1
|
Rahman Z, Zhang S, Khan A, You J, Liu R, Huang Q, Ma H, Benjakul S, Yin T. Effects of modified KGM on the gelling capability of fish protein: Novel insights into hooking effect. Food Chem 2025; 478:143652. [PMID: 40049133 DOI: 10.1016/j.foodchem.2025.143652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
This study investigated the effects of modified Konjac-Gluco-Mannan (KGM) on the gelling capability of fish protein through experimental and dynamic simulation methods. The addition of deacetylated KGM (DKGM) and carboxymethylated KGM (CKGM) significantly increased the gel strength of myosin gel by 0.69 times and 0.36 times, respectively, compared to KGM. Notably, myosin with DKGM exhibited the highest storage modulus (G') and facilitated the conversion of α-helix structures during heating, leading to a denser gel network. Thermodynamic analysis revealed DKGM had the highest stoichiometric binding ratio with fish protein, indicating strong intermolecular interactions. Molecular docking identified binding sites between KGM tails and myosin heads, showing DKGM formed the most hydrogen bonds and hydrophobic interactions. The simulation of the DKGM-myosin complex demonstrated the highest interaction energy and lowest molecular radius of gyration, supporting the hypothesis that DKGM's tails enhance gelling capability through a hooking effect on adjacent proteins.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Agriculture, The University of Swabi, 23561, Pakistan; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Sijin Zhang
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Arsalan Khan
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan You
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ru Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qilin Huang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi/ Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China.
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-industry, Prince of Songkla University, 15 Kanchanawanich Road, Hat Yai 90112, Thailand
| | - Tao Yin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Feng Z, Yang Q, Zhao S, Huang Y, Kong B, Liu H, Li Y. Preparation of an aqueous colloidal dispersion of myofibrillar proteins: A synergistic strategy integrating nonenzymatic glycation and exogenous amino acids. Food Chem 2025; 477:143609. [PMID: 40031132 DOI: 10.1016/j.foodchem.2025.143609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/24/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
This study explores the possibility of exogenous lysine combined with nonenzymatic glycation to prepare an aqueous colloidal dispersion of meat protein. The results indicate that compared to the MPs aqueous solution, the aqueous colloidal dispersion possesses outstanding dispersion and stability. Results from structural analysis and microscopic observation show that l-lysine can promote the swelling and dissociation of MPs and form an entanglement network due to intermolecular bonding. Glycation by introducing hydrophilic dextran molecules leads to steric hindrance, inhibiting the self-assembly of myosin. Furthermore, the order of the reactions is critical; the addition of l-lysine can improve the degree of subsequent glycation, and the dextran molecules introduced during the glycation process also provide additional intermolecular forces for the entangled network. In summary, exogenous lysine combined with glycation is an effective strategy for preparing aqueous colloidal dispersions of MPs, improving their dispersibility and stability in a fluid state.
Collapse
Affiliation(s)
- Zhiqiang Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - QianHui Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxin Huang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuanyuan Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| |
Collapse
|
3
|
Wang Y, Ren H, Sun X, Zhan Z, Zhang F. High-pressure processing enhances konjac glucomannan/zeaxanthin complex interactions: Implications for colorful plant-based gels. Food Chem 2025; 484:144356. [PMID: 40267683 DOI: 10.1016/j.foodchem.2025.144356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
This study investigates the effects of high-pressure processing (HPP) on the physicochemical and structural properties of konjac glucomannan (KGM)/zeaxanthin (ZEA) composite-colored gel. Gels treated with varying pressures and holding times were analyzed, with untreated samples serving as the control. The results indicate that HPP at 300 MPa for 15 min significantly improved pigment retention and water-holding capacity by 14.58 % and 1.02 %, respectively, while also enhancing gel hardness and chewiness. Structural analysis revealed that HPP increased enthalpy change (ΔH) and relative crystallinity by 44.83 % and 20.32 %, respectively, contributing to improved thermal stability. Spectroscopic analysis further confirmed that HPP strengthened hydrophobic and hydrogen bonding interactions within the complex, leading to the formation of a denser three-dimensional network structure. These findings highlight the potential of HPP as an effective approach to improve the stability and functionality of plant-based colored gels, providing valuable insights for the development of functional konjac gel products.
Collapse
Affiliation(s)
- Ya Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongfei Ren
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaohua Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ziyi Zhan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
4
|
Li X, Hu C, Zhang H, Han L, Zhang W, He J. Soy protein isolate-chitosan complex condensate: Phase behavior, structure and functional properties. Food Chem X 2025; 27:102372. [PMID: 40170691 PMCID: PMC11960654 DOI: 10.1016/j.fochx.2025.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
This study investigated the interaction mechanism between soy protein isolate (SPI) and chitosan (CS), and the structure and functional properties of their complex. The results revealed hydrogen bonding and hydrophobic interactions as the main driving forces for formation of soluble SPI/CS complex, while electrostatic interactions as the primary force driving insoluble complex formation. Insoluble complex formation was promoted by an appropriate increase in SPI/CS total concentration (> 0.24 %) and a decrease in NaCl concentration (< 60 mmol/L). After adding CS, SPI decreased in solubility, emulsifying and foaming properties, followed by an increase with pH raised from 3 to 9. CS addition could also change the tertiary structure of SPI and increase its relative crystallinity, enabling a red shift of amino (-NH2) groups and a denser structure formation on SPI surface. These results offer valuable insights into the use of SPI/CS complex in the food industry.
Collapse
Affiliation(s)
- Xiongzhi Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chun Hu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hailong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lijuan Han
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weinong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junbo He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Xiong Z, Wang X, Tian Y, Wang X, Yuan L, Jin W, Li J, Gao R. Effect of denaturation rate of sliver carp myosin induced by alcohols on its thermal aggregation behavior and gel properties. Int J Biol Macromol 2025; 284:138217. [PMID: 39617242 DOI: 10.1016/j.ijbiomac.2024.138217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
The effects of ethanol, 1,2-propanediol, and glycerol at concentrations from 10 % to 40 % on the thermal denaturation and aggregation of silver carp (Hypophthalmichthys molitrix) myosin were investigated. The results revealed that ethanol and 1,2-propanediol induced thermal denaturation of myosin more rapidly than glycerol, which minimally impacted the secondary structure. At 10 % concentration, 1,2-propanediol significantly influenced myosin's secondary structure more than ethanol. While at a concentration of 20 %, ethanol prompted faster thermal denaturation and aggregation, resulting in higher turbidity than 1,2-propanediol (P < 0.05). Notably, higher concentrations of ethanol (30 % and 40 %) and 1,2-propanediol (40 %) induced the formation of non-disulfide covalent bonds, contributing to excessive myosin aggregation. Furthermore, hydrophobic interactions emerged as crucial within myosin aggregation in glycerol solutions during heating. Additionally, the effects of three alcohols at 1 %, 3 %, and 5 % on the gel properties were investigated. The results showed that an appropriate concentration of 1,2-propanediol (3 %) and glycerol (5 %) significantly enhanced the gel properties by inducing desirable unfolding and aggregation of myosin molecules. These findings offer a theoretical foundation for utilizing alcohol additives to enhance the gel quality of heat-induced surimi.
Collapse
Affiliation(s)
- Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xiangdai Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ying Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
6
|
Xiao Y, Sun L, Ding Q, Li M, Zhu Y, Lee JH, Li S, Zhao G, Wang Y, Wang Y, Zhao L. Dynamic analysis of bovine bone high-temperature hydrolysate emulsion formation based on microstructure and physicochemical interactions. Int J Biol Macromol 2024; 283:137667. [PMID: 39561825 DOI: 10.1016/j.ijbiomac.2024.137667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
In the food industry, the emulsifying process alters both the stability and quality of the emulsified products prepared by bovine bone high-temperature hydrolysate (BBHH). The microstructure and interactions of BBHH emulsion were characterized by cryo-scanning electron microscopy (Cryo-SEM) and Raman spectroscopy during emulsification. Notably, BBHH emulsion exhibited the best properties under emulsifying for 120 s, attributed to its interfacial adsorption characteristics. In terms of microstructure, the droplets were small and uniform, and the cross-linking and network structure between the droplet surfaces were obvious at 120 s. Raman spectroscopy indicated that the adsorption of BBHH at the oil-water interface mainly involved an increase of the β-sheet at the expense of the α-helix region. In addition, protein adsorption and structural development at the interface were driven by hydrophobic interactions, while further rearrangement and polymerization were mediated by disulfide bonds. Furthermore, the stability and particle size distribution of the emulsion also supported the results. This study provided a theoretical basis for the behavior of BBHH emulsion formation, which expanded valuable insights into the mechanisms by which liquid food emulsification systems mediated by animal-derived proteins and how they behave under a variety of external conditions.
Collapse
Affiliation(s)
- Yan Xiao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Lingxia Sun
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qian Ding
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yaodi Zhu
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Shengzhao Li
- Henan Yujiang Food Co., LTD, Henan Province, Luohe 462600, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yican Wang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yuying Wang
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
7
|
Cao R, Wang B, Bai T, Zhu Y, Cheng J, Zhang J. Structural and functional impacts of glycosylation-induced modifications in rabbit myofibrillar proteins. Int J Biol Macromol 2024; 283:137583. [PMID: 39577516 DOI: 10.1016/j.ijbiomac.2024.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Rabbit meat, recognized for its nutritional value, is gaining global attention. However, the inferior functional properties of rabbit myofibrillar proteins lead to quality degradation during the production process. Glycosylation represents an effective method for enhancing protein functionality. This study investigated the glycosylation modification of rabbit myofibrillar proteins. The results demonstrated that solubility of glucose-glycosylated products increased by 34 %, while the reduction capacity improved from 0.15 mg/mL to 1.6 mg/mL. The·OH free radical scavenging ability increased from 63.94 % to 94.21 %. β-Glucan-glycosylated products exhibited the highest thermal stability, and their DPPH free radical scavenging rate increased from 19.68 % to 76.21 %. Glycosylation also induced changes in protein conformation, characterized by a 10-30 °C increase in thermal denaturation peak temperature, gradual attenuation of endogenous fluorescence intensity, gradual enhancement of λmax redshift, and a 30-40 % decrease in surface hydrophobicity. Molecular docking simulations revealed that the primary interactions between glucose, lactose, and β-Glucan with myofibrillar proteins involve hydrogen bonds and van der Waals forces. In conclusion, glycosylation can effectively improve the functional properties of proteins, contributing to the development and production of high-quality, stable, and nutritious rabbit meat products.
Collapse
Affiliation(s)
- Ruiqi Cao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Zhu
- Chongqing General Station of Animal Husbandry Technology Extension, Chongqing 401331, PR China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
8
|
Han X, Li Y, Wang Y, Wang J, Teng W, Dong L, Cai Y, Cao J, Zhang Y. Exploration on antifreeze potential of thawed drip enzymatic hydrolysates on myofibrillar proteins in pork patties during freeze-thaw cycles. Food Chem 2024; 467:142248. [PMID: 39631352 DOI: 10.1016/j.foodchem.2024.142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/25/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
This study explored using small molecular weight hydrolysates from enzymolyzed thawed drip as cryoprotectants to preserve myofibrillar protein quality in pork patties during freeze-thaw cycles. Hydrolysates were added at 0.36 %, 0.72 %, and 1.4 % concentrations, compared to a control with deionized water and a positive control with sorbitol and sucrose. Results indicated that thawed drip hydrolysates significantly reduced thawing loss and cooking loss. Moreover, the color deterioration during the 3rd and 6th freeze-thaw cycles was delayed. Myofibrillar protein denaturation and oxidation in the experimental groups were inhibited, shown by decreased surface hydrophobicity, reduced carbonyl groups and protein surface roughness, and increased free sulfhydryl groups, α-helix content, and protein particle height. The highest hydrolysate concentration (1.4 %) provided the most benefits, performing comparably to the positive control. Correlation analysis confirmed that hydrolysates enhanced both myofibrillar protein and pork quality, offering a promising approach to improve meat resilience against freeze-thaw conditions.
Collapse
Affiliation(s)
- Xiaoyu Han
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yang Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Longlong Dong
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi, 276036, Shandong, China
| | - Yuling Cai
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi, 276036, Shandong, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
9
|
Wang K, Sun H, Wang J, Cui Z, Hou J, Lu F, Liu Y. Mechanism on microbial transglutaminase and Tremella fuciformis polysaccharide-mediated modification of lactoferrin: Development of functional food. Food Chem 2024; 454:139835. [PMID: 38815323 DOI: 10.1016/j.foodchem.2024.139835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Lactoferrin (LF) with various biological functions demonstrates great application potential. However, its application was restricted by its poor gelation and instability. The aim of this work was to explore the effect of microbial transglutaminase (MTGase) and Tremella fuciformis polysaccharide (TP) on the functional properties of LF. The formation of a self-supporting LF gel could be induced by MTGase through generating covalent crosslinks between the LF protein molecules. Meanwhile, TP was introduced into the gel system to improve the strength of LF-TP composite gels by enhancing non-covalent interactions such as hydrogen bond and electrostatic interactions during gel formation. Additionally, the LF-TP composite gel exhibited outstanding functional characteristics such as gastrointestinal digestive stability and antioxidant property. This work clarified the mechanism on MTGase and TP-mediated modification of lactoferrin, offered a novel strategy to increase the functional characteristics of LF, and enlarged the application range of LF and TP.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
10
|
Li W, Zhou Q, Xu J, Zhu S, Lv S, Yu Z, Yang Y, Liu Y, Zhou Y, Sui X, Zhang Q, Xiao Y. Insight into the solubilization mechanism of wheat gluten by protease modification from conformational change and molecular interaction perspective. Food Chem 2024; 447:138992. [PMID: 38503066 DOI: 10.1016/j.foodchem.2024.138992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of β-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.
Collapse
Affiliation(s)
- Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianxia Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shanlong Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sixu Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yin Yang
- Anhui Bi Lv Chun Biotechnology Co., Ltd., Chuzhou 239200, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qiang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Wang X, Li M, Shi T, Monto AR, Yuan L, Jin W, Gao R. Enhancement of the gelling properties of Aristichthys nobilis: Insights into intermolecular interactions between okra polysaccharide and myofibrillar protein. Curr Res Food Sci 2024; 9:100814. [PMID: 39156984 PMCID: PMC11327547 DOI: 10.1016/j.crfs.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The effects of various contents of okra polysaccharide (OP) (0%-1%) on myofibrillar protein (MP) gelation and the interaction mechanism between OP and MP were investigated. OP improved the gelling properties of MP with an additive limitation of 0.75%. Rheological analysis demonstrated that the addition of OP enhanced the interactions between MPs, resulting in a denser intermolecular gel network structure. The addition of OP shifted the I850/I830 of Fourier transform infrared spectroscopy, indicating that hydrogen bonds were formed between OP and MP. Adding OP promoted the transition from α-helix to β-sheet in the MP. OP exposed the hydrophobic groups of MPs and increased the number of hydrophobic interactions between them, favoring the formation of a dense gel network. Molecular docking predicted that hydrogen bonds were the main force involved in the binding of OP and MP. Moderate OP promoted the aggregation of MPs and improved their functional properties, facilitating heat-induced gelation.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Mengzhe Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
12
|
Li J, Yue X, Zhang X, Chen B, Han Y, Zhao J, Bai Y. Effect of deacetylated konjac glucomannan on the 3D printing properties of minced pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5274-5283. [PMID: 38334358 DOI: 10.1002/jsfa.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The influences of deacetylated konjac glucomannan (DKGM) at different condition levels (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) on the 3D printing feasibility, printing properties, and the final gel characteristics of minced pork were investigated. RESULTS As the DKGM content increased, the printing accuracy and stability initially increased and then declined, and the printing stability and accuracy increased to their highest levels (98.16% and 98.85%) with a 1.5% addition of DKGM. Furthermore, the addition of DKGM significantly enhanced the texture of 3D-printed meat after heat treatments. When the DKGM content reached 1.5%, the hardness and springiness were 1.19 and 1.06 times higher than those of the control group. The results of low-field nuclear magnetic resonance and Raman spectra revealed that DKGM enhanced the amount of bound water in 3D-printed meat and encouraged changes in protein structure. After the addition of DKGM at 1.5%, the contents of bound water and β-sheets were 7.67% and 12.89% higher than those of the control group, respectively, facilitating the development of a better gel network of minced meat during heating. CONCLUSION The results indicate that a concentration of 1.5% DKGM is the ideal setting for obtaining the desired rheological properties and textural characteristics (printability) of 3D-printed minced meat products compared to other samples. In addition, the results showed that the addition of DKGM at 1.5% promotes the transition from α-helix to β-folding of proteins during heating, which facilitates the formation of gels. The results of the study contribute to the application potential of minced meat in the field of 3D food printing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Xiaonan Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Xuyue Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| | - Ying Han
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Jiansheng Zhao
- Henan Shuanghui Investment & Development Co., Ltd, Luohe, PR China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, PR China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe, PR China
| |
Collapse
|
13
|
Huang X, Xia B, Liu Y, Wang C. Non-covalent interactions between rice protein and three polyphenols and potential application in emulsions. Food Chem X 2024; 22:101459. [PMID: 38803669 PMCID: PMC11129171 DOI: 10.1016/j.fochx.2024.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Rice protein (RP) and polyphenols are often used in functional foods. This study investigated the non-covalent interactions between RP and three polyphenols (curcumin, CUR; quercetin, QUE; resveratrol, RES) and used the complexes as emulsifiers to create emulsions. Three polyphenols interacted with RP to varying extents, with QUE showing the greatest binding affinity and inducing the greatest alterations in its secondary structure. Molecular docking analysis elucidated the driving forces between them including hydrophobic interactions, hydrogen bonding, and van der Waals forces. Combination with QUE or RES induced structural changes of RP, increasing particle size of complexes. The synergistic effect of polyphenols and protein also enhanced radical scavenging capacity of complexes. Compared to pure protein, all complexes successfully created emulsions with smaller particle size (378-395 nm vs. 470 nm), higher absolute potential (37.43-38.26 mV vs. 35.62 mV), and greater lipid oxidation stability by altering protein conformation.
Collapse
Affiliation(s)
- Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxuan Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
14
|
Wang K, Sun H, Cui Z, Wang J, Hou J, Lu F, Liu Y. Lactoferrin-Chitosan Composite Hydrogels Induced by Microbial Transglutaminase: Potential Delivery Systems for Thermosensitive Bioactive Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14302-14314. [PMID: 38865607 DOI: 10.1021/acs.jafc.4c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this work, lactoferrin (LF)-chitosan (CS) composite hydrogels with good loading capacity of thermosensitive bioactive substances were successfully obtained by microbial transglutaminase (MTG)-induced cross-linking. We evaluated the rheological, textural, and microstructural characteristics of the composite hydrogels under different conditions. The results demonstrated that the concentrations of LF and CS as well as the amount of MTG could regulate the textural properties, rheological properties, and water holding capability. The results of FTIR and fluorescence spectroscopy indicated that the main interactions within the composite gel were hydrogen and isopeptide bonds. Additionally, in vitro digestion simulation results verified that riboflavin kept stable in stomach due to the protection of LF-CS composite hydrogels and was released in small intestine. These results suggested that thermosensitive bioactive substance could be encapsulated and delivered by the LF-CS composite hydrogel, which could be applied in lots of potential applications in functional food as a new material.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
15
|
Liu J, Yang K, Wu D, Gong H, Guo L, Ma J, Sun W. Study on the interaction and gel properties of pork myofibrillar protein with konjac polysaccharides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2284-2293. [PMID: 37950529 DOI: 10.1002/jsfa.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Natural myofibrillar protein (MP) is sensitive to changes in the microenvironment, such as pH and ionic strength, and therefore can adversely affect the final quality of meat products. The aim of this study was to modify natural MP as well as to improve its functional properties. Therefore, the quality improvement effect of konjac polysaccharides with different concentrations (0, 1.5, 3, 4.5 and 6 g kg-1 protein) on MP gels was investigated. RESULTS With a concentration of konjac polysaccharides of 6 g kg-1 protein, the composite gel obtained exhibited a significant improvement of water binding (water holding capacity increased by 7.71%) and textural performance (strength increased from 29.12 to 37.55 N mm, an increase of 8.43 N mm). Meanwhile, konjac polysaccharides could help to form more disulfide bonds and non-disulfide covalent bonds, which enhanced the crosslinking of MP and maintained the MP gel network structure. Then, with the preservation of α-helix structure (a significant increase of 8.11%), slower protein aggregation and formation of small aggregates, this supported the formation of a fine and homogeneous network structure and allowed a reduction in water mobility. CONCLUSION During the heating process, konjac polysaccharides could absorb the surrounding water and fill the gel system, which resulted in an increase in the water content of the gel network and enhanced the gel-forming ability of the gel. Meanwhile, konjac polysaccharides might inhibit irregular aggregation of proteins and promote the formation of small aggregates, which in turn form a homogeneous and continuous gel matrix by orderly arrangement. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyang Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, China
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Linxiao Guo
- College of Marxism, Yangtze University, Jingzhou, China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Basak S, Singhal RS. Inclusion of konjac glucomannan in pea protein hydrogels improved the rheological and in vitro release properties of the composite hydrogels. Int J Biol Macromol 2024; 257:128689. [PMID: 38092100 DOI: 10.1016/j.ijbiomac.2023.128689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
In this study, a composite hydrogel consisting of pea protein and konjac glucomannan (KG) was fabricated using three approaches, namely neutral, salt-set, and alkaline gelation. Hydrogels made from pea protein were brittle and weak. The addition of KG improved the elasticity and water holding capacity of the pea protein hydrogels. Concomitantly, a decrease in syneresis rate and swelling of the composite hydrogels was observed. The alkaline-set hydrogels exhibited the highest resilience to strain. Thixotropicity was found to be less pronounced for salt-set hydrogels. Sulphate had a greater positive effect on the structural recovery and negative effect on hysteresis area than chloride due to the greater salting-out effect of the sulphates. The addition of KG facilitated the formation of an interconnected structure with limited mobility of biopolymer chains. A sharp increase in G' and G" during the temperature ramp indicated the predominance of hydrophobic interactions towards the aggregation of biopolymers. The infrared spectra of the hydrogels revealed a change in secondary structure of proteins on addition of KG. A controlled in vitro release of riboflavin was observed in neutral and salt-set hydrogels. The alkaline-set hydrogels exhibited a prolonged gastric retention time, thereby establishing in vitro antacid activity in the gastric environment.
Collapse
Affiliation(s)
- Somnath Basak
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
17
|
He Y, Huang Y, Zhu X, Guo R, Wang Z, Lei W, Xia X. Investigation of the effect and mechanism of nanocellulose on soy protein isolate- konjac glucomannan composite hydrogel system. Int J Biol Macromol 2024; 254:127943. [PMID: 37951435 DOI: 10.1016/j.ijbiomac.2023.127943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
To enrich the application of nanocomposite hydrogels, we introduced two types of nanocellulose (CNC, cellulose nanocrystals; CNF, cellulose nanofibers) into the soy protein isolate(SPI)- konjac glucomannan (KGM) composite hydrogel system, respectively. The similarities and differences between the two types of nanocellulose as textural improvers of composite gels were successfully explored, and a model was developed to elaborate their interaction mechanisms. Appropriate levels of CNC (1.0 %) and CNF (0.75 %) prolonged SPI denaturation within the system, exposed more buried functional groups, improved molecular interactions, and strengthened the honeycomb structural skeleton formed by KGM. The addition of CNC resulted in greater gel strength (SKC1 2708.53 g vs. Control 810.35 g), while the addition of CNF improved the elasticity (SKF0.75 1940.24 g vs. Control 405.34 g). This was mainly attributed to the reinforcement of the honeycomb-structured, water binding and trapping, and the synergistic effect of covalent (disulfide bonds) and non-covalent interactions (hydrogen bonds, ionic bonds) within the gel network. However, the balance and interactions between proteins and polysaccharides were disrupted in the composite system with excessive CNF addition (≥0.75 %), which broken the stability of the honeycomb-like structure. We expect this study will draw attention on potential applications of CNC and CNF in protein-polysaccharide binary systems and facilitate the creation of novel, superior, mechanically strength-regulated nanofiber composite gels.
Collapse
Affiliation(s)
- Yang He
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Ruqi Guo
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Zihan Wang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Wenhua Lei
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiaoyu Xia
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
18
|
Chen H, Zou Y, Zhou A, Liu X, Benjakul S. Elucidating the molecular mechanism of water migration in myosin gels of Nemipterus virgatus during low pressure coupled with heat treatment. Int J Biol Macromol 2023; 253:126815. [PMID: 37690646 DOI: 10.1016/j.ijbiomac.2023.126815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The relationship between myosin denaturation, aggregation and water migration in Nemipterus virgatus myosin gels with different treatment processes under optimal low pressure coupled with heat treatment was investigated to clarify the molecular mechanism of water migration. With the different treatment processes, the proportion of bound water of the myosin gels increased significantly (P < 0.05). Denaturation of myosin S1 sub-fragments and α-helical unfolding during different treatment processes led to