HA in the murine model of peritoneal adhesions. Changes of HA metabolism were observed in early phases of peritoneal adhesion development in vivo. To study the mechanism, human MCs MeT-5A and murine MCs isolated from the peritoneum of healthy mice were pro-fibrotically activated by transforming growth factor β (TGFβ), and the production of HA was attenuated by two modulators of carbohydrate metabolism, 4-methylumbelliferone (4-MU) and 2-deoxyglucose (2-DG). The attenuation of HA production was mediated by upregulation of HAS2 and downregulation of HYAL2 and connected to the lower expression of pro-fibrotic markers, including fibronectin and α-smooth muscle actin (αSMA). Moreover, the inclination of MCs to form fibrotic clusters was also downregulated, particularly in 2-DG-treated cells. The effects of 2-DG, but not 4-MU, were connected to changes in cellular metabolism. Importantly, the inhibition of AKT phosphorylation was observed after the use of both HA production inhibitors. In summary, we identified endogenous HA as an important regulator of peritoneal fibrosis, not just a passive player during this pathological process.
Collapse
Affiliation(s)
- Anna Kocurkova
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Kerberova
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | | | - Miriam Sandanusova
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Matej Simek
- Contipro a.s., Dolni Dobrouc, Czech Republic
| | | | - Lukas Kubala
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriela Ambrozova
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
36
|
Tang X, Liu J, Yan R, Peng Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: A review. Int J Biol Macromol 2023; 242:124902. [PMID: 37210054 DOI: 10.1016/j.ijbiomac.2023.124902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Eyes are directly exposed to the outer environment and susceptible to infections, leading to various ocular disorders. Local medication is preferred to treat eye diseases due to its convenience and compliance. However, the rapid clearance of the local formulations highly limits the therapeutic efficacy. In the past decades, several carbohydrate bioadhesive polymers (CBPs), such as chitosan and hyaluronic acid, have been used in ophthalmology for sustained ocular drug delivery. These CBP-based delivery systems have improved the treatment of ocular diseases to a large extent but also caused some undesired effects. Herein, we aim to summarize the applications of some typical CBPs (including chitosan, hyaluronic acid, cellulose, cyclodextrin, alginate and pectin) in treating ocular diseases from the general view of ocular physiology, pathophysiology and drug delivery, and to provide a comprehensive understanding of the design of the CBP-based formulations for ocular use. The patents and clinical trials of CBPs for ocular management are also discussed. In addition, a discussion on the concerns of CBPs in clinical use and the possible solutions is presented.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
37
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
38
|
Perk B, Büyüksünetçi YT, Anık Ü. Gold nanoparticle deposited electrochemical sensor for hyaluronic acid detection. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
39
|
Cohen J, Huang S, Koczwara K, Ho V, Woodman K, Lek A, Arbiser J, Lek M, DeSimone A. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. RESEARCH SQUARE 2023:rs.3.rs-2452222. [PMID: 36778471 PMCID: PMC9915774 DOI: 10.21203/rs.3.rs-2452222/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
|
40
|
Araco A, Araco F, Raichi M. Clinical efficacy and safety of polynucleotides highly purified technology (PN-HPT®) and cross-linked hyaluronic acid for moderate to severe nasolabial folds: A prospective, randomized, exploratory study. J Cosmet Dermatol 2023; 22:146-155. [PMID: 35531796 PMCID: PMC10084116 DOI: 10.1111/jocd.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023]
Abstract
INTRODUCTION The mandibular profile undergoes progressive wasting with aging, and the deepening of nasolabial folds (NLFs) has a leading role. Hyaluronic acid (HA) efficiently controls tissue hydration and permeability to small and large molecules. NLFs are an acknowledged HA target; at the same time, another class of agents, PN-HPT® (Polynucleotides Highly Purified Technology), enjoy growing acknowledgement in aesthetic medicine. This exploratory, prospective study probed the rationale of sequentially associating PN-HPT® as a first priming agent acting in the skin followed by HA dermal filler injections for correcting moderate to severe NLFs. METHODS Following strict inclusion and exclusion criteria, the authors screened Caucasian ambulatory women aged 40-65 with moderate to severe NLFs and randomly selected two NLFs for each enrolled woman. Due to the purely explorative nature of the study, the authors initially planned to enroll no >10 women. According to a split-face design, the selected right-side NLFs received 4 ml of PN-HPT® intradermally in the initial priming phase ("NLF Rx group"); the selected left-side NLFs received 4 ml of saline (placebo) ("NLF Lx group"). After 3 and 6 weeks, all patients received 2 ml of subdermal cross-linked HA over both NLF areas (4 ml overall). The total study follow-up was 6 months after the first injection, with objective assessments, based on the qualitative and quantitative Antera 3D® and Vectra H2® skin imaging technologies, after 6 weeks and 3 and 6 months. RESULTS Because of the favorable early outcomes, the authors let enrollment progress between January and June 2020 up to a total of 20 women and 40 NLFs. All treated women completed the six-month follow-up without reporting side effects, even clinically minor. The Antera 3D® device demonstrated that wrinkles and skin texture significantly improved in the NLF Rx after 6 weeks (monotherapy phase) and 3 and 6 months (PN-HPT® priming + HA phase) compared with baseline. HA levels, measured with the quantitative Vectra H2® assessment technology in the right NLFs, were significantly higher than contralaterally at both 3 and 6 months. CONCLUSIONS Although conceived only as an exploratory investigation, the study confirmed that PN-HPT® monotherapy might be a valuable and effective option to rapidly improve the skin dermis texture and quality in individuals with moderate to severe NLFs. Acting as a priming agent in the skin, PN-HPT® prolong the clinical efficacy of cross-linked HA. Well-designed trials in larger treatment groups will hopefully confirm these early promising results.
