1
|
Lana D, Landucci E, Mazzantini C, Magni G, Pellegrini-Giampietro DE, Giovannini MG. The Protective Effect of CBD in a Model of In Vitro Ischemia May Be Mediated by Agonism on TRPV2 Channel and Microglia Activation. Int J Mol Sci 2022; 23:12144. [PMID: 36292998 PMCID: PMC9603301 DOI: 10.3390/ijms232012144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 09/21/2023] Open
Abstract
Cannabinoids, used for centuries for recreational and medical purposes, have potential therapeutic value in stroke treatment. Cannabidiol (CBD), a non-psychoactive compound and partial agonist of TRPV2 channels, is efficacious in many neurological disorders. We investigated the effects of CBD or Δ9-tetrahydrocannabinol (THC) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Neuronal TRPV2 expression decreased after OGD, but it increased in activated, phagocytic microglia. CBD increased TRPV2 expression, decreased microglia phagocytosis, and increased rod microglia after OGD. THC had effects contrary to those of CBD. Our results show that cannabinoids have different effects in ischemia. CBD showed neuroprotective effects, mediated, at least in part, by TRPV2 channels, since the TRPV2 antagonist tranilast blocked them, while THC worsened the neurodegeneration caused by ischemia. In conclusion, our results suggest that different cannabinoid molecules play different roles in the mechanisms of post-ischemic neuronal death. These different effects of cannabinoid observed in our experiments caution against the indiscriminate use of cannabis or cannabinoid preparations for recreational or therapeutic use. It was observed that the positive effects of CBD may be counteracted by the negative effects caused by high levels of THC.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|
2
|
Wang M, Liu H, Ma Z. Roles of the Cannabinoid System in the Basal Ganglia in Parkinson’s Disease. Front Cell Neurosci 2022; 16:832854. [PMID: 35264932 PMCID: PMC8900732 DOI: 10.3389/fncel.2022.832854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease usually caused by neuroinflammation, oxidative stress and other etiologies. Recent studies have found that the cannabinoid system present in the basal ganglia has a strong influence on the progression of PD. Altering the cannabinoid receptor activation status by modulating endogenous cannabinoid (eCB) levels can exert an anti-movement disorder effect. Therefore, the development of drugs that modulate the endocannabinoid system may be a novel strategy for the treatment of PD. However, eCB regulation is complex, with diverse cannabinoid receptor functions and the presence of dopaminergic, glutamatergic, and γ-aminobutyric signals interacting with cannabinoid signaling in the basal ganglia region. Therefore, the study of eCB is challenging. Here, we have described the function of the cannabinoid system in the basal ganglia and its association with PD in three parts (eCBs, cannabinoid receptors, and factors regulating the cannabinoid metabolism) and summarized the mechanisms of action related to the cannabinoid analogs currently aimed at treating PD. The shortcomings identified from previous studies and the directions that should be explored in the future will provide insights into new approaches and ideas for the future development of cannabinoid-based drugs and the treatment of PD.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zegang Ma
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
- *Correspondence: Zegang Ma,
| |
Collapse
|
3
|
Tyagi S, Shekhar N, Thakur AK. Protective Role of Capsaicin in Neurological Disorders: An Overview. Neurochem Res 2022; 47:1513-1531. [PMID: 35150419 DOI: 10.1007/s11064-022-03549-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
Different pathological conditions that begin with slow and progressive deformations, cause irreversible affliction by producing loss of neurons and synapses. Commonly it is referred to as 'protein misfolding' diseases or proteinopathies and comprises the latest definition of neurological disorders (ND). Protein misfolding dynamics, proteasomal dysfunction, aggregation, defective degradation, oxidative stress, free radical formation, mitochondrial dysfunctions, impaired bioenergetics, DNA damage, neuronal Golgi apparatus fragmentation, axonal transport disruption, Neurotrophins (NTFs) dysfunction, neuroinflammatory or neuroimmune processes, and neurohumoral changes are the several mechanisms that embark the pathogenesis of ND. Capsaicin (8-Methyl-N-vanillyl-6-nonenamide) one of the major phenolic components in chili peppers (Capsicum) distinctively triggers the unmyelinated C-fiber and acts on Transient Receptor Potential Vanilloid-1, which is a Ca2+ permeable, non-selective cation channel. Several studies have shown the neuroprotective role of capsaicin against oxidative damage, behavioral impairment, with 6-hydroxydopamine (6-OHDA) induced Parkinson's disease, pentylenetetrazol-induced seizures, global cerebral ischemia, and streptozotocin-induced Alzheimer's disease. Based on these lines of evidence, capsaicin can be considered as a potential constituent to develop suitable neuro-pharmacotherapeutics for the management and treatment of ND. Furthermore, exploring newer horizons and carrying out proper clinical trials would help to bring out the promising effects of capsaicin to be recommended as a neuroprotectant.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India
| | - Nikhila Shekhar
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110 017, India.
| |
Collapse
|
4
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Parkinson's disease related alterations in cannabinoid transmission. Brain Res Bull 2021; 178:82-96. [PMID: 34808322 DOI: 10.1016/j.brainresbull.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNc) by neurodegeneration. Recent findings in animal models of PD propose tonic inhibition of the remaining DA neurons through GABA release from reactive glial cells. Movement dysfunctions could be ameliorated by promotion of activity in dormant DA cells. The endocannabinoid system (ECS) is extensively present in basal ganglia (BG) and is known as an indirect modulator of DAergic neurotransmission, thus drugs designed to target this system have shown promising therapeutic potential in PD patients. Interestingly, down/up-regulation of cannabinoid receptors (CBRs) varies across the different stages of PD, suggesting that some of the motor/ non-motor deficits may be related to changes in CBRs. Determination of the profile of changes of these receptors across the different stages of PD as well as their neural distribution within the BG could improve understanding of PD and identify pathways important in disease pathobiology. In this review, we focus on temporal and spatial alterations of CBRs during PD in the BG. At present, as inconclusive, but suggestive results have been obtained, future investigations should be conducted to extend preclinical studies examining CBRs changes within each stage in controlled clinical trials in order to determine the potential of targeting CBRs in management of PD.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Ebrahimi-Ghiri M, Khakpai F, Zarrindast MR. URB597 abrogates anxiogenic and depressive behaviors in the methamphetamine-withdrawal mice: Role of the cannabinoid receptor type 1, cannabinoid receptor type 2, and transient receptor potential vanilloid 1 channels. J Psychopharmacol 2021; 35:875-884. [PMID: 33155516 DOI: 10.1177/0269881120965934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Methamphetamine is an addictive stimulant that possesses toxicity in the brain when taken repeatedly or at higher doses. Methamphetamine neurotoxicity is associated with numerous forms of mental impairment, including depression and anxiety. Evidence has also demonstrated that the endocannabinoid system is involved in the regulation of anxiety and depression. AIMS This study was designed to determine the involvement of the endocannabinoid system in anxiety- and depression-related behaviors in methamphetamine-withdrawal male NMRI mice. METHODS The elevated plus maze and forced swim test were used to assess the level of anxiety and depression. RESULTS We found that methamphetamine (30 mg/kg, intraperitoneal) evoked depressive- and anxiogenic-like effects at 3 days post-administration. Injection of URB597 (5-10 ng/mouse, intracerebroventricular), 10 min before the test, prevented the emotional deficits induced by methamphetamine withdrawal. Moreover, the cannabinoid receptor type 1 antagonist AM251 (1 μg/mouse) or cannabinoid receptor type 2 antagonist AM630 (5 and 10 μg/mouse) suppressed the antidepressant activity in the methamphetamine-withdrawal mice treated with URB597. The transient receptor potential vanilloid 1 antagonist capsazepine (25 μg/mouse) prevented while capsazepine (100 μg/mouse) potentiated the antidepressant efficacy in the methamphetamine-withdrawal mice treated with URB597. The higher dose of AM630 and two higher doses of capsazepine had antidepressant efficacy, by themselves. Furthermore, capsazepine (50 μg/mouse) increased locomotion in the methamphetamine-withdrawal mice treated with URB597. CONCLUSIONS The results suggest that URB597 has a potential for preventing methamphetamine withdrawal-evoked anxiety and depression. Cannabinoid type 1 receptors, cannabinoid type 2 receptors and transient receptor potential vanilloid 1 differently affect depression-related behaviors in methamphetamine-withdrawal mice treated with URB597.
