1
|
Luo L, Zhang Y, Zhao X, Wu W, Fei J, Yu X, Wen K, Shen J, Pan Y, Wang Z. Rational hapten design, antibody preparation, and immunoassay development for rapid screening xylazine in biological samples. Food Chem 2025; 465:142054. [PMID: 39577261 DOI: 10.1016/j.foodchem.2024.142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/20/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Xylazine (XYL) is an illicit adulterant in opioids and an approved veterinary sedative drug, which has been abused, misused, and residued in food samples, endangering people health, causing drug-facilitated crimes and even death. Immunoassay used antibody as core biomaterial could to achieve highly sensitive and rapid detection screening purpose for XYL in situ. Here, we rationally designed four novel XYL haptens with different spacer arms to produce antibodies with high affinity and specificity. Ten monoclonal antibodies (mAbs) were obtained and mAb 7H5 showed a high affinity with IC50 of 0.23 ng mL-1 and ignorable cross-reactivity for the other eight analogs. One highly sensitive indirect competitive ELISA (icELISA) and lateral flow immunoassay (LFIA) were established based on heterologous haptens for XYL detection in a series of human urine and food samples. The limit of detections (LODs) of the icELISA were 0.10-2.24 μg L-1 with recovery of 83.5 % to 128.6 % and CV below 15.8 % in different samples, while, the visual limits of detection (vLOD) of LFIA were 0.10-1.80 μg L-1 with the cut-off value of 0.60-4.80 μg L-1. In addition, the molecular recognition mechanism of mAbs was explored. The study provides powerful tools for rapid screening of XYL in human urine and food samples for the first time.
Collapse
Affiliation(s)
- Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, People's Republic of China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiangjun Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Weilin Wu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jie Fei
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yantong Pan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, People's Republic of China.
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, People's Republic of China.
| |
Collapse
|
2
|
Wang B, Liu L, Zhang H, Wang Z, Chen K, Wu B, Hu L, Zhou X, Liu L. A group-targeting biosensor for sensitive and rapid detection of quinolones in water samples. Anal Chim Acta 2024; 1301:342475. [PMID: 38553128 DOI: 10.1016/j.aca.2024.342475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Quinolones (QNs) widely exist in the environment due to their wide range of applications and poor metabolic properties, resulting in the generation and spread of resistance genes, posing a potential threat to human health. Traditional analytical methods cannot detect all broad ranges of QNs simultaneously. The development of facile, efficient and reliable method for quantification and assessment of the total QNs is a long-lasting challenge. RESULTS We hereby provide a simple, sensitive and instantaneous group-targeting biosensor for the detection of total QNs in environmental water samples. The biosensor is based on a group-specific antibodies with high affinity against QNs. Fluorescent labeled antibodies bound to the coated antigen modified on the surface of the transducer, and excited by the evanescent waves. The detected fluorescent signal is inversely proportional to the QNs concentration. This biosensor exhibited excellent performance with detection limits lower than 0.15 μg L-1 for all five QNs variants, and even lower than 0.075 μg L-1 for ciprofloxacin (CIP) and ofloxacin (OFL). Environmental water samples can be detected after simple pretreatment, and all detection steps can be completed in 10 min. The transducer has a high regenerative capacity and shows no significant signal degradation after two hundred detection cycles. The recoveries of QNs in a variety of wastewater range from 105 to 119%, confirming its application potential in the measurement of total QNs in reality. SIGNIFICANCE The biosensor can realize rapid and sensitive detection of total QNs in water samples by simple pretreatment, which overcomes the disadvantage of the traditional methods that require complex pretreatment and time-consuming, and pave the groundwork for expansive development centered around this technology.
Collapse
Affiliation(s)
- Bohan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Lanhua Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Haopeng Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhiqiang Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Kang Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Wu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lanlan Liu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Yin XG, Chen XZ, Qiu JL, Yu ZK, Chen LY, Huang SQ, Huang WN, Luo X, Zhu KW. A conjugate vaccine strategy that induces protective immunity against arecoline. Eur J Med Chem 2024; 268:116229. [PMID: 38430852 DOI: 10.1016/j.ejmech.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Betel-quid chewing addiction is the leading cause of oral submucous fibrosis and oral cancer, resulting in significant socio-economic burdens. Vaccination may serve as a promising potential remedy to mitigate the abuse and combat accidental overdose of betel nut. Hapten design is the crucial factor to the development of arecoline vaccine that determines the efficacy of a candidate vaccine. Herein, we reported that two kinds of novel arecoline-based haptens were synthesized and conjugated to Bovine Serum Albumin (BSA) to generate immunogens, which generated antibodies with high affinity for arecoline but reduced binding for guvacoline and no affinity for arecaidine or guvacine. Notably, vaccination with Arec-N-BSA, which via the N-position on the tetrahydropyridine ring (tertiary amine group), led to a higher antibody affinity compared to Arec-CONH-BSA, blunted analgesia and attenuated hypothermia for arecoline.
Collapse
Affiliation(s)
- Xu-Guang Yin
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Jia-Ling Qiu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Kai Yu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Li-Yuan Chen
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Si-Qi Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Wen-Na Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China
| | - Ke-Wu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
4
|
Burkin MA, Tevyashova AN, Bychkova EN, Melekhin AO, Galvidis IA. Immunotechniques for the Group Determination of Macrolide Antibiotics Traces in the Environment Using a Volume-Mediated Sensitivity Enhancement Strategy. BIOSENSORS 2023; 13:921. [PMID: 37887114 PMCID: PMC10605010 DOI: 10.3390/bios13100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Macrolide antibiotics, which are effective antimicrobial agents, are intensively used in human and veterinary medicine, as well as in agriculture. Consequently, they are found all over the world as environmental pollutants, causing harm to sensitive ecological communities and provoking a selection of resistant forms. A novel azithromycin derivative, which was used as hapten conjugate, ensured the group immunorecognition of six major macrolide representatives (105-41%), namely erythromycin, erythromycin ethylsuccinate, clarithromycin, roxithromycin, azithromycin, and dirithromycin in a competitive immunoassay based on anti-clarithromycin antibodies. The heterologous hapten-based ELISA format resulted in a 5-fold increase in sensitivity, with an IC50 value of 0.04 ng/mL for erythromycin. In this study, we proposed an underexploited strategy in an immunoassay field to significantly improve the detectability of analytes in environmental samples. Unlike most approaches, it does not require special enhancers/amplifiers or additional concentration/extraction procedures; instead, it involves analyzing a larger volume of test samples. A gradual volume increase in the samples (from 0.025 to 10 mL) analyzed using a direct competitive ELISA, immunobeads, and immunofiltration assay formats based on the same reagents resulted in a significant improvement (more than 50-fold) in assay sensitivity and detection limit up to 5 and 1 pg/mL, respectively. The suitability of the test for detecting the macrolide contamination of natural water was confirmed by the recovery of macrolides from spiked blank samples (71.7-141.3%). During 2022-2023, a series of natural water samples from Lake Onega and its influents near Petrozavodsk were analyzed, using both the developed immunoassay and HPLC-MS/MS. The results revealed no contamination of macrolide antibiotic.
Collapse
Affiliation(s)
- Maksim A. Burkin
- I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| | - Anna N. Tevyashova
- Gause Institute of New Antibiotics, 199021 Moscow, Russia; (A.N.T.); (E.N.B.)