Collapse
Affiliation(s)
- Antonino Araco
- Cosmetic and Plastic Surgeon, Aesthetic Medicine Department, Tor Vergata University, Rome, Italy
| | - Francesco Araco
- Cosmetic and Plastic Surgeon, San Giovanni Evangelista Hospital, Tivoli, Italy
| | - Mauro Raichi
- Clinical Pharmacology Consultant in Aesthetic Medicine, Milan, Italy
| |
Collapse
|
41
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
42
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
43
|
Vitale DL, Cordo-Russo RI, Alaniz L. Proteoglycans: A Tool for Detecting Hyaluronan by ELISA-Like Methods. Methods Mol Biol 2023; 2619:39-52. [PMID: 36662460 DOI: 10.1007/978-1-0716-2946-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hyaluronan is a non-sulfated glycosaminoglycan synthesized on the plasma membrane of almost all mammalian cells, which can interact with different proteoglycans of the extracellular matrix. Aggrecan, versican, neurocan, and brevican are proteoglycans whose structures present a specific protein domain called "link module," which allows hyaluronan binding. Therefore, they can be helpful for assays that detect hyaluronan. For example, ELISA-like methods developed to measure hyaluronan amounts in solution are based on specific interactions between this molecule and the link module present in aggrecan or other hyaluronan-binding proteins (hyaladherins).
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín, Buenos Aires, Argentina
| | | | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires, Argentina.
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín, Buenos Aires, Argentina.
| |
Collapse
|
44
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
46
|
Michalczyk M, Humeniuk E, Adamczuk G, Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int J Mol Sci 2022; 24:ijms24010103. [PMID: 36613567 PMCID: PMC9820514 DOI: 10.3390/ijms24010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with its binding proteins, known as hyaladherins (CD44, RHAMM), revealing the molecular basis for its distinct biological function in the development of cancer. The presence of HA on the surface of tumor cells is a sign of an adverse prognosis. The involvement of HA in malignancy has been extensively investigated using cancer-free naked mole rats as a model. The HA metabolic components are examined for their potential impact on promoting or inhibiting tumor formation, proliferation, invasion, and metastatic spread. High molecular weight HA is associated with homeostasis and protective action due to its ability to preserve tissue integrity. In contrast, low molecular weight HA indicates a pathological condition in the tissue and plays a role in pro-oncogenic activity. A systematic approach might uncover processes related to cancer growth, establish novel prognostic indicators, and identify potential targets for treatment action.
Collapse
|
47
|
Galgoczi E, Katko M, Papp FR, Csiki R, Csiha S, Erdei A, Bodor M, Ujhelyi B, Steiber Z, Gyory F, Nagy EV. Glucocorticoids Directly Affect Hyaluronan Production of Orbital Fibroblasts; A Potential Pleiotropic Effect in Graves' Orbitopathy. Molecules 2022; 28:molecules28010015. [PMID: 36615214 PMCID: PMC9822010 DOI: 10.3390/molecules28010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Orbital connective tissue expansion is a hallmark of Graves’ orbitopathy (GO). In moderate-to-severe active GO, glucocorticoids (GC) are the first line of treatment. Here we show that hydrocortisone (HC), prednisolone (P), methylprednisolone (MP), and dexamethasone (DEX) inhibit the hyaluronan (HA) production of orbital (OF) and dermal (DF) fibroblasts. HA production of GO OFs (n = 4), NON-GO OFs (n = 4) and DFs (n = 4) was measured by ELISA. mRNA expression of enzymes of HA metabolism and fibroblast proliferation was examined by RT-PCR and BrdU incorporation, respectively. After 24 h of GC treatment (1µM) HA production decreased by an average of 67.9 ± 3.11% (p < 0.0001) in all cell cultures. HAS2, HAS3 and HYAL1 expression in OFs also decreased (p = 0.009, p = 0.0005 and p = 0.015, respectively). Ten ng/mL PDGF-BB increased HA production and fibroblast proliferation in all cell lines (p < 0.0001); GC treatment remained effective and reduced HA production under PDGF-BB-stimulated conditions (p < 0.0001). MP and DEX reduced (p < 0.001, p = 0.002, respectively) PDGF-BB-induced HAS2 expression in OFs. MP and DEX treatment decreased PDGF-BB stimulated HAS3 expression (p = 0.035 and p = 0.029, respectively). None of the GCs tested reduced the PDGF-BB stimulated proliferation rate. Our results confirm that GCs directly reduce the HA production of OFs, which may contribute to the beneficial effect of GCs in GO.
Collapse
Affiliation(s)
- Erika Galgoczi
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Monika Katko
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Fruzsina Reka Papp
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Robert Csiki
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Sara Csiha
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Annamaria Erdei
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Miklos Bodor
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Zita Steiber
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Ferenc Gyory
- Department of Surgery, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-30-3371444
| |
Collapse
|
48
|
The synthesis of hyaluronic acid related oligosaccharides and elucidation of their antiangiogenic activity. Carbohydr Res 2022; 522:108701. [DOI: 10.1016/j.carres.2022.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
|
49
|
Opposing Roles of IGFBP-3 and Heparanase in Regulating A549 Lung Cancer Cell Survival. Cells 2022; 11:cells11223533. [PMID: 36428962 PMCID: PMC9688904 DOI: 10.3390/cells11223533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we examined the roles of heparanase and IGFBP-3 in regulating A549 and H1299 non-small-cell lung cancer (NSCLC) survival. We found that H1299 cells, known to be p53-null with no expression of IGFBP-3, had higher heparanase levels and activity and higher levels of heparan sulfate (HS) in the media compared to the media of A549 cells. Inhibiting heparanase activity or its expression using siRNA had no effect on the levels of IGFBP-3 in the media of A549 cells, reduced the levels of soluble HS fragments, and led to decreased interactions between IGFBP-3 and HS in the media. HS competed with HA for binding to IGFBP-3 or IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-232) but not the mutant peptide (K228AR230A). HS abolished the cytotoxic effects of IGFBP-3 but not upon blocking HA-CD44 signaling with the anti-CD44 antibody (5F12). Blocking HA-CD44 signaling decreased the levels of heparanase in the media of both A549 and H1299 cell lines and increased p53 activity and the levels of IGFBP-3 in A549 cell media. Knockdown of p53 led to increased heparanase levels and reduced IGFBP-3 levels in A549 cell media while knockdown of IGFBP-3 in A549 cells blocked p53 activity and increased heparanase levels in the media.
Collapse
|
50
|
Piñón-Zárate G, Hernández-Téllez B, Jarquín-Yáñez K, Herrera-Enríquez MÁ, Fuerte-Pérez AE, Valencia-Escamilla EA, Castell-Rodríguez AE. Gelatin/Hyaluronic Acid Scaffold Coupled to CpG and MAGE-A5 as a Treatment against Murine Melanoma. Polymers (Basel) 2022; 14:4608. [PMID: 36365602 PMCID: PMC9657831 DOI: 10.3390/polym14214608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
The half-time of cells and molecules used in immunotherapy is limited. Scaffolds-based immunotherapy against cancer may increase the half-life of the molecules and also support the migration and activation of leukocytes in situ. For this purpose, the use of gelatin (Ge)/hyaluronic acid (HA) scaffolds coupled to CpG and the tumor antigen MAGE-A5 is proposed. Ge and HA are components of the extracellular matrix that stimulate cell adhesion and activation of leucocytes; CpG can promote dendritic cell maturation, and MAGE-A5 a specific antitumor response. C57BL/6 mice were treated with Ge/HA/scaffolds coupled to MAGE-A5 and/or CpG and then challenged with the B16-F10 melanoma cell line. Survival, tumor growth rate and the immune response induced by the scaffolds were analyzed. Ge/HA/CpG and Ge/HA/MAGE-A5 mediated dendritic cell maturation and macrophage activation, increased survival, and decreased the tumor growth rate and a tumor parenchyma with abundant cell death areas and abundant tumor cells with melanin granules. Only the scaffolds coupled to MAGE-A5 induced the activation of CD8 T cells. In conclusion, Ge/HA scaffolds coupled to CpG or MAGE-A5, but not the mixture, can induce a successful immune response capable of promoting tumor cell clearance and increased survival.
Collapse
Affiliation(s)
- Gabriela Piñón-Zárate
- Facultad de Medicina, National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|