Collapse
Affiliation(s)
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
7
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Dronjak S. Inhibition of the fatty acid amide hydrolase changes behaviors and brain catecholamines in a sex-specific manner in rats exposed to chronic unpredictable stress. Physiol Behav 2020; 227:113174. [PMID: 32966816 DOI: 10.1016/j.physbeh.2020.113174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/26/2023]
Abstract
Sex differences in the susceptibility to chronic unpredictable stress (CUS) and the effects of fatty acid amide hydrolase (FAAH) inhibitor URB597 in rats have been investigated in this study. In this context, we investigated the effects of prolonged treatment with URB597 on behavior, pro-inflammatory interleukin-6 (IL-6) and anti-inflammatory interleukin-10 (IL-10), catecholamine content and the expression of its biosynthetic and degrading enzymes in the hippocampus, hypothalamus and medial prefrontal cortex (mPFC) of rats subjected to CUS. The results show that CUS increases anxiety-like and depression-like behaviors but it was more pronounced in females. The data suggests sex differences in brain cytokines, catecholamines and their enzymes of synthesis and degradation expression in response to CUS. Our findings indicate that the FAAH inhibitor URB597 differently regulated catecholamine levels and its enzymes of synthesis and degradation in the examined brain areas of male and female rats. URB treatment failed to reduce anxiety or restore reduced norepinephrine and did not affect enzymes of catecholamine degradation in the mPFC, hippocampus and hypothalamus of CUS female rats. These studies are important because they investigate the neurochemical consequences of stress related mood disorders that might lead to the development of sex specific treatments.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
8
|
Cerebrospinal fluid endocannabinoid levels in Gilles de la Tourette syndrome. Neuropsychopharmacology 2020; 45:1323-1329. [PMID: 32272483 PMCID: PMC7297729 DOI: 10.1038/s41386-020-0671-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Gilles de la Tourette syndrome (TS) is a complex neurodevelopmental disorder characterized by the presence of motor and vocal tics as well as psychiatric comorbidities such as attention-deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), depression, and anxiety. The underlying cause of the disease is still unknown, but several lines of evidence suggest a paramount role of the dopaminergic system. Based on the clinical observation that cannabis-based medicine including cannabis and delta-9-tetrahydrocannabinol (THC, dronabinol) may improve TS, alternatively, an involvement of the endocannabinoid system (ECS) has been suggested. In this study we measured cerebrospinal fluid (CSF) levels of the two most important endocannabinoids "N"-arachidonoylethanolamine (AEA, anandamide) and 2-arachidonoylglycerol (2-AG), the endocannabinoid-like molecule palmitoyl ethanolamide (PEA), and the lipid arachidonic acid (AA) in a sample of adult patients with TS (n = 20) compared with controls (n = 19) using liquid-liquid lipid extraction and simultaneous quantification by liquid chromatography multiple reaction monitoring (LC/MRM). CSF levels of AEA (p = 0.0018), 2-AG (p = 0.0003), PEA (p = 0.02), and AA (p < 0.0001) were significantly increased in TS compared with controls. Levels of 2-AG correlated with the severity of comorbid ADHD (p < 0.01). This is the first study, demonstrating alterations in the ECS suggesting an involvement of this system in the pathophysiology of TS. It can be speculated that elevated endocannabinoid levels either represent secondary changes in order to compensate for alterations in other neurotransmitter systems such as the dopaminergic system, are simply an epiphenomenon or, alternatively, represent the primary cause of TS.
Collapse
|
9
|
Junior NCF, Dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2019; 37:12-29. [PMID: 31637586 DOI: 10.1007/s12640-019-00109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Maurício Dos-Santos-Pereira
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil.,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Elaine Del Bel
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil. .,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil. .,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
10
|
Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system. Neurochem Int 2019; 131:104545. [PMID: 31494132 DOI: 10.1016/j.neuint.2019.104545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophysiology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding modulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
Collapse
|
11
|
Antonazzo M, Gutierrez-Ceballos A, Bustinza I, Ugedo L, Morera-Herreras T. Cannabinoids differentially modulate cortical information transmission through the sensorimotor or medial prefrontal basal ganglia circuits. Br J Pharmacol 2019; 176:1156-1169. [PMID: 30735570 PMCID: PMC6451076 DOI: 10.1111/bph.14613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In the sensorimotor (SM) and medial prefrontal (mPF) basal ganglia (BG) circuits, the cortical information is transferred to the substantia nigra pars reticulata (SNr) through the hyperdirect trans-subthalamic pathway and through the direct and indirect trans-striatal pathways. The cannabinoid CB1 receptor, which is highly expressed in both BG circuits, may participate in the regulation of motor and motivational behaviours. Here, we investigated the modulation of cortico-nigral information transmission through the BG circuits by cannabinoids. EXPERIMENTAL APPROACH We used single-unit recordings of SNr neurons along with simultaneous electrical stimulation of motor or mPF cortex in anaesthetized rats. KEY RESULTS Cortical stimulation elicited a triphasic response in the SNr neurons from both SM and mPF-BG circuits, which consisted of an early excitation (hyperdirect transmission pathway), an inhibition (direct transmission pathway), and a late excitation (indirect transmission pathway). In the SM circuit, after Δ9 -tetrahydrocannabinol or WIN 55,212-2 administration, the inhibition and the late excitation were decreased or completely lost, whereas the early excitation response remained unaltered. However, cannabinoid administration dramatically decreased all the responses in the mPF circuit. The CB1 receptor antagonist AM251 (2 mg·kg-1 , i.v.) did not modify the triphasic response, but blocked the effects induced by cannabinoid agonists. CONCLUSIONS AND IMPLICATIONS CB1 receptor activation modulates the SM information transmission through the trans-striatal pathways and profoundly decreases the cortico-BG transmission through the mPF circuit. These results may be relevant for elucidating the involvement of the cannabinoid system in motor performance and in decision making or goal-directed behaviour.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Amaia Gutierrez-Ceballos
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Irati Bustinza
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Neurodegenerative Diseases Group, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
12
|
Baul HS, Manikandan C, Sen D. Cannabinoid receptor as a potential therapeutic target for Parkinson's Disease. Brain Res Bull 2019; 146:244-252. [PMID: 30664919 DOI: 10.1016/j.brainresbull.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the loss of dopaminergic neurons from substantia nigra pars compacta of basal ganglia caused due to gene mutation, misfolded protein aggregation, reactive oxygen species generation and inflammatory stress. Degeneration of dopaminergic neurons results in muscle stiffness, uncoordinated body movements, sleep disturbance, fatigue, amnesia and impaired voice. Currently, levodopa (L-DOPA) administration is the most widely used therapy for PD. But prolonged administration of L-DOPA is associated with the symptoms of dyskinesia. However, emerging evidences suggest the role of cannabinoid receptors (CBRs) in curtailing the progression of PD by activating neuroprotective pathways. Hence, cannabinoid therapy could be a promising alternative to combat PD in future. In the present review we have discussed the potential role of CBRs in attenuating the key mechanisms of PD and how the existing research gaps needs to be bridged in order to understand the molecular mechanism of CBRs in detail.
Collapse
Affiliation(s)
- Himadri Shekhaar Baul
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Ceera Manikandan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
13
|
Zambrana-Infantes E, Rosell del Valle C, Ladrón de Guevara-Miranda D, Galeano P, Castilla-Ortega E, Rodríguez De Fonseca F, Blanco E, Santín LJ. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice. Pharmacol Biochem Behav 2018; 166:1-12. [DOI: 10.1016/j.pbb.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
|
14
|
Sanjari Moghaddam H, Zare-Shahabadi A, Rahmani F, Rezaei N. Neurotransmission systems in Parkinson’s disease. Rev Neurosci 2017; 28:509-536. [DOI: 10.1515/revneuro-2016-0068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
AbstractParkinson’s disease (PD) is histologically characterized by the accumulation of α-synuclein particles, known as Lewy bodies. The second most common neurodegenerative disorder, PD is widely known because of the typical motor manifestations of active tremor, rigidity, and postural instability, while several prodromal non-motor symptoms including REM sleep behavior disorders, depression, autonomic disturbances, and cognitive decline are being more extensively recognized. Motor symptoms most commonly arise from synucleinopathy of nigrostriatal pathway. Glutamatergic, γ-aminobutyric acid (GABA)ergic, cholinergic, serotoninergic, and endocannabinoid neurotransmission systems are not spared from the global cerebral neurodegenerative assault. Wide intrabasal and extrabasal of the basal ganglia provide enough justification to evaluate network circuits disturbance of these neurotransmission systems in PD. In this comprehensive review, English literature in PubMed, Science direct, EMBASE, and Web of Science databases were perused. Characteristics of dopaminergic and non-dopaminergic systems, disturbance of these neurotransmitter systems in the pathophysiology of PD, and their treatment applications are discussed.
Collapse
Affiliation(s)
- Hossein Sanjari Moghaddam
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Student Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Zare-Shahabadi
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImmunology Research Association (NIRA), Universal Scientific Education and Research Network (USERN), Tehran 1419783151, Iran
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Rahmani
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Boston, MA, USA
| |
Collapse
|
15
|
Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S. Endocannabinoid system in neurodegenerative disorders. J Neurochem 2017; 142:624-648. [PMID: 28608560 DOI: 10.1111/jnc.14098] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,New York State Psychiatric Institute, New York City, New York, USA.,Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York City, New York, USA.,Department of Psychiatry, New York University Langone Medical Center, New York City, New York, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
16
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
17
|
Chung YC, Baek JY, Kim SR, Ko HW, Bok E, Shin WH, Won SY, Jin BK. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson's disease. Exp Mol Med 2017; 49:e298. [PMID: 28255166 PMCID: PMC5382554 DOI: 10.1038/emm.2016.159] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/06/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
The effects of capsaicin (CAP), a transient receptor potential vanilloid subtype 1 (TRPV1) agonist, were determined on nigrostriatal dopamine (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). The results showed that TRPV1 activation by CAP rescued nigrostriatal DA neurons, enhanced striatal DA functions and improved behavioral recovery in MPTP-treated mice. CAP neuroprotection was associated with reduced expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and reactive oxygen species/reactive nitrogen species from activated microglia-derived NADPH oxidase, inducible nitric oxide synthase or reactive astrocyte-derived myeloidperoxidase. These beneficial effects of CAP were reversed by treatment with the TRPV1 antagonists capsazepine and iodo-resiniferatoxin, indicating TRPV1 involvement. This study demonstrates that TRPV1 activation by CAP protects nigrostriatal DA neurons via inhibition of glial activation-mediated oxidative stress and neuroinflammation in the MPTP mouse model of PD. These results suggest that CAP and its analogs may be beneficial therapeutic agents for the treatment of PD and other neurodegenerative disorders that are associated with neuroinflammation and glial activation-derived oxidative damage.
Collapse
Affiliation(s)
- Young C Chung
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Jeong Y Baek
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sang R Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hyuk W Ko
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Eugene Bok
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ho Shin
- Predictive model Research Center, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Byung K Jin
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Gueye AB, Trigo JM, Vemuri KV, Makriyannis A, Le Foll B. Effects of various cannabinoid ligands on choice behaviour in a rat model of gambling. Behav Pharmacol 2016; 27:258-69. [PMID: 26905189 PMCID: PMC4803149 DOI: 10.1097/fbp.0000000000000222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is estimated that 0.6-1% of the population in the USA and Canada fulfil the Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-5) criteria for gambling disorders (GD). To date, there are no approved pharmacological treatments for GD. The rat gambling task (rGT) is a recently developed rodent analogue of the Iowa gambling task in which rats are trained to associate four response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. Similar to healthy human volunteers, most rats adopt the optimal strategies (optimal group). However, a subset of animals show preference for the disadvantageous options (suboptimal group), mimicking the choice pattern of patients with GD. Here, we explored for the first time the effects of various cannabinoid ligands (WIN 55,212-2, AM 4113, AM 630 and URB 597) on the rGT. Administration of the cannabinoid agonist CB1/CB2 WIN 55,212-2 improved choice strategy and increased choice latency in the suboptimal group, but only increased perseverative behaviour, when punished, in the optimal group. Blockade of CB1 or CB2 receptors or inhibition of fatty-acid amide hydrolase did not affect rGT performance. These results suggest that stimulation of cannabinoid receptors could affect gambling choice behaviours differentially in some subgroups of subjects.
Collapse
Affiliation(s)
- Aliou B Gueye
- aTranslational Addiction Research Laboratory bAlcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments cCampbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Departments of dFamily and Community Medicine ePharmacology fDepartment of Psychiatry, Division of Brain and Therapeutics gInstitute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada hDepartment of Pharmaceutical Sciences and Chemistry and Chemical Biology, Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
19
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
20
|
Andrzejewski K, Barbano R, Mink J. Cannabinoids in the treatment of movement disorders: A systematic review of case series and clinical trials. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.baga.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Coccurello R, Bisogno T. The bright side of psychoactive substances: cannabinoid-based drugs in motor diseases. Expert Rev Clin Pharmacol 2016; 9:1351-1362. [DOI: 10.1080/17512433.2016.1209111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
García C, Palomo-Garo C, Gómez-Gálvez Y, Fernández-Ruiz J. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal ganglia. Br J Pharmacol 2015; 173:2069-79. [PMID: 26059564 DOI: 10.1111/bph.13215] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Endocannabinoids and their receptors play a modulatory role in the control of dopamine transmission in the basal ganglia. However, this influence is generally indirect and exerted through the modulation of GABA and glutamate inputs received by nigrostriatal dopaminergic neurons, which lack cannabinoid CB1 receptors although they may produce endocannabinoids. Additional evidence suggests that CB2 receptors may be located in nigrostriatal dopaminergic neurons, and that certain eicosanoid-related cannabinoids may directly activate TRPV1 receptors, which have been found in nigrostriatal dopaminergic neurons, thus allowing in both cases a direct regulation of dopamine transmission by specific cannabinoids. In addition, CB1 receptors form heteromers with dopaminergic receptors which provide another pathway to direct interactions between both systems, in this case at the postsynaptic level. Through these direct mechanisms or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with dopaminergic transmission in the basal ganglia and this is likely to have important effects on dopamine-related functions in these structures (i.e. control of movement) and, particularly, on different pathologies affecting these processes, in particular, Parkinson's disease, but also dyskinesia, dystonia and other pathological conditions. The present review will address the current literature supporting these cannabinoid-dopamine interactions at the basal ganglia, with emphasis on aspects dealing with the physiopathological consequences of these interactions. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Concepción García
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina Palomo-Garo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Yolanda Gómez-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
23
|
Promising cannabinoid-based therapies for Parkinson's disease: motor symptoms to neuroprotection. Mol Neurodegener 2015; 10:17. [PMID: 25888232 PMCID: PMC4404240 DOI: 10.1186/s13024-015-0012-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022] Open
Abstract
Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure. Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD. The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems. As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD. Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons. Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD. Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.
Collapse
|
24
|
Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord 2015; 30:313-27. [PMID: 25649017 DOI: 10.1002/mds.26142] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders.
Collapse
Affiliation(s)
- Benzi Kluger
- Movement Disorders Center, Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
25
|
Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation 2015; 12:21. [PMID: 25644504 PMCID: PMC4322456 DOI: 10.1186/s12974-015-0239-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/07/2015] [Indexed: 02/08/2023] Open
Abstract
An increasing number of studies show that the activation of the innate immune system and inflammatory mechanisms play an important role in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms and its activation occurs in response to pathogens or tissue injury via pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Intracellular pathways, linking immune and inflammatory response to ion channel expression and function, have been recently identified. Among ion channels, the transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge of interactions between immune cells and PRRs and ion channels of TRP families with PAMPs and DAMPs to provide new insights into the pathogenesis of inflammatory diseases. TRP channels have been found to interfere with innate immunity via both nuclear factor-kB and procaspase-1 activation to generate the mature caspase-1 that cleaves pro-interleukin-1β cytokine into the mature interleukin-1β. Sensory neurons are also adapted to recognize dangers by virtue of their sensitivity to intense mechanical, thermal and irritant chemical stimuli. As immune cells, they possess many of the same molecular recognition pathways for danger. Thus, they express PRRs including Toll-like receptors 3, 4, 7, and 9, and stimulation by Toll-like receptor ligands leads to induction of inward currents and sensitization in TRPs. In addition, the expression of inflammasomes in neurons and the involvement of TRPs in central nervous system diseases strongly support a role of TRPs in inflammasome-mediated neurodegenerative pathologies. This field is still at its beginning and further studies may be required. Overall, these studies highlight the therapeutic potential of targeting the inflammasomes in proinflammatory, autoinflammatory and metabolic disorders associated with undesirable activation of the inflammasome by using specific TRP antagonists, anti-human TRP monoclonal antibody or different molecules able to abrogate the TRP channel-mediated inflammatory signals.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Claudio Cardinali
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy. .,Department of Molecular Medicine, Sapienza University, Rome, 00185, Italy.
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy. .,Department of Molecular Medicine, Sapienza University, Rome, 00185, Italy.
| | - Matteo Santoni
- Department of Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of Marche, Ancona, 60126, Italy.
| | - Massimo Nabissi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| |
Collapse
|
26
|
Bosier B, Muccioli GG, Lambert DM. The FAAH inhibitor URB597 efficiently reduces tyrosine hydroxylase expression through CB₁- and FAAH-independent mechanisms. Br J Pharmacol 2014; 169:794-807. [PMID: 22970888 DOI: 10.1111/j.1476-5381.2012.02208.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 08/23/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Anandamide and 2-arachidonoylglycerol are neuromodulatory lipids interacting with cannabinoid receptors, whose availability is regulated by the balance between 'on demand' generation and enzymatic degradation [by fatty acid amide hydrolase (FAAH)/monoacylglycerol lipase]. Given the reported effects of anandamide on dopamine transmission, we investigated the influence of endocannabinoids and URB597, a well-known FAAH inhibitor, on the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. EXPERIMENTAL APPROACH We investigated TH expression in N1E115 neuroblastoma using a reporter gene assay, as well as mRNA and protein quantifications. FAAH inhibition was confirmed by measuring radiolabelled substrate hydrolysis and endogenous endocannabinoids. KEY RESULTS Anandamide decreased TH promoter activity in N1E115 cells through CB₁ receptor activation. Unexpectedly, URB597 reduced TH expression (pEC₅₀ = 8.7 ± 0.2) through FAAH-independent mechanisms. Indeed, four structurally unrelated inhibitors of FAAH had no influence on TH expression, although all the inhibitors increased endocannabinoid levels. At variance with the endocannabinoid responses, the use of selective antagonists indicated that the URB597-mediated decrease in TH expression was not directed by the CB₁ receptor, but rather by abnormal-cannabidiol-sensitive receptors and PPARs. Further supporting the physiological relevance of these in vitro data, URB597 administration resulted in reduced TH mRNA levels in mice brain. CONCLUSIONS While confirming the implication of endocannabinoids on the modulation of TH, we provide strong evidence for additional physiologically relevant off-target effects of URB597. In light of the numerous preclinical studies involving URB597, particularly in anxiety and depression, the existence of non-CB₁ and non-FAAH mediated influences of URB597 on key enzymes of the catecholaminergic transmission system should be taken into account when interpreting the data.
Collapse
Affiliation(s)
- Barbara Bosier
- Medicinal Chemistry Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | |
Collapse
|
27
|
Aguiar D, Moreira F, Terzian A, Fogaça M, Lisboa S, Wotjak C, Guimaraes F. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channels. Neurosci Biobehav Rev 2014; 46 Pt 3:418-28. [DOI: 10.1016/j.neubiorev.2014.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022]
|
28
|
Heng LJ, Huang B, Guo H, Ma LT, Yuan WX, Song J, Wang P, Xu GZ, Gao GD. Blocking TRPV1 in nucleus accumbens inhibits persistent morphine conditioned place preference expression in rats. PLoS One 2014; 9:e104546. [PMID: 25118895 PMCID: PMC4131889 DOI: 10.1371/journal.pone.0104546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/14/2014] [Indexed: 01/27/2023] Open
Abstract
The function of TRPV1 (transient receptor potential vanilloid subfamily, member 1) in the central nervous system is gradually elucidated. It has been recently proved to be expressed in nucleus accumbens (NAc), a region playing an essential role in mediating opioid craving and taking behaviors. Based on the general role of TRPV1 antagonist in blocking neural over-excitability by both pre- and post-synaptic mechanisms, TRPV1 antagonist capsazepine (CPZ) was tested for its ability to prohibit persistent opioid craving in rats. In the present study, we assessed the expression of TRPV1 in nucleus accumbens and investigated the effect of CPZ in bilateral nucleus accumbens on persistent morphine conditioned place preference (mCPP) in rats. We also evaluated the side-effect of CPZ on activity by comparing cross-beam times between groups. We found that morphine conditioned place preference increased the TRPV1 expression and CPZ attenuated morphine conditioned place preference in a dose-dependent and target-specific manner after both short- and long-term spontaneous withdrawal, reflected by the reduction of the increased time in morphine-paired side. CPZ (10 nM) could induce prolonged and stable inhibition of morphine conditioned place preference expression. More importantly, CPZ did not cause dysfunction of activity in the subjects tested, which indicates the inhibitory effect was not obtained at the sacrifice of regular movement. Collectively, these results indicated that injection of TRPV1 antagonist in nucleus accumbens is capable of attenuating persistent morphine conditioned place preference without affecting normal activity. Thus, TRPV1 antagonist is one of the promising therapeutic drugs for the treatment of opioid addiction.
Collapse
Affiliation(s)
- Li-Jun Heng
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Bo Huang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Heng Guo
- Department of Neurosurgery, PLA Chengdu General Hospital, Chengdu, Sichuan, China
| | - Lian-Ting Ma
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Wei-Xin Yuan
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jian Song
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
| | - Guo-Zheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei, China
- * E-mail: (GDG); (GZX)
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (GDG); (GZX)
| |
Collapse
|
29
|
Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease. Neurobiol Dis 2014; 62:416-25. [DOI: 10.1016/j.nbd.2013.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/10/2023] Open
|
30
|
Shibasaki K, Ishizaki Y, Mandadi S. Astrocytes express functional TRPV2 ion channels. Biochem Biophys Res Commun 2013; 441:327-32. [PMID: 24161738 DOI: 10.1016/j.bbrc.2013.10.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
Abstract
Thermosensitive transient receptor potential (thermo TRP) channels are important for sensory transduction. Among them, TRPV2 has an interesting characteristic of being activated by very high temperature (>52 °C). In addition to the heat sensor function, TRPV2 also acts as a mechanosensor, an osomosensor and a lipid sensor. It has been reported that TRPV2 is expressed in heart, intestine, pancreas and sensory nerves. In the central nervous system, neuronal TRPV2 expression was reported, however, glial expression and the precise roles of TRPV2 have not been determined. To explore the functional expression of TRPV2 in astrocytes, the expression was determined by histological and physiological methods. Interestingly, TRPV2 expression was detected in plasma membrane of astrocytes, and the astrocytic TRPV2 was activated by very high temperature (>50 °C) consistent with the reported characteristic. We revealed that the astrocytic TRPV2 was also activated by lysophosphatidylcholine, a known endogenous lipid ligand for TRPV2, suggesting that astrocytic TRPV2 might regulate neuronal activities in response to lipid metabolism. Thus, for the first time we revealed that TRPV2 is functionally expressed in astrocytes in addition to neurons.
Collapse
Affiliation(s)
- Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| | | | | |
Collapse
|
31
|
Razavinasab M, Shamsizadeh A, Shabani M, Nazeri M, Allahtavakoli M, Asadi-Shekaari M, Esmaeli-Mahani S, Sheibani V. Pharmacological blockade of TRPV1 receptors modulates the effects of 6-OHDA on motor and cognitive functions in a rat model of Parkinson's disease. Fundam Clin Pharmacol 2012; 27:632-40. [PMID: 23216087 DOI: 10.1111/fcp.12015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 01/05/2023]
Abstract
TRPV1 receptors and cannabinoid system are considered as important modulators of basal ganglia functions, and their pharmacologic manipulation represents a promising therapy to alleviate Parkinson-induced hypokinesia. Recent evidence suggests that the blockade of cannabinoid receptors might be beneficial to alleviate motor deficits observed in Parkinson's disease. In the present study, we have evaluated the effects of AMG9810 , a selective antagonist of TRPV1 receptors, on the motor and cognitive functions in a rat model of Parkinson's disease generated by an intracerebroventricular injection of 6- hydroxydopamine (6-OHDA) (200 μg per animal). The injection of 10 nmol of AMG9810 for a single dose (AMG1) and for 2 weeks (AMG14) partially attenuated the hypokinesia shown by these animals in motor function evaluation tests, whereas chronic administration of AMG had destructive effects on learning and memory in 6-OHDA-treated rats. Animals in the AMG 1 and AMG 14 groups showed an increased latency to fall in rotarod and grasping tests in each trials compared with 6-OHDA-treated rats (P < 0.01) and DMSO 1 and 14 groups (P < 0.05). Our data indicate that pharmacological blockade of TRPV1 receptors by AMG 9810 attenuates the hypokinetic effects of 6-OHDA and that TRPV1 receptors play an important role in 6-OHDA-induced hypokinesia, although elucidation of the neurochemical substrate involved in this process remains a major challenge for the future.
Collapse
|
32
|
New insights on endocannabinoid transmission in psychomotor disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:51-8. [PMID: 22521335 PMCID: PMC3389227 DOI: 10.1016/j.pnpbp.2012.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/21/2022]
Abstract
The endocannabinoids are lipid signaling molecules that bind to cannabinoid CB(1) and CB(2) receptors and other metabotropic and ionotropic receptors. Anandamide and 2-arachidonoyl glycerol, the two best-characterized examples, are released on demand in a stimulus-dependent manner by cleavage of membrane phospholipid precursors. Together with their receptors and metabolic enzymes, the endocannabinoids play a key role in modulating neurotransmission and synaptic plasticity in the basal ganglia and other brain areas involved in the control of motor functions and motivational aspects of behavior. This mini-review provides an update on the contribution of the endocannabinoid system to the regulation of psychomotor behaviors and its possible involvement in the pathophysiology of Parkinson's disease and schizophrenia.
Collapse
|
33
|
Morera-Herreras T, Miguelez C, Aristieta A, Ruiz-Ortega JÁ, Ugedo L. Endocannabinoid modulation of dopaminergic motor circuits. Front Pharmacol 2012; 3:110. [PMID: 22701427 PMCID: PMC3372848 DOI: 10.3389/fphar.2012.00110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/22/2012] [Indexed: 01/17/2023] Open
Abstract
There is substantial evidence supporting a role for the endocannabinoid system as a modulator of the dopaminergic activity in the basal ganglia, a forebrain system that integrates cortical information to coordinate motor activity regulating signals. In fact, the administration of plant-derived, synthetic or endogenous cannabinoids produces several effects on motor function. These effects are mediated primarily through the CB(1) receptors that are densely located in the dopamine-enriched basal ganglia networks, suggesting that the motor effects of endocannabinoids are due, at least in part, to modulation of dopaminergic transmission. On the other hand, there are profound changes in CB(1) receptor cannabinoid signaling in the basal ganglia circuits after dopamine depletion (as happens in Parkinson's disease) and following l-DOPA replacement therapy. Therefore, it has been suggested that endocannabinoid system modulation may constitute an important component in new therapeutic approaches to the treatment of motor disturbances. In this article we will review studies supporting the endocannabinoid modulation of dopaminergic motor circuits.
Collapse
Affiliation(s)
- Teresa Morera-Herreras
- Faculty of Medicine and Dentistry, Department of Pharmacology, University of the Basque Country Leioa, Spain
| | | | | | | | | |
Collapse
|
34
|
Role of TRPV1 in consolidation of fear memories depends on the averseness of the conditioning procedure. Neurobiol Learn Mem 2012; 97:355-60. [DOI: 10.1016/j.nlm.2012.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/13/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022]
|
35
|
Nguyen VH, Wang H, Verdurand M, Zavitsanou K. Differential treatment regimen-related effects of HU210 on CB(1) and D(2)-like receptor functionality in the rat basal ganglia. Pharmacology 2012; 89:64-73. [PMID: 22301450 DOI: 10.1159/000335368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/23/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Functional linkages between the cannabinoid CB(1) and the dopaminergic systems have been reported although the observations and the mechanisms hypothesizing their interactions at the G protein-coupled receptor (GPCR) functionality level are conflicting. METHODS Administration of a potent cannabinoid agonist, HU210, at various doses (25-100 μg/kg) and treatment regimens (1- to 14-day treatment) in rats was carried out to investigate the effect of HU210 treatment on the CB(1) and D(2)-like agonist-mediated GPCR activation. RESULTS The desensitizations (reduced coupling) of both D(2) agonist- and CB(1) agonist-mediated GPCR activation was found to be treatment duration dependent and region specific, suggesting implication of receptor tolerance and adaptation due to the cannabinoid treatment. The effect of HU210 on the CB(1) agonist-mediated GPCR desensitization in all treatment groups was not dose dependent. CONCLUSIONS The desensitization of D(2)-like receptors found after a cannabinoid treatment in this study strengthens the evidence that the two neurotransmitter systems interact at the intercellular level; this interaction might occur via multiple mechanisms, which also vary according to region.
Collapse
Affiliation(s)
- Vu H Nguyen
- LifeSciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, N.S.W., Australia.
| | | | | | | |
Collapse
|
36
|
Wiley JL, Matthew Walentiny D, Vann RE, Baskfield CY. Dissimilar cannabinoid substitution patterns in mice trained to discriminate Δ(9)-tetrahydrocannabinol or methanandamide from vehicle. Behav Pharmacol 2011; 22:480-8. [PMID: 21712709 PMCID: PMC3155614 DOI: 10.1097/fbp.0b013e328348eced] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Δ(9)-Tetrahydrocannabinol (THC) discrimination in rodents is a behavioral assay that has been used to probe differences among classes of cannabinoids in rats. The purpose of this study was to determine whether traditional and anandamide-like cannabinoids were distinguishable in cannabinoid discrimination procedures in mice. Male mice were trained to discriminate 30 mg/kg THC or 70 mg/kg methanandamide from vehicle in a two-lever milk-reinforced drug discrimination procedure. After acquisition, agonist tests with THC, methanandamide, CP 55940, and anandamide were conducted, as were antagonism tests with rimonabant. Substitution (agonism) and antagonism tests were also carried out in female mice trained to discriminate THC. THC and CP 55940 fully substituted in THC-trained mice of both sexes. Further, THC substitution was rimonabant reversible. In contrast, mice injected with methanandamide or anandamide failed to respond substantially on the THC lever, even up to doses that decreased overall responding. In methanandamide-trained mice, methanandamide fully generalized to the methanandamide training dose. Rimonabant did not reverse this generalization. Although THC, CP 55940, and anandamide also increased responding on the methanandamide lever, the magnitude of substitution was less than for methanandamide. These results suggest incomplete overlap in the underlying mechanisms mediating endocannabinoid pharmacology and marijuana intoxication. Further, they suggest that methanandamide discrimination may involve a non-CB(1) receptor mechanism that is particularly prominent at higher doses.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, Research Triangle Park, North Carolina 27709-2194, USA.
| | | | | | | |
Collapse
|
37
|
Hayase T. Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. BMC Pharmacol 2011; 11:6. [PMID: 21767384 PMCID: PMC3155896 DOI: 10.1186/1471-2210-11-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The contributions of brain cannabinoid (CB) receptors, typically CB1 (CB type 1) receptors, to the behavioral effects of nicotine (NC) have been reported to involve brain transient receptor potential vanilloid 1 (TRPV1) receptors, and the activation of candidate endogenous TRPV1 ligands is expected to be therapeutically effective. In the present study, the effects of TRPV1 ligands with or without affinity for CB1 receptors were examined on NC-induced depression-like behavioral alterations in a mouse model in order to elucidate the "antidepressant-like" contributions of TRPV1 receptors against the NC-induced "depression" observed in various types of tobacco abuse. RESULTS Repeated subcutaneous NC treatments (NC group: 0.3 mg/kg, 4 days), like repeated immobilization stress (IM) (IM group: 10 min, 4 days), caused depression-like behavioral alterations in both the forced swimming (reduced swimming behaviors) and the tail suspension (increased immobility times) tests, at the 2 h time point after the last treatment. In both NC and IM groups, the TRPV1 agonists capsaicin (CP) and olvanil (OL) administered intraperitoneally provided significant antidepressant-like attenuation against these behavioral alterations, whereas the TRPV1 antagonist capsazepine (CZ) did not attenuate any depression-like behaviors. Furthermore, the endogenous TRPV1-agonistic CB1 agonists anandamide (AEA) and N-arachidonyldopamine (NADA) did not have any antidepressant-like effects. Nevertheless, a synthetic "hybrid" agonist of CB1 and TRPV1 receptors, arvanil (AR), caused significant antidepressant-like effects. The antidepressant-like effects of CP and OL were antagonized by the TRPV1 antagonist CZ. However, the antidepressant-like effects of AR were not antagonized by either CZ or the CB1 antagonist AM 251 (AM). CONCLUSIONS The antidepressant-like effects of TRPV1 agonists shown in the present study suggest a characteristic involvement of TRPV1 receptors in NC-induced depression-like behaviors, similar to those caused by IM. The strong antidepressant-like effects of the potent TRPV1 plus CB1 agonist AR, which has been reported to cause part of its TRPV1-mimetic and cannabimimetic effects presumably via non-TRPV1 or non-CB1 mechanisms support a contribution from other sites of action which may play a therapeutically important role in the treatment of NC abuse.
Collapse
Affiliation(s)
- Tamaki Hayase
- Department of Legal Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
38
|
Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J Neurosci 2011; 31:1721-33. [PMID: 21289181 DOI: 10.1523/jneurosci.4671-10.2011] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed at determining the thermoregulatory phenotype of mice lacking transient receptor potential vanilloid-1 (TRPV1) channels. We used Trpv1 knockout (KO) mice and their genetically unaltered littermates to study diurnal variations in deep body temperature (T(b)) and thermoeffector activities under basal conditions, as well as thermoregulatory responses to severe heat and cold. Only subtle alterations were found in the basal T(b) of Trpv1 KO mice or in their T(b) responses to thermal challenges. The main thermoregulatory abnormality of Trpv1 KO mice was a different pattern of thermoeffectors used to regulate T(b). On the autonomic side, Trpv1 KO mice were hypometabolic (had a lower oxygen consumption) and hypervasoconstricted (had a lower tail skin temperature). In agreement with the enhanced skin vasoconstriction, Trpv1 KO mice had a higher thermoneutral zone. On the behavioral side, Trpv1 KO mice preferred a lower ambient temperature and expressed a higher locomotor activity. Experiments with pharmacological TRPV1 agonists (resiniferatoxin and anandamide) and a TRPV1 antagonist (AMG0347) confirmed that TRPV1 channels located outside the brain tonically inhibit locomotor activity. With age (observed for up to 14 months), the body mass of Trpv1 KO mice exceeded that of controls, sometimes approaching 60 g. In summary, Trpv1 KO mice possess a distinct thermoregulatory phenotype, which is coupled with a predisposition to age-associated overweight and includes hypometabolism, enhanced skin vasoconstriction, decreased thermopreferendum, and hyperkinesis. The latter may be one of the primary deficiencies in Trpv1 KO mice. We propose that TRPV1-mediated signals from the periphery tonically suppress the general locomotor activity.
Collapse
|
39
|
|
40
|
TRP Channels and Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:987-1009. [DOI: 10.1007/978-94-007-0265-3_51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Grueter BA, Brasnjo G, Malenka RC. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 2010; 13:1519-25. [PMID: 21076424 PMCID: PMC3092590 DOI: 10.1038/nn.2685] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/22/2010] [Indexed: 12/12/2022]
Abstract
Synaptic modifications in the nucleus accumbens (NAc) are important for adaptive and pathological reward-dependent learning. Medium spiny neurons (MSNs), the major cell type in the NAc, participate in two parallel circuits that subserve distinct behavioral functions, yet little is known about differences in their electrophysiological and synaptic properties. Using bacterial artificial chromosome transgenic mice, we found that synaptic activation of group I metabotropic glutamate receptors in NAc MSNs in the indirect, but not direct, pathway led to the production of endocannabinoids, which activated presynaptic CB1 receptors to trigger endocannabinoid-mediated long-term depression (eCB-LTD) as well as postsynaptic transient receptor potential vanilloid 1 (TRPV1) channels to trigger a form of LTD resulting from endocytosis of AMPA receptors. These results reveal a previously unknown action of TRPV1 channels and indicate that the postsynaptic generation of endocannabinoids can modulate synaptic strength in a cell type-specific fashion by activating distinct pre- and postsynaptic targets.
Collapse
Affiliation(s)
- Brad A. Grueter
- Nancy Pritzker Laboratory, Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304
| | - Gabor Brasnjo
- Nancy Pritzker Laboratory, Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304
| |
Collapse
|
42
|
Abstract
The endocannabinoids anandamide and 2-arachydonoylglycerol (2-AG) are lipids naturally derived from membrane precursors which bind cannabinoid receptors (CB1, CB2). This endocannabinoid system is disturbed in schizophrenia. Indeed, there seems to be an association between schizophrenia and polymorphisms of the CB1 receptor gene. Moreover, CB1 receptors are found in higher density in the prefrontal cortex, hippocampus and basal ganglia of patients with schizophrenia. Similarly, anandamide levels are increased in the cerebrospinal fluid (CSF) and in the serum of schizophrenia patients, including during the prodromal state, suggesting that they may play a protective role in psychosis homeostasis. Future studies are needed to further explore the role of the endocannabinoid system in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | | | | | - Stéphane Potvin
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-251-4015; Fax: +1-514-251-2617
| |
Collapse
|
43
|
Abstract
Huntington's disease (HD) is caused by a CAG repeat expansion in exon 1 of the HD gene resulting in a long polyglutamine tract in the N-terminus of the protein huntingtin. Patients carrying the mutation display chorea in early stages followed by akinesia and sometimes dystonia in late stages. Other major symptoms include depression, anxiety, irritability or aggressive behavior, and apathy. Although many neuronal systems are affected, dysfunction and subsequent neurodegeneration in the basal ganglia and cortex are the most apparent pathologies. In HD, the primary hypothesis has been that there is an initial overactivity of glutamate neurotransmission that produces excitotoxicity followed by a series of complex changes that are different in the striatum and in the cortex. This review will focus on evidence for alterations in dopamine (DA)-glutamate interactions in HD, concentrating on the striatum and cortex. The most recent evidence points to decreases in DA and glutamate neurotransmission as the HD phenotype develops. However, there is some evidence for increased DA and glutamate functions that could be responsible for some of the early HD phenotype. Significant evidence indicates that glutamate and dopamine neurotransmission is affected in HD, compromising the fine balance in which DA modulates glutamate-induced excitation in the basal ganglia and cortex. Restoring the balance between glutamate and dopamine could be helpful to treat HD symptoms.
Collapse
Affiliation(s)
- Véronique M André
- Intellectual and Developmental Disabilities Research Center, Semel Institute, Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA. <>
| | | | | |
Collapse
|
44
|
Cannabinoid-dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16:e72-91. [PMID: 20406253 DOI: 10.1111/j.1755-5949.2010.00144.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endocannabinoids and their receptors, mainly the CB(1) receptor type, function as a retrograde signaling system in many synapses within the CNS, particularly in GABAergic and glutamatergic synapses. They also play a modulatory function on dopamine (DA) transmission, although CB(1) receptors do not appear to be located in dopaminergic terminals, at least in the major brain regions receiving dopaminergic innervation, e.g., the caudate-putamen and the nucleus accumbens/prefrontal cortex. Therefore, the effects of cannabinoids on DA transmission and DA-related behaviors are generally indirect and exerted through the modulation of GABA and glutamate inputs received by dopaminergic neurons. Recent evidence suggest, however, that certain eicosanoid-derived cannabinoids may directly activate TRPV(1) receptors, which have been found in some dopaminergic pathways, thus allowing a direct regulation of DA function. Through this direct mechanism or through indirect mechanisms involving GABA or glutamate neurons, cannabinoids may interact with DA transmission in the CNS and this has an important influence in various DA-related neurobiological processes (e.g., control of movement, motivation/reward) and, particularly, on different pathologies affecting these processes like basal ganglia disorders, schizophrenia, and drug addiction. The present review will address the current literature supporting these cannabinoid-DA interactions, with emphasis in aspects dealing with the neurochemical, physiological, and pharmacological/therapeutic bases of these interactions.
Collapse
|
45
|
Musella A, De Chiara V, Rossi S, Cavasinni F, Castelli M, Cantarella C, Mataluni G, Bernardi G, Centonze D. Transient receptor potential vanilloid 1 channels control acetylcholine/2-arachidonoylglicerol coupling in the striatum. Neuroscience 2010; 167:864-71. [PMID: 20219639 DOI: 10.1016/j.neuroscience.2010.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
Abstract
The neurotransmitter acetylcholine (Ach) controls both excitatory and inhibitory synaptic transmission in the striatum. Here, we investigated the involvement of the endocannabinoid system in Ach-mediated inhibition of striatal GABA transmission, and the potential role of transient receptor potential vanilloid 1 (TRPV1) channels in the control of Ach-endocannabinoid coupling. We found that inhibition of Ach degradation and direct pharmacological stimulation of muscarinic M1 receptors reduced striatal inhibitory postsynaptic currents (IPSCs) through the stimulation of 2-arachidonoylglicerol (2AG) synthesis and the activation of cannabinoid CB1 receptors. The effects of M1 receptor activation on IPSCs were occlusive with those of metabotropic glutamate receptor 5 stimulation, and were prevented in the presence of capsaicin, agonist of TRPV1 channels. Elevation of anandamide (AEA) tone with URB597, a blocker of fatty acid amide hydrolase, mimicked the effects of capsaicin, indicating that endogenous AEA acts as an endovanilloid substance in the control of M1-dependent 2AG-mediated synaptic effects in the striatum. Accordingly, both capsaicin and URB597 effects were absent in mice lacking TRPV1 channels. Pharmacological interventions targeting AEA metabolism and TRPV1 channels might be considered alternative therapeutic routes in disorders of striatal cholinergic or endocannabinoid neurotransmission.
Collapse
Affiliation(s)
- A Musella
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Altered responses of dopamine D3 receptor null mice to excitotoxic or anxiogenic stimuli: Possible involvement of the endocannabinoid and endovanilloid systems. Neurobiol Dis 2009; 36:70-80. [PMID: 19591935 DOI: 10.1016/j.nbd.2009.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/25/2009] [Accepted: 06/28/2009] [Indexed: 02/08/2023] Open
Abstract
Dopamine and the endocannabinoids, anandamide and 2-arachidonoylglycerol, interact at several levels in the brain, with the involvement of both cannabinoid CB(1) receptors and transient receptor potential vanilloid type-1 (TRPV1) channels (which are alternative anandamide receptors). Using pharmacological, immunohistochemical and analytical approaches, we investigated the response of dopamine D(3) receptor null (D3R((-/-))) mice in models of epilepsy and anxiety, in relation to their brain endocannabinoid and endovanilloid tone. Compared to wild-type mice, D3R((-/-)) mice exhibited a delayed onset of clonic seizures, enhanced survival time, reduced mortality rate and more sensitivity to anticonvulsant effects of diazepam after intraperitoneal administration of picrotoxin (7 mg/kg), and a less anxious-like behaviour in the elevated plus maze test. D3R((-/-)) mice also exhibited different endocannabinoid and TRPV1, but not CB(1), levels in the hippocampus, nucleus accumbens, amygdala and striatum. Given the role played by CB(1) and TRPV1 in neuroprotection and anxiety, and based on data obtained here with pharmacological tools, we suggest that the alterations of endocannabinoid and endovanilloid tone found in D3R((-/-)) mice might account for part of their altered responses to excitotoxic and anxiogenic stimuli.
Collapse
|
47
|
Role of endocannabinoids and endovanilloids in Ca2+ signalling. Cell Calcium 2009; 45:611-24. [DOI: 10.1016/j.ceca.2009.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 12/14/2022]
|
48
|
Panlilio LV, Mazzola C, Drago F, Medalie J, Hahn B, Justinova Z, Tanda G, Cadet JL, Yasar S, Goldberg SR. Anandamide-induced behavioral disruption through a vanilloid-dependent mechanism in rats. Psychopharmacology (Berl) 2009; 203:529-38. [PMID: 19015836 PMCID: PMC2695254 DOI: 10.1007/s00213-008-1399-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 10/25/2008] [Indexed: 11/26/2022]
Abstract
RATIONALE Endocannabinoids are involved in a variety of behavioral and physiological processes that are just beginning to be understood. In the five-choice serial reaction-time task, exogenous cannabinoids have been found to alter attention, but endocannabinoids such as anandamide have not been studied. OBJECTIVES We used this task to evaluate the effects of anandamide in rats. Since anandamide is a ligand for not only cannabinoid receptors but also transient receptor potential vanilloid 1 (TRPV1) receptors, and as recently suggested, peroxisome proliferator-activated nuclear receptor-alpha (PPARalpha), we also determined whether anandamide's effects in this task were mediated by each of these receptors. MATERIALS AND METHODS Whenever one of five holes was illuminated for 2 s, a food pellet was delivered if a response occurred in that hole during the light or within 2 s after the light. RESULTS Anandamide increased omission errors and decreased responding during inter-trial intervals. These effects were blocked by the TRPV1 antagonist capsazepine, but not by the cannabinoid-receptor antagonist rimonabant or the PPARalpha antagonist MK886. Testing with open-field activity and food-consumption procedures in the same rats suggested that the disruption of operant responding observed in the attention task was not due to motor depression, anxiety, decreased appetite, or an inability to find and consume food pellets. CONCLUSIONS The vanilloid-dependent behavioral disruption induced by anandamide was specific to the operant attention task. These effects of anandamide resemble effects of systemically administered dopamine antagonists and might reflect changes in vanilloid-mediated dopamine transmission.
Collapse
Affiliation(s)
- Leigh V. Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Carmen Mazzola
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
- Department of Experimental and Clinical Pharmacology, Medical School, University of Catania, Italy
| | - Filippo Drago
- Department of Experimental and Clinical Pharmacology, Medical School, University of Catania, Italy
| | - Julie Medalie
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Britta Hahn
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gianluigi Tanda
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| | - Sevil Yasar
- Molecular Neuropsychiatry Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, 21224, USA
| |
Collapse
|
49
|
Fernández-Ruiz J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br J Pharmacol 2009; 156:1029-40. [PMID: 19220290 DOI: 10.1111/j.1476-5381.2008.00088.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
There is evidence that cannabinoid-based medicines that are selective for different targets in the cannabinoid signalling system (e.g. receptors, inactivation mechanism, enzymes) might be beneficial in basal ganglia disorders, namely Parkinson's disease (PD) and Huntington's disease (HD). These benefits not only include the alleviation of specific motor symptoms [e.g. choreic movements with cannabinoid receptor type 1 (CB(1))/transient receptor potential vanilloid type 1 agonists in HD; bradykinesia with CB(1) antagonists and tremor with CB(1) agonists in PD], but also the delay of disease progression due to the neuroprotective properties demonstrated for cannabinoids (e.g. CB(1) agonists reduce excitotoxicity; CB(2) agonists limit the toxicity of reactive microglia; and antioxidant cannabinoids attenuate oxidative damage). In addition, extensive biochemical, anatomical, physiological and pharmacological studies have demonstrated that: (i) the different elements of the cannabinoid system are abundant in basal ganglia structures and they are affected by these disorders; (ii) the cannabinoid system plays a prominent role in basal ganglia function by modulating the neurotransmitters that operate in the basal ganglia circuits, both in healthy and pathological conditions; and (iii) the activation and/or inhibition of the cannabinoid system is associated with important motor responses that are maintained and even enhanced in conditions of malfunctioning and/or degeneration. In this article we will review the available data regarding the relationship between the cannabinoid system and basal ganglia activity, both in healthy and pathological conditions and will also try to identify future lines of research expected to increase current knowledge about the potential therapeutic benefits of targeting this system in PD, HD and other basal ganglia disorders.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
50
|
Sperlágh B, Windisch K, Andó RD, Sylvester Vizi E. Neurochemical evidence that stimulation of CB1 cannabinoid receptors on GABAergic nerve terminals activates the dopaminergic reward system by increasing dopamine release in the rat nucleus accumbens. Neurochem Int 2009; 54:452-7. [PMID: 19428788 DOI: 10.1016/j.neuint.2009.01.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/08/2009] [Accepted: 01/23/2009] [Indexed: 01/02/2023]
Abstract
We examined the effect of cannabinoid receptor activation on basal and electrical field simulation-evoked (25 V, 2 Hz, 240 shocks) [(3)H]dopamine efflux in the isolated rat nucleus accumbens in a preparation, in which any effect on the dendrites or somata of ventral tegmental projection neurons was excluded. The cannabinoid agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN55,212-2, 100 nM) significantly enhanced stimulation-evoked [(3)H]dopamine release in the presence of the selective dopamine transporter inhibitor 1-[2-[bis-(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine dihydrochloride (GBR12909, 100 nM). GBR12909 (100 nM-1 microM), when added alone, increased the evoked [(3)H]dopamine efflux in a concentration-dependent manner. The stimulatory effect of WIN55,212-2 on the evoked tritium efflux was inhibited by the selective CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251, 100 nM) and by the GABA(A) receptor antagonist bicuculline (10 microM). Repeated application of N-methyl-d aspartate (1 mM) under Mg(2+)-free conditions, which directly acts on dopaminergic terminals, reversibly increased the tritium efflux, but WIN55,212-2 did not affect N-methyl-d aspartate-evoked [(3)H]dopamine efflux, indicating that WIN55,212-2 has no direct action on dopaminergic nerve terminals. AM251 (100 nM) alone also did not have an effect on electrical stimulation-evoked [(3)H]dopamine efflux. Likewise, the selective CB2 receptor antagonist 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630, 0.3 microM) and the anandamide transport inhibitor (5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (VDM11, 10 microM) had no significant effect on electrically evoked [(3)H]dopamine release. This is the first neurochemical evidence that the activation of CB1 cannabinoid receptors leads to the augmentation of [(3)H]dopamine efflux via a local GABA(A) receptor-mediated disinhibitory mechanism in the rat nucleus accumbens.
Collapse
Affiliation(s)
- Beáta Sperlágh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|