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Elena N. Bychkova
- Gause Institute of New Antibiotics, 199021 Moscow, Russia; (A.N.T.); (E.N.B.)
| | - Artem O. Melekhin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Federal Centre for Animal Health, 111622 Moscow, Russia
| | - Inna A. Galvidis
- I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia;
| |
Collapse
|
5
|
Duan C, Zhang H, Zhang Y, Li Q, Li P, Mari GM, Eremin SA, Shen J, Wang Z. A Robust Homogeneous Fluorescence Polarization Immunoassay for Rapid Determination of Erythromycin in Milk. Foods 2023; 12:foods12081581. [PMID: 37107376 PMCID: PMC10138142 DOI: 10.3390/foods12081581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Erythromycin (ERY) is one of the most common macrolides applied in veterinary medicine to treat diseases or as a feed additive for animal growth promotion. Long-term irrational use of ERY could lead to residues in animal-derived food and the emergence of drug-resistant strains, posing potential threats to human health. In this study, a highly sensitive, specific, robust, and rapid fluorescence polarization immunoassay (FPIA) for the determination of ERY in milk has been described. Herein, to achieve high sensitivity, five tracers of ERY with different fluorescein structures were synthesized and paired with three monoclonal antibodies (mAbs). Under the optimized conditions, the combination of mAb 5B2 and tracer ERM-FITC achieved the lowest IC50 value in the FPIA with 7.39 μg/L for ERM. The established FPIA was used to detect ERY in milk, revealing a limit of detection (LOD) of 14.08 μg/L with recoveries of 96.08-107.77% and coefficients of variations (CVs) of 3.41-10.97%. The total detection time of the developed FPIA was less than 5 min from the addition of samples to the result readout. All the above results showed that the proposed FPIA in this study was a rapid, accurate, and simple method for the screening of ERY in milk samples.
Collapse
Affiliation(s)
- Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huiyan Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiang Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Peipei Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ghulam Mujtaba Mari
- Department of Veterinary Pharmacology and Toxicology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Sergei A Eremin
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Wang X, Lu Q, Dou L, Liu M, Li P, Yu W, Yu X, Wang Z, Wen K. Broad-specificity indirect competitive enzyme-linked immunosorbent assay for aristolochic acids: Computer-aided hapten design and molecular mechanism of antibody recognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159941. [PMID: 36347294 DOI: 10.1016/j.scitotenv.2022.159941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Long-term dietary exposure of aristolochic acids (AAs)-contaminated food proved to be one of the main culprits of Endemic Nephropathy, renal failure; and urothelial cancer. The antibodies utilized in immunoassays for AAs suffer from low affinity and failure of recognition to the family of AAs. This study, we prepared a broad-specificity monoclonal antibody (mAb) 5H5 with highly and uniform affinity for AAs by help of computational chemistry fully exposing the AAs common structures of methoxy and hydroxyl groups. The mAb 5H5 exhibited half inhibitory concentrations of AAA, AAB, AAC, AAD were 0.03, 0.06, 0.05, 0.03 ng/mL. To explain the broad-specificity profile of mAb 5H5, molecular docking was performed. Results shown that multiple conformations of AAs can be flexibly oriented in the spacious cavity of single-chain variable fragment antibody (scFv) 5H5 and the specific hydron bonds were formed by ASN62 and GLY64 of scFV 5H5 to the nitro group of AAs which gave an explanation of the high cross-reactivity of mAb 5H5. The ELISA based on the broad-specificity mAb 5H5with detection limits of 0.04-0.11 μg/kg and 0.02-0.06 μg/kg for four AAs in flour and soil samples, respectively. The study provided a promising method for the family of AAs in environmental and food samples.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Qingpeng Lu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Peipei Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
7
|
Liu X, Li J, Huang Y, Zhang Z, Lin Q, Xia P, Kong F, Qiu J, Fang S, Hua X. Rapid and sensitive detection of quizalofop-p-ethyl by gold nanoparticle-based lateral flow immunoassay in agriproducts and environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159427. [PMID: 36244486 DOI: 10.1016/j.scitotenv.2022.159427] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Quizalofop-p-ethyl is a widely used herbicide that poses a threat to human health and environmental safety. In this study, anti-quizalofop-p-ethyl monoclonal antibodies (mAbs) were prepared and used to develop a gold nanoparticle-based lateral flow immunoassay (AuNP-LFIA) for the detection of quizalofop-p-ethyl in agriproducts and environmental samples. Four hybridoma cell lines were obtained, among which 5B6D10E11 secreted mAb with the highest sensitivity, with a 50 % inhibition concentration of 4.57 ng/mL in the indirect competitive enzyme-linked immunosorbent assay. After optimization, the AuNP-LFIA strip based on the mAb (5B6D10E11) showed a visual detection limit of 10 ng/mL, and the results could be directly determined by the naked eye within 8 min. The cross-reactivity of the AuNP-LFIA for analogs of quizalofop-p-ethyl was negligible except for quizalofop-p-acid. The established AuNP-LFIA was proven to be accurate and precise based on the recovery test. Furthermore, the detection results of AuNP-LFIA were consistent with those of ultra-high-performance liquid chromatography tandem mass spectrometry.
Collapse
Affiliation(s)
- Xue Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongrong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Lin
- Nanping Tobacco Company of Fujian Province, Nanping 353000, China
| | - Pengliang Xia
- Hubei Province Tobacco Companies Enshi State Company, Enshi 445000, China
| | - Fanyu Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jun Qiu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Song Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Liu M, Bai Y, Dou L, Kong Y, Wang Z, Wen K, Shen J. A highly salt-tolerant monoclonal antibody-based enzyme-linked immunosorbent assay for the rapid detection of phenylethanolamine A in urine. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2084043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Minggang Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yuchen Bai
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yihui Kong
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Tong X, Lin X, Duan N, Wang Z, Wu S. Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products. ACS Sens 2022; 7:3947-3955. [PMID: 36454704 DOI: 10.1021/acssensors.2c02008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Excessive use of antibiotics in aquaculture severely endangers human health and ecosystems, which has raised significant concerns in recent years. However, conventional laboratory-based approaches regularly required time or skilled manpower. Herein, we propose a point-of-care-testing (POCT) biosensor detection device for the simultaneous determination of multiantibiotics without complex equipment or professional operators. A laser-printed paper-based microfluidic chip loaded with multicolor fluorescence nanoprobes (mCD-μPAD) was developed to rapidly detect sulfamethazine (SMZ), oxytetracycline (OTC), and chloramphenicol (CAP) on-site. These "fluorescence off" detection probes composed of carbon dots (CDs) conjugated with aptamers (donor) and MoS2 nanosheets (acceptor) (CD-apt-MoS2) were based on Förster resonance energy transfer. Upon the addition of target antibiotics, the significantly recovered fluorescence signal on the μPAD can be sensitively perceived by employing a 3D-printed portable detection box through a smartphone. Under optimal conditions, this μPAD allowed for a rapid response of 15 min toward SMZ, OTC, and CAP with considerable sensitivities of 0.47, 0.48, and 0.34 ng/mL, respectively. In shrimp samples, the recoveries were 95.2-101.2, 96.4-105, and 96.7-106.1% with RSD below 6%. This paper-based sensor opens an avenue for on-site, high-throughput, and rapid detection methods and can be widely used in POCT in food safety.
Collapse
Affiliation(s)
- Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| |
Collapse
|
10
|
Ye Z, Du J, Li K, Zhang Z, Xiao P, Yan T, Han B, Zuo G. Coupled Gold Nanoparticles with Aptamers Colorimetry for Detection of Amoxicillin in Human Breast Milk Based on Image Preprocessing and BP-ANN. Foods 2022; 11:4101. [PMID: 36553847 PMCID: PMC9778062 DOI: 10.3390/foods11244101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic residues in breast milk can have an impact on the intestinal flora and health of babies. Amoxicillin, as one of the most used antibiotics, affects the abundance of some intestinal bacteria. In this study, we developed a convenient and rapid process that used a combination of colorimetric methods and artificial intelligence image preprocessing, and back propagation-artificial neural network (BP-ANN) analysis to detect amoxicillin in breast milk. The colorimetric method derived from the reaction of gold nanoparticles (AuNPs) was coupled to aptamers (ssDNA) with different concentrations of amoxicillin to produce different color results. The color image was captured by a portable image acquisition device, and image preprocessing was implemented in three steps: segmentation, filtering, and cropping. We decided on a range of detection from 0 µM to 3.9 µM based on the physiological concentration of amoxicillin in breast milk and the detection effect. The segmentation and filtering steps were conducted by Hough circle detection and Gaussian filtering, respectively. The segmented results were analyzed by linear regression and BP-ANN, and good linear correlations between the colorimetric image value and concentration of target amoxicillin were obtained. The R2 and MSE of the training set were 0.9551 and 0.0696, respectively, and those of the test set were 0.9276 and 0.1142, respectively. In prepared breast milk sample detection, the recoveries were 111.00%, 98.00%, and 100.20%, and RSDs were 6.42%, 4.27%, and 1.11%. The result suggests that the colorimetric process combined with artificial intelligence image preprocessing and BP-ANN provides an accurate, rapid, and convenient way to achieve the detection of amoxicillin in breast milk.
Collapse
Affiliation(s)
- Ziqian Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jinglong Du
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Keyu Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhilun Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Peng Xiao
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Taocui Yan
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Baoru Han
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Ultrasensitive antibody production strategy based on hapten property for simultaneous immunoassay. Food Chem 2022; 395:133565. [PMID: 35763926 DOI: 10.1016/j.foodchem.2022.133565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
A high-quality antibody production strategy is significant for immunoassay. In this work, four general haptens were proposed based on the 3D structure and surface electrostatic potential of molecular modeling. It was found that the sensitivity and specificity of polyclonal antibodies (pAbs) mainly depended on the bond angle of shapes liked "V" between haptens and proteins and hydrophobic parts of haptens. The quantified process was employed to obtain pAbs against cyhalofop-butyl and its metabolites (CAFs), with the IC50 value of 4.9 μg·L-1 under optimal conditions. The limit of quantization (LOQ) of the ultrasensitive icELISA in brown rice was 2 μg·kg-1. The recoveries were 74%-110%, with a coefficient of variation (CV) less than 10%. This study indicated that the hapten property approach led to an improved immunoassay.
Collapse
|
12
|
Synthesis of a Dual Metal–Organic Framework Heterostructure as a Fluorescence Sensing Platform for Rapid and Sensitive Detection of Tetracycline in Milk and Beef Samples. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Dao AQ, Thi Thanh Nhi L, Mai Nguyen D, Thanh Tam Toan T. A REVIEW ON DETERMINATION OF THE VETERINARY DRUG RESIDUES IN FOOD PRODUCTS. Biomed Chromatogr 2022; 36:e5364. [PMID: 35274322 DOI: 10.1002/bmc.5364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
In this paper, we discuss veterinary medicine and its applications in the food field as well as its risk to the health of humans and animals by the residues. We review how the veterinary residues enter and cause some detrimental effects. We also mention two techniques to determine the residue of veterinary medication that existed in food originating from animals, including classic and advanced techniques. Finally, we discuss the potential of various developed methods compared to some traditional techniques.
Collapse
Affiliation(s)
- Anh Quang Dao
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Le Thi Thanh Nhi
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Vietnam
| | - Do Mai Nguyen
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Tran Thanh Tam Toan
- Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Vietnam
| |
Collapse
|
14
|
Wang L, Wang J, Zhang A, Huang XA, Lei H. Two binding epitopes modulating specificity of immunoassay for β-agonist detection: Quantitative structure-activity relationship. Food Chem 2022; 371:131071. [PMID: 34537613 DOI: 10.1016/j.foodchem.2021.131071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/04/2022]
Abstract
A growing number of β-agonists are illegally using for reducing animal fat deposition in animals, but the development of analytical methods always lags behind the emergence of new illegal compounds. Therefore, class specificity antibody-based immunoassays that can detect a great many β-agonists are important for timely supervision. In this study, a competitive inhibition enzyme-linked immunosorbent assay (ciELISA) based on a clenbuterol monoclonal antibody was developed to recognize 23 β-agonists and analogues. Holographic and three-dimensional quantitative structure-activity relationship (HQSAR and 3D QSAR) revealed that there are two critical binding epitopes on β-agonist hapten affecting antibody specificity, and these epitopes have been further validated using a ractopamine antibody with narrow specificity. Tert-butyl at C-2' epitope is needed to generate class specific antibodies, and different characteristics of substituents at benzene ring epitope would adjust antibody specificity. This investigation could provide reference for future design of β-agonist haptens.
Collapse
Affiliation(s)
- Lanteng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ang Zhang
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, China
| | - Xin-An Huang
- Tropical Medicine Institute & South China Chinese Medicine Collaborative Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Zhuang Q, Zhang C, Zhuang H, Deng H, Lin X, Li Y, Chen H, Xie A, Dong W. Heteroatom-free conjugated tetraphenylethylene polymers for selectively fluorescent detection of tetracycline. Anal Chim Acta 2022; 1190:339236. [PMID: 34857140 DOI: 10.1016/j.aca.2021.339236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022]
Abstract
The antibiotic tetracycline (Tc) is a major contaminant in food and water, with adverse effects on both ecosystems and human health. The development of novel sensors for tetracycline detection is of great importance. In this work, we develop a novel heteroatom-free conjugated tetraphenylethylene polymer (TPE-CMP) fluorescence sensor for the detection of tetracycline. In the presence of Tc, the emission fluorescence of TPE-CMP was quenched by the photoinduced electron transfer mechanism to achieve high sensitivity. The polymers can detect tetracycline at a concentration of 0-100 μg/mL with a good linear correlation (0.99), and the limit of detection (LOD) is 1.23 μg/mL. Furthermore, TPE-CMP has excellent selectivity in detecting Tc in the presence of various anti-interference analytes, including ions and antibiotics. In addition, the practical feasibilities of TPE-CMP for Tc sensing were further investigated in milk, urine and wastewater samples with satisfactory recoveries (from 94.96% to 112.53% for milk, from 96.41% to 99.31% for urine and from 98.54% to 100.52% for wastewater). We have designed and synthesized TPE-CMP based on heteroatom-free for the specific fluorescence detection of tetracycline, expanding the range of fluorescence detection sensors and offering great promise for practical applications.
Collapse
Affiliation(s)
- Qiu Zhuang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361100, China
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Haiyan Zhuang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361100, China
| | - Hanyu Deng
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Xiangpeng Lin
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yan Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Chen
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361100, China
| | - Aming Xie
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
16
|
Chen J, Xu F, Zhang Q, Li S, Lu X. Tetracycline antibiotics and NH 4+ detection by Zn-organic framework fluorescent probe. Analyst 2021; 146:6883-6892. [PMID: 34632986 DOI: 10.1039/d1an00894c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A fluorescent probe based on single metal-organic framework material without additional fluorophores and active sites can significantly improve the stability of the probe for detection, and has very important application value in environmental analysis and detection. In this paper, a simple and rapid fluorescence detection method was established with Zn-MOF, which realized the highly sensitive detection of tetracycline antibiotics and NH4+ in water. The prepared Zn-MOF has abundant pores and can exist stably in water. When tetracycline antibiotics are present in Zn-MOF aqueous solution, based on the unique coordination ability between Zn and N, tetracycline antibiotics rich in N will be adsorbed into the pore canals of MOF, and aggregation-induced luminescence will occur. The original non-fluorescent Zn-MOF will immediately produce yellow fluorescence, realizing the detection of tetracycline antibiotics in water, with the limit of detection reaching 0.017 μM in a linear range of 0.02-13 μM. Zn-MOF is further used for the detection of tetracycline antibiotics in actual samples of milk and honey. Oxytetracycline (OTC) with the best fluorescence response of tetracycline antibiotics was coated on Zn-MOF to synthesize OTC@Zn-MOF fluorescent probe. NH4+ will replace the original ligand of Zn-MOF, which will disintegrate MOF and release OTC, resulting in a fluorescence decrease. Therefore, NH4+ can be detected with low limit of detection (0.038 μM) in a linear range of 0 to 3 mM. The probe is expected to be able to detect ammonia in the environment.
Collapse
Affiliation(s)
- Jing Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Fanghong Xu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qian Zhang
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuying Li
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoquan Lu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
17
|
Yao R, Li Z, Liu G, Fan C, Pu S. Luminol-Eu-based ratiometric fluorescence probe for highly selective and visual determination of tetracycline. Talanta 2021; 234:122612. [PMID: 34364422 DOI: 10.1016/j.talanta.2021.122612] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022]
Abstract
In this work, a ratiometric fluorometric method based on luminol-Europium complex (luminol-Eu) was constructed for the detection of tetracycline (TC). Luminol-Eu, synthesized by self-assembly reaction, displayed a strongly emission peak at 453 nm under excitation at 360 nm which was derived from the aggregation-induced emission (AIE) of the luminol-Eu. In the present of TC, the fluorescence of luminol-Eu at 453 nm was quenched based on inner filter effect (IFE). Meantime, the characteristic emission peak of Eu3+ at 626 nm can be observed thank to antenna effect (AE). Therefore, we proposed a ratiometric fluorometric method for detection of TC, which allowed detection of TC from 0.5 to 80 μM with the detection limit of 39 nM. In addition, the luminol-Eu-based test paper was prepared for visual semi-quantitative detection of TC in real samples based on the color of luminol-Eu change from blue to red under 365 nm ultraviolet light. All of those results indicated that the ratiometric fluorometric strategy was fast, sensitive, and visual for detection of TC.
Collapse
Affiliation(s)
- Ruihong Yao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China; Yuzhang Normal University, Nanchang, 330013, PR China.
| |
Collapse
|
18
|
Bai Y, Jiang H, Zhang Y, Dou L, Liu M, Yu W, Wen K, Shen J, Ke Y, Yu X, Wang Z. Hydrophobic Moiety of Capsaicinoids Haptens Enhancing Antibody Performance in Immunoassay: Evidence from Computational Chemistry and Molecular Recognition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9957-9967. [PMID: 34410117 DOI: 10.1021/acs.jafc.1c03657] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We previously found that the immune response to haptens is positively correlated with molecular hydrophobicity. The antibodies used in immunoassays for capsaicinoids (CPCs) in waste oil suffer from low affinity and loose recognition to structural analogues. To address this issue, four new haptens (hapten1-4), maximally exposing the hydrophobic alkane chain (noncommon moiety of CPCs), were designed and expected to produce antibodies with high affinity and accurate recognition to CPCs based upon our findings. The assumption was first evidenced by computational chemistry and animal immunization successively. Compared with four reported haptens (hapten5-8) that expose the hydrophilic vanillyl amide moiety (common structure of CPCs and other vanillin alkaloids), antisera from hapten1-4 showed an approximately 1000-fold increase in affinity and significantly improved recognition profiles for CPCs. The molecular recognition study showed that the high affinity of the antibody from new haptens mainly originated from hydrophobic forces. An indirect competitive enzyme-linked immunosorbent assay based on a monoclonal antibody from hapten1 was developed and exhibited limits of detection as low as 0.73-3.29 μg/kg for four CPCs in oils and with insignificant cross-reactivities for other eight vanillin alkaloids, which have been never achieved in previous reports.
Collapse
Affiliation(s)
- Yuchen Bai
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hui Jiang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Minggang Liu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen City 518055, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
19
|
Khan NS, Pradhan D, Choudhary S, Saxena P, Poddar NK, Jain AK. Immunoassay-based approaches for development of screening of chlorpyrifos. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00282-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractChlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are concerns of it contaminating the environment and human health with estimated three lakh deaths annually. Detection of CPF in blood samples holds significance to avoid severe health outcomes due to continuous exposure. The most common techniques for CPF detection are Gas chromatography (GC) and high-performance liquid chromatography (HPLC). However, these techniques might not be feasible at the community healthcare level due to high-cost instrumentation, time-consuming sample preparation protocol and skilled analysts. Therefore, rapid, effective and economical methods such as immunoassay would be imperative for CPF detection in biological samples. The vital step in immunoassay development is the design of a potent immunogen from non-immunogenic molecules. The molecular modelling protocol could assist in redesigning known CPF linkers and inserting them at different substitutable positions of CPF to get distinctive CPF derivatives. Molecular docking and binding free energy analysis can be used to identify the CPF derivatives having a better binding affinity with carrier protein compared to CPF. The top-ranked CPF derivatives based on docking score and binding energy could be ideal for synthesis and immunogen development. The present review will comprehend technological trends in immunoassay kits for detecting chlorpyrifos from biological samples.
Collapse
|
20
|
Ji B, Zhao W, Xu X, Han Y, Jie M, Xu G, Bai Y. Development of a modified quick, easy, cheap, effective, rugged, and safe method based on melamine sponge for multi-residue analysis of veterinary drugs in milks by ultra-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2021; 1651:462333. [PMID: 34161835 DOI: 10.1016/j.chroma.2021.462333] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to develop a modified QuEChERS method based on melamine sponge for rapid determination of multi-class veterinary drugs in milks by UPLC-MS/MS. Through simple infiltration and extrusion, fast and convenient matrix purification could be achieved within several seconds, and there was no need of extra phase separation operations. Good linearity with correlation coefficient (R2) ≥0.999 was obtained for all drugs in the range of 2~500 µg·kg-1. The obtained matrix effects were within ±20% for all monitored drugs. The recoveries of all monitored drugs ranged from 60.7% to 116.0% at three spiked levels (50, 100, and 200 µg·kg-1), with relative standard deviations less than 7.4%. Comparatively low LODs and LOQs were obtained in the ranges of 0.1~3.8 µg·kg-1 and 0.2~6.3 µg·kg-1, respectively. Compared with conventional purification adsorbents, melamine sponge yielded an equal or higher purification performance with matrix removal rate as high as 52.5% and acceptable recoveries in range of 60%-120% for all monitored drugs. The satisfactory results have demonstrated the good potential of melamine sponge in matrix purification for rapid determination of multiclass residues in food safety.
Collapse
Affiliation(s)
- Baocheng Ji
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, PR China; Collsborative Innovation Center of Food Production and Safety, Henan Province, PR China
| | - Wenhao Zhao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, PR China; Collsborative Innovation Center of Food Production and Safety, Henan Province, PR China
| | - Xu Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, PR China; Collsborative Innovation Center of Food Production and Safety, Henan Province, PR China
| | - Yu Han
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, PR China; Collsborative Innovation Center of Food Production and Safety, Henan Province, PR China
| | - Mingsha Jie
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, PR China; Collsborative Innovation Center of Food Production and Safety, Henan Province, PR China
| | - Gaigai Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China; Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, PR China; Collsborative Innovation Center of Food Production and Safety, Henan Province, PR China.
| |
Collapse
|
21
|
Mari GM, Li H, Dong B, Yang H, Talpur A, Mi J, Guo L, Yu X, Ke Y, Han D, Wang Z. Hapten synthesis, monoclonal antibody production and immunoassay development for direct detection of 4-hydroxybenzehydrazide in chicken, the metabolite of nifuroxazide. Food Chem 2021; 355:129598. [PMID: 33765482 DOI: 10.1016/j.foodchem.2021.129598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/13/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023]
Abstract
Derivatization is usually employed in immunoassay for detection of metabolites of nitrofurans and avoiding derivatization could be preferable to achieve an efficient screening. In the study, we designed four haptens of 4-hydroxybenhydrazide (HBH), the nifuroxazide metabolite. The effect of hapten structures on antibody affinity were evaluated and one monoclonal antibody was produced by using the Hapten C with a linear alkalane spacer arm. After optimization, an enzyme linked-immunosorbent assay (ELISA) was established with an 50% inhibition concentration of 0.25 ng mL-1 for HBH, which could ensure the direct detection of HBH without derivatization. The limit of detection of the ELISA for HBH was 0.12 µg kg-1 with the recoveries of 90.1-96.2% and coefficient of variation (CV) values lower than 9.1%. In conclusion, we produced several high affinity antibodies to HBH with new designed hapten and developed an icELISA for the direct detection of HBH without derivatization in chicken.
Collapse
Affiliation(s)
- Ghulam Mujtaba Mari
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Hongfang Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Baolei Dong
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Huijuan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Aisha Talpur
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jiafei Mi
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Liuchuan Guo
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuebin Ke
- Department of Genetic Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518020, People's Republic of China
| | - Diangang Han
- Technology Center of Kunming Customs, Kunming 650299, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China.
| |
Collapse
|
22
|
Gan Z, Hu X, Xu X, Zhang W, Zou X, Shi J, Zheng K, Arslan M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem 2021; 354:129501. [PMID: 33735696 DOI: 10.1016/j.foodchem.2021.129501] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
Residual tetracycline (TC) in animal food caused by abuse of antibiotics leads to many chronic diseases in the human body. The development of a simple and on-site visualization method for TC detection is need of the hour. Herein, a fluorescent europium-based metal-organic framework (Eu-MOF) sensor for visual and rapid detection of TC was developed. Eu-MOF displays a red emission being excited at 260 nm. Upon exposure to TC, significant fluorescence quenching was observed due to the inner filter effect and photoinduced electron transfer. Moreover, the developed sensor was applied for the detection of TC in milk and beef samples with recoveries of 96.1% to 106.3%, respectively. More importantly, a portable test strip based on Eu-MOF was manufactured. It is a highly selective and sensitive portable device for TC detection. The results can be distinguished immediately by naked eyes, making it become an excellent choice to detect TC in real-time application.
Collapse
Affiliation(s)
- Ziyu Gan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuetao Hu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
Li L, Hou R, Shen W, Chen Y, Wu S, Wang Y, Wang X, Yuan Z, Peng D. Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism. Food Chem 2021; 363:129465. [PMID: 34247034 DOI: 10.1016/j.foodchem.2021.129465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023]
Abstract
To monitor the residue of kitasamycin (KIT), a monoclonal antibody against KIT was prepared, and a 50% inhibition concentration (IC50) of 5.7 ± 1.4 μg/L was achieved with the most sensitive antibody, KA/2A9, by optimizing ELISA conditions. The LODs for KIT in different animal tissues ranged from 22.47 μg/kg to 29.32 μg/kg, and the recoveries of the fortified tissues were 70% ~ 120% with coefficients of variation below 20%. Then, KIT-specific scFv KA/2A9/3 was prepared for the first time. Homologous modeling and molecular docking results indicated that the key amino acids of KA/2A9/3 scFv are TYR-92 (CDRL3), SER-93 (CDRL3), ASP-155 (CDRH1) and GLY-226 (CDRH3), and the hydrogen bond is the main force. And then, virtual mutation provides a method to evolve KA/2A9/3 scFv antibodies. These results contribute to comprehending the antigen-antibody binding mechanism and provide effective information for in vitro affinity maturation of anti-KIT scFv.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ren Hou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Shen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yushuang Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoqing Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
24
|
Wang B, Xie K, Lee K. Veterinary Drug Residues in Animal-Derived Foods: Sample Preparation and Analytical Methods. Foods 2021; 10:555. [PMID: 33800096 PMCID: PMC8000452 DOI: 10.3390/foods10030555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Veterinary drugs are used to treat livestock and aquatic diseases and thus are introduced into animal-derived foods, endangering consumer health and safety. Antibiotic resistance is rapidly becoming a major worldwide problem, and there has been a steady increase in the number of pathogens that show multi-drug resistance. Illegal and excessive use of veterinary drugs in animals and aquaculture has serious adverse effects on humans and on all other environmental organisms. It is necessary to develop simple extraction methods and fast analytical methods to effectively detect veterinary drug residues in animal-derived foods. This review summarizes the application of various sample extraction techniques and detection and quantification methods for veterinary drug residues reported in the last decade (2010-2020). This review compares the advantages and disadvantages of various extraction techniques and detection methods and describes advanced methods, such as those that use electrochemical biosensors, piezoelectric biosensors, optical biosensors, and molecularly imprinted polymer biosensors. Finally, the future prospects and trends related to extraction methods, detection methods and advanced methods for the analysis of veterinary drug residues in animal-derived foods are summarized.
Collapse
Affiliation(s)
- Bo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Kaizhou Xie
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Korea
| |
Collapse
|
25
|
Bai Y, Wang Y, Li Q, Dou L, Liu M, Shao S, Zhu J, Shen J, Wang Z, Wen K, Yu W. Binding affinity-guided design of a highly sensitive noncompetitive immunoassay for small molecule detection. Food Chem 2021; 351:129270. [PMID: 33640770 DOI: 10.1016/j.foodchem.2021.129270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Small molecules are immunochemically classified as hapten that lacking of at least two epitopes, usually using competitive format for establishing immunoassays. However, theoretically, noncompetitive immunoassay format is more sensitive and has a wider analytical range. In the present study, a novel hapten of halofuginone was synthesized and used to produce a monoclonal antibody (mAb). By analyzing the binding kinetics, we found that the affinity of analyte-enzyme to mAb was much greater than that of analyte, which could result in a low sensitivity of competitive assay format. Based on this, we established a novel noncompetitive immunoassay by using a replacement approach. The noncompetitive format has obvious advantages in sensitivity and analytical range, which promoted approximately 3.5- and 5-fold, respectively, compared to the competitive immunoassay. Ultimately, the newly designed noncompetitive immunoassay in this work will provide insights as well as alternative method to traditional small molecule competitive assays.
Collapse
Affiliation(s)
- Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Yahui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China; Agricultural Information Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Qiang Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianyu Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
26
|
Lin L, Xu L, Kuang H, Xiao J, Xu C. Ultrasensitive and simultaneous detection of 6 nonsteroidal anti-inflammatory drugs by colloidal gold strip sensor. J Dairy Sci 2021; 104:2529-2538. [PMID: 33455779 DOI: 10.3168/jds.2020-19500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 01/11/2023]
Abstract
In this work, an oxicam group-selective monoclonal antibody against 6 nonsteroidal anti-inflammatory drugs (NSAID; meloxicam, lornoxicam, piroxicam, sudoxicam, droxicam, and tenoxicam) was prepared. Also, a spacer arm with carboxyl group was derived at the hydroxyl of meloxicam to generate the meloxicam hapten. The half-maximal inhibitory concentrations (IC50) were, respectively, 0.31 ng/mL for meloxicam, 0.49 ng/mL for lornoxicam, 2.90 ng/mL for piroxicam, 1.95 ng/mL for sudoxicam, 3.08 ng/mL for droxicam, and 5.36 ng/mL for tenoxicam. A colloidal gold immunochromatographic strip based on the monoclonal antibody was developed for the detection of these 6 NSAID in milk. The results could be obtained by the naked eye in 10 min, and the cut-off values and the visual limits of detection in real samples were 5, 5, 10, 10, 25, and 25 ng/mL, and 0.25, 1, 0.5, 0.5, 1, and 1 ng/mL, respectively. This immunochromatopgraphic strip is a suitable tool for on-site detection and screening of oxicam NSAID in milk samples.
Collapse
Affiliation(s)
- Lu Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China
| | - Jing Xiao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214121, People's Republic of China.
| |
Collapse
|
27
|
Guo X, Lin L, Song S, Wu A, Liu L, Kuang H, Xu C. Development of enzyme linked immunosorbent assay and lateral flow immunoassay for the rapid detection of dapsone in milk. NEW J CHEM 2021. [DOI: 10.1039/d1nj03247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-throughput rapid detection of dapsone in milk without pretreatment.
Collapse
Affiliation(s)
- Xin Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lu Lin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
28
|
A review of pretreatment and analysis of macrolides in food (Update Since 2010). J Chromatogr A 2020; 1634:461662. [PMID: 33160200 DOI: 10.1016/j.chroma.2020.461662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Macrolides are versatile broad-spectrum antibiotics whose activity stems from the presence of a macrolide ring. They are widely used in veterinary medicine to prevent and treat disease. However, because of their improper use and the absence of effective regulation, these compounds pose a threat to human health and the environment. Consequently, simple, quick, economical, and effective techniques are required to analyze macrolides in animal-derived foods, biological samples, and environmental samples. This paper presents a comprehensive overview of the pretreatment and analytical methods used for macrolides in various sample matrices, focusing on the developments since 2010. Pretreatment methods mainly include liquid-liquid extraction, solid-phase extraction, matrix solid-phase dispersion, and microextraction methods. Detection and quantification methods mainly include liquid chromatography (coupled to mass spectrometry or other detectors), electrochemical methods, capillary electrophoresis, and immunoassays. Furthermore, a comparison between the pros and cons of these methods and prospects for future developments are also discussed.
Collapse
|
29
|
Xing X, Huang L, Zhao S, Xiao J, Lan M. S,N-Doped carbon dots for tetracyclines sensing with a fluorometric spectral response. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Zeng K, Zhang Z, Liu L, Shao J, Gu L, Liu H, Qu G, Shi J, Jiang GB. A typical derivative and byproduct of tetrabromobisphenol A: Development of novel high-throughput immunoassays and systematic investigation of their distributions in Taizhou, an e-waste recycling area in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114382. [PMID: 32229371 DOI: 10.1016/j.envpol.2020.114382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Environmental distribution and concentration of tetrabromobisphenol A bis- (2-hydroxyethyl) ether (TBBPA-DHEE) and tetrabromobisphenol A mono- (hydroxyethyl) ether (TBBPA-MHEE), are obscure due to the lack of available analytical methods. Here two novel immunoassays were established to systematically investigate their distributions in Taizhou, Eastern China. Five monoclonal antibodies against pollutants were generated with two designed haptens through animal immunization. After matched with different coating antigens/antibodies, ELISAs were established (LOD for TBBPA-DHEE, 0.12 ng/mL, based on OVA-M3/mAb-D4G6; LOD for TBBPA-MHEE, 0.79 ng/mL, based on OVA-M3/mAb-D2G6) and applied for investigation of their occurrences at a typical e-waste recycling area after 2-year samples collection, where the total 33 water, 32 soil and 16 biological samples were collected with the highest concentrations of 3.46 ng/mL, 2.76 ng/g (dry weight, dw) and 5.01 ng/g (dw), respectively. Meanwhile, our study also indicated that at the centralizing e-waste recycling sites the serious pollution for both chemicals still existed despite of various efforts. Besides, obvious improvements were observed at an abandoned e-waste recycling region treated and remedied for many years by the local Chinese government. These findings highlight the importance of policy decisions in treatment of pollutants to reduce organic pollutant-related health risks.
Collapse
Affiliation(s)
- Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Liyuan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Shao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lantian Gu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huizi Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| |
Collapse
|
31
|
Raysyan A, Galvidis IA, Schneider RJ, Eremin SA, Burkin MA. Development of a latex particles-based lateral flow immunoassay for group determination of macrolide antibiotics in breast milk. J Pharm Biomed Anal 2020; 189:113450. [PMID: 32693204 DOI: 10.1016/j.jpba.2020.113450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/24/2023]
Abstract
A lateral flow immunoassay (LFIA) using latex particles labeled with antibody to BSA-clarithromycin (CLA) was developed for the rapid simultaneous group determination of six macrolide antibiotics. Optimization of antigen spotting on the membrane and latex probe loading allowed improving visual detectability (vLOD) 100 times, which was 1, 1, 10, 10, 50, and 1000 ng/mL for CLA, roxithromycin, erythromycin, dirithromycin, azithromycin, and oleandomycin in buffer, respectively. The calculated limits of instrumental detection (cLOD) were respectively 0.12, 0.15, 1.4, 2.1, 2.4, and 3.3 ng/mL. To avoid a strong influence of breast milk of a very diverse and variable composition, a sample pretreatment is proposed. The six macrolides mentioned can be visually detected in breast milk after 20 min pretreatment at concentrations of 10-1000 ng/mL or instrumentally with cLOD of 4.0, 2.5, 30, 42, 42 and 180 ng/mL. The recovery rate from the spiked samples carried out using a strip scanner device ranged from 71 % to 110 %, and precision expressed as relative standard deviation was between 3-14 %. The described rapid on-site diagnostic assay format can be useful for monitoring the content of antibiotics in breast milk during macrolide treatment to ensure safe breastfeeding of infants.
Collapse
Affiliation(s)
- Anna Raysyan
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12489 Berlin, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Inna A Galvidis
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| | - Rudolf J Schneider
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12489 Berlin, Germany; Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sergei A Eremin
- Chemical Faculty, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maksim A Burkin
- I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia.
| |
Collapse
|
32
|
Ahmed S, Ning J, Peng D, Chen T, Ahmad I, Ali A, Lei Z, Abu bakr Shabbir M, Cheng G, Yuan Z. Current advances in immunoassays for the detection of antibiotics residues: a review. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2019.1707171] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jianan Ning
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ting Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ijaz Ahmad
- Department of Animal Health, The University of Agriculture, Peshawar, Pakistan
| | - Aashaq Ali
- Wuhan institute of Virology, Chinese Academy of Science, Wuhan, People’s Republic of China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Muhammad Abu bakr Shabbir
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, People’s Republic of China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
33
|
Guo L, Liu L, Cui G, Ma S, Wu X, Kuang H. Gold immunochromatographic assay for kitasamycin and josamycin residues screening in milk and egg samples. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1677567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Gang Cui
- Yancheng Teachers University, Yancheng, People’s Republic of China
| | - Shufeng Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
34
|
Li M, Cui Y, Liu Z, Xue Y, Zhao R, Li Y, Du D. Sensitive and selective determination of butyl benzyl phthalate from environmental samples using an enzyme immunoassay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:849-857. [PMID: 31412488 DOI: 10.1016/j.scitotenv.2019.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Increased awareness of phthalic acid esters (PAEs) toxicity has given rise to a dramatic increase in concern about the determination of these contaminations in the environment. In this paper, a sensitive, selective and rapid enzyme immunoassay of ELISA based on polyclonal antibody for detecting butyl benzyl phthalate (BBP) was developed and applied in the environmental water and soil samples. The hapten of BBP was synthesized, then applied to prepare artificial antigen and produce polyclonal antibody capable of specific recognizing BBP. From the optimal standard curve of ELISA for BBP, the values of LOD (limit of detection, IC10) and IC50 were 2.5 and 79.4 ng/mL, respectively. The ELISA showed high specificity, with the cross-reactivity toward BBP analogs < 9.6%. The satisfactory accuracy and precision were demonstrated by the recoveries of 76-116% and coefficient of variations (CVs) of 4.7-13.7%. Furthermore, BBP contamination was investigated at 3.1-25.2 ng/mL in real water samples and 4.2-76.4 ng/g in real soil samples (with the detection rate of 55% in 20 samples) by the developed ELISA, which also had shown a good correlation with that the results obtained by HPLC. All of this indicated that the developed enzyme immunoassay could be applied for sensitive and selective determination of BBP contamination in the environmental samples. Furthermore, the strategy of BBP hapten synthesis and an alternative method of BBP determination could be provided.
Collapse
Affiliation(s)
- Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yin Cui
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhenjiang Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yonglai Xue
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rujin Zhao
- Department of Environmental Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Daolin Du
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
35
|
Wu YY, Huang P, Wu FY. A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chem 2019; 304:125377. [PMID: 31476547 DOI: 10.1016/j.foodchem.2019.125377] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/12/2019] [Accepted: 08/17/2019] [Indexed: 11/26/2022]
Abstract
We devise a novel colorimetric aptasensor for multiplex antibiotics based on an ss-DNA fragment coordinately controlling gold nanoparticles (AuNPs) aggregation. The multifunctional aptamer (Apt) was elaborately designed to be adsorbed on AuNPs surfaces acting as a binding element for antibiotics and a molecular switch. Chloramphenicol (CAP) and tetracycline (TET) were selected as the model antibiotics. When one kind of antibiotics was added, the specifically recognized fragment of Apt can bind to it and dissociated, and the non-specific one coordinately controls AuNPs aggregation under high-salt conditions. Hence, different color changes of AuNPs solution can be used as the signal readout. The aptasensor exhibited remarkable selectivity and sensitivity for separate detection of TET and CAP, and the detection limits are estimated to be 32.9 and 7.0 nM, respectively. The analysis with the absorption spectroscopy and the smartphone are applied to detect antibiotics in real samples with consistent results and desirable recoveries.
Collapse
Affiliation(s)
- Yang-Yang Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
36
|
Development of a New Monoclonal Antibody by More Active Enramycin A and Indirect Competitive ELISA for the Detection of Enramycin in Edible Animal Tissues. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Li X, Chen X, Wu X, Wang J, Liu Z, Sun Y, Shen X, Lei H. Rapid detection of adulteration of dehydroepiandrosterone in slimming products by competitive indirect enzyme-linked immunosorbent assay and lateral flow immunochromatography. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1550057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xiaomin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xinze Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
38
|
Li C, Zhu L, Yang W, He X, Zhao S, Zhang X, Tang W, Wang J, Yue T, Li Z. Amino-Functionalized Al-MOF for Fluorescent Detection of Tetracyclines in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1277-1283. [PMID: 30640455 DOI: 10.1021/acs.jafc.8b06253] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A fluorescent method for detection of tetracyclines (TCs) in milk was developed by using the NH2-MIL-53(Al) nanosensor synthesized via a one-pot hydrothermal method. The nanosensor had a crystalline nanoplates structure with rich groups of -NH2 and -COOH. The -NH2/-COOH of NH2-MIL-53(Al) reacted with the -CO-/-OH of TCs to form a complex. The electron of -NH2/-COOH from the NH2-BDC ligand transferred to the -CO-/-OH of TCs. -NH2 of the NH2-MIL-53(Al) interacted with the -CO-/-OH of TCs by hydrogen bonding. The quenching efficiency of the inner filter effect (IFE) was calculated to contribute 57-89%. The synergistic effect of photoinduced electron transfer (PET) and IFE account for fluorescence quenching. TCs were quantitatively detected in milk samples with recoveries of 85.15-112.13%; the results were in great accordance with high-performance liquid chromatography (HPLC) ( P > 0.05), confirming the NH2-MIL-53(Al) nanosensor has potential applicability for the detection of TCs in food matrix.
Collapse
Affiliation(s)
- Chunhua Li
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Li Zhu
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Weixia Yang
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Xie He
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Sheliang Zhao
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Xiaoshuo Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Wenzhi Tang
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Jianlong Wang
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Tianli Yue
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture , Yangling , Shaanxi 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , Shaanxi 712100 , China
| | - Zhonghong Li
- College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture , Yangling , Shaanxi 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , Shaanxi 712100 , China
| |
Collapse
|
39
|
Li H, Ma S, Zhang X, Li C, Dong B, Mujtaba MG, Wei Y, Liang X, Yu X, Wen K, Yu W, Shen J, Wang Z. Generic Hapten Synthesis, Broad-Specificity Monoclonal Antibodies Preparation, and Ultrasensitive ELISA for Five Antibacterial Synergists in Chicken and Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11170-11179. [PMID: 30251847 DOI: 10.1021/acs.jafc.8b03834] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An antibody with broad specificity and principally depending on hapten structure and size is a key reagent for developing a class-selective immunoassay. In the present study, three new generic haptens of antibacterial synergists (ASGs) were proposed using trimethoprim as the starting molecule. These haptens contained carboxyl groups on the meta position of trimethoxybenzene for conjugating to protein, while, the common moiety of ASGs, i.e., diaminopyrimidine, was intentionally and maximally exposed to the immune system in animals in order to induce antibodies with broad specificity against ASGs. Five monoclonal antibodies (mAbs) were finally obtained, and 5C4 from the hapten with a short spacer arm, named Hapten A, showed not only uniform broad specificity but also high affinity to all five ASGs. We further determined the possible recognition mechanism of mAbs in terms of conformational and electronic aspects. An indirect competitive ELISA (icELISA)-based 5C4 was established and exhibited IC50 values of 0.067-0.139 μg L-1 with cross-reactivity of 48.2%-418.7% for the five ASGs in buffer under optimal conditions. The calculated limits of detection of the icELISA for chicken and milk were 0.06-0.8 μg kg-1 and 0.05-0.6 μg L-1, respectively. The recoveries in spiked chicken and milk samples were 75.2%-101.4% with a coefficient of variation less than 14.3%. In summary, we have developed, for the first time, a rapid and reliable icELISA for ASGs with significantly improved sensitivity and class selectivity.
Collapse
Affiliation(s)
- Hongfang Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Shaoqin Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Xiya Zhang
- College of Food Science and Technology , Henan Agricultural University , 450002 Zhengzhou , People's Republic of China
| | - Chenglong Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Baolei Dong
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Mari Ghulam Mujtaba
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Yujie Wei
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Xiao Liang
- College of Veterinary Medicine , Qingdao Agricultural University , 266109 Qingdao , People's Republic of China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| |
Collapse
|
40
|
Yan S, Lai X, Du G, Xiang Y. Identification of aminoglycoside antibiotics in milk matrix with a colorimetric sensor array and pattern recognition methods. Anal Chim Acta 2018; 1034:153-160. [PMID: 30193629 DOI: 10.1016/j.aca.2018.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/20/2018] [Accepted: 06/03/2018] [Indexed: 11/28/2022]
Abstract
Aminoglycoside antibiotics (AAs) abused in animal husbandry can cause antibiotic residues in animal-derived foods, which do harm to human beings' health. Therefore the detection of AAs residues in the animal-origin foods, such as milk, eggs and meat is necessary. We used two single-stranded DNA (ssDNA) oligonucleotides as nonspecific receptors to develop a simple colorimetric sensor array based on gold nanoparticles (AuNPs) for identification and quantification the AAs. Different AA addition triggered the DNA detaching from AuNPs then resulted in different degree salt induced aggregation of AuNPs. The aggregation induced spectral changes of AuNPs with five AA addition were analyzed based on pattern recognition techniques, fisher linear discriminant analysis (FLD) and hierarchical cluster analysis (HCA). The results indicated that colorimetric sensor array has successfully identified five AAs at a concentration range of 120-280 nM. Five AAs in aqueous solution and complex milk matrix can be identified with an accuracy of 100%. More importantly, our developed sensor array is sufficiently sensitive for the discrimination of pure streptomycin (STR), binary mixtures of STR and gentamicin (GEN) at a total concentration of 120 nM.
Collapse
Affiliation(s)
- Shang Yan
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xiaoxia Lai
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Guorong Du
- Beijing Third Class Tobacco Supervision Station, Beijing, PR China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
41
|
Huang A, Zhang L, Li W, Ma Z, Shuo S, Yao T. Controlled fluorescence quenching by antibody-conjugated graphene oxide to measure tau protein. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171808. [PMID: 29765647 PMCID: PMC5936912 DOI: 10.1098/rsos.171808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 05/31/2023]
Abstract
We report an ultrasensitive immunoassay for tau protein-a key marker of Alzheimer's disease. This sensing platform relies on graphene oxide (GO) surfaces conjugated with anti-human tau antibody to provide quantitative binding sites for the tau protein. The GO quenches standard fluorescein isothiocyanate labelled tau (tau-FITC) when tau protein and tau-FITC are both present and compete for the binding sites. This change in fluorescence signal can be used to quantitate tau protein. In contrast with traditional enzyme-linked immunosorbent assay (ELISA), our method does not require enzyme-linked secondary antibodies for protein recognition nor does it require an enzyme substrate for optical signal generation. This requires fewer reagents and has less systematic error than the antigen-antibody recognition steps in ELISA. Our method has a tau protein detection limit of 0.14 pmol ml-1 in buffer. This approach could be developed into a promising biosensor for the detection of tau protein and may be useful in the clinical diagnosis of tau-induced neurodegeneration syndromes.
Collapse
Affiliation(s)
- Ao Huang
- Authors for correspondence: Ao Huang e-mail:
| | | | | | | | - Shi Shuo
- Authors for correspondence: Shi Shuo e-mail:
| | - Tianming Yao
- Authors for correspondence: Tianming Yao e-mail:
| |
Collapse
|
42
|
Development of a highly sensitive and specific ELISA method for the determination of l -corydalmine in SD rats with monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:163-169. [DOI: 10.1016/j.jchromb.2017.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/01/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022]
|
43
|
Zhang H, Yang S, Beier RC, Beloglazova NV, Lei H, Sun X, Ke Y, Zhang S, Wang Z. Simple, high efficiency detection of microcystins and nodularin-R in water by fluorescence polarization immunoassay. Anal Chim Acta 2017; 992:119-127. [DOI: 10.1016/j.aca.2017.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
|
44
|
Bai Y, Hu J, Liu S, Zhang W, Zhang J, He J, Li P, Li X, Jin J, Wang Z. Production of antibodies and development of an enzyme-linked immunosorbent assay for 17β-estradiol in milk. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1350833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yu Bai
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
- Wenzhou Academy of Agricultural Sciences, Wenzhou, People’s Republic of China
| | - Jingyan Hu
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
| | - Suzhen Liu
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
- Wenzhou Academy of Agricultural Sciences, Wenzhou, People’s Republic of China
| | - Weiyi Zhang
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
- Wenzhou Academy of Agricultural Sciences, Wenzhou, People’s Republic of China
| | - Jing Zhang
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
- Wenzhou Academy of Agricultural Sciences, Wenzhou, People’s Republic of China
| | - Jie He
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
| | - Peide Li
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
- Wenzhou Academy of Agricultural Sciences, Wenzhou, People’s Republic of China
| | - Xiuhong Li
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
- Wenzhou Academy of Agricultural Sciences, Wenzhou, People’s Republic of China
| | - Junjie Jin
- Wenzhou Vocational and Scientific College, Wenzhou, People’s Republic of China
- Wenzhou Academy of Agricultural Sciences, Wenzhou, People’s Republic of China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
45
|
Wang Z, Beier RC, Shen J. Immunoassays for the detection of macrocyclic lactones in food matrices – A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Zhang Z, Zeng K, Liu J. Immunochemical detection of emerging organic contaminants in environmental waters. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Huang A, Li W, Shi S, Yao T. Quantitative Fluorescence Quenching on Antibody-conjugated Graphene Oxide as a Platform for Protein Sensing. Sci Rep 2017; 7:40772. [PMID: 28084438 PMCID: PMC5233999 DOI: 10.1038/srep40772] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/09/2016] [Indexed: 02/05/2023] Open
Abstract
We created an immunosensing platform for the detection of proteins in a buffer solution. Our sensing platform relies on graphene oxide (GO) nanosheets conjugated with antibodies to provide quantitative binding sites for analyte proteins. When analyte proteins and standard fluorescein-labelled proteins are competing for the binding sites, the assay exhibits quantitative fluorescence quenching by GO for the fluorescein-labelled proteins as determined by the analyte protein concentration. Because of this mechanism, measured fluorescence intensity from unquenched fluorescein-labelled protein was shown to increase with an increasing analyte protein concentration. As an alternative to the conventional enzyme-linked immunosorbent assay (ELISA), our method does not require an enzyme-linked second antibody for protein recognition and the enzyme for optical signal measurement. Thus, it is beneficial with its low cost and fewer systematic errors caused by the series of antigen-antibody recognition steps in ELISA. Immune globulin G (IgG) was introduced as a model protein to test our method and our results showed that the limit of detection for IgG was 4.67 pmol mL-1 in the buffer solution. This sensing mechanism could be developed into a promising biosensor for the detection of proteins, which would broaden the spectrum of GO applications in both analytical biochemistry and clinical diagnosis.
Collapse
Affiliation(s)
- Ao Huang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| | - Weiwei Li
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| | - Shuo Shi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| | - Tianming Yao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China
| |
Collapse
|
48
|
Zhang K, Wang K, Zhu X, Xie M. Ultrasensitive fluorescence detection of transcription factors based on kisscomplex formation and the T7 RNA polymerase amplification method. Chem Commun (Camb) 2017; 53:5846-5849. [DOI: 10.1039/c7cc02231j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we report a kisscomplex based protein fluorescence assay (KPFA) method, which employed the formation of a kisscomplex and the T7 RNA polymerase amplification method, for the assay of transcription factors with high sensitivity. The detection limits of MITF and NF-κB p65 are 0.23 pM and 0.496 pM, respectively.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Ke Wang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| |
Collapse
|
49
|
Schumacher S, Seitz H. A novel immunoassay for quantitative drug abuse screening in serum. J Immunol Methods 2016; 436:34-40. [DOI: 10.1016/j.jim.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
|
50
|
Dostalova S, Cerna T, Hynek D, Koudelkova Z, Vaculovic T, Kopel P, Hrabeta J, Heger Z, Vaculovicova M, Eckschlager T, Stiborova M, Adam V. Site-Directed Conjugation of Antibodies to Apoferritin Nanocarrier for Targeted Drug Delivery to Prostate Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14430-14441. [PMID: 27219717 DOI: 10.1021/acsami.6b04286] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Herein, we describe a novel approach for targeting of ubiquitous protein apoferritin (APO)-encapsulating doxorubicin (DOX) to prostate cancer using antibodies against prostate-specific membrane antigen (PSMA). The conjugation of anti-PSMA antibodies and APO was carried out using HWRGWVC heptapeptide, providing their site-directed orientation. The prostate-cancer-targeted and nontargeted nanocarriers were tested using LNCaP and HUVEC cell lines. A total of 90% of LNCaP cells died after treatment with DOX (0.25 μM) or DOX in nontargeted and prostate-cancer-targeted APO, proving that the encapsulated DOX toxicity for LNCaP cells remained the same. Free DOX showed higher toxicity for nonmalignant cells, whereas the toxicity was lower after treatment with the same dosage of APO-encapsulated DOX (APODOX) and even more in prostate-cancer-targeted APODOX. Hemolytic assay revealed exceptional hemocompatibility of the entire nanocarrier. The APO encapsulation mechanism ensures applicability using a wide variety of chemotherapeutic drugs, and the presented surface modification enables targeting to various tumors.
Collapse
Affiliation(s)
- Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno , Zemedelska 1, Brno CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology , Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Tereza Cerna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol , V Uvalu 84/1, Prague 5 CZ-150 06, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Hlavova 2030/8, Prague 2 CZ-128 43, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno , Zemedelska 1, Brno CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology , Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Zuzana Koudelkova
- Department of Chemistry and Biochemistry, Mendel University in Brno , Zemedelska 1, Brno CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology , Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Faculty of Science, Masaryk University , Kotlarska 2, Brno CZ-611 37, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno , Zemedelska 1, Brno CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology , Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol , V Uvalu 84/1, Prague 5 CZ-150 06, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno , Zemedelska 1, Brno CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology , Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno , Zemedelska 1, Brno CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology , Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol , V Uvalu 84/1, Prague 5 CZ-150 06, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Hlavova 2030/8, Prague 2 CZ-128 43, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno , Zemedelska 1, Brno CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology , Purkynova 123, Brno CZ-612 00, Czech Republic
| |
Collapse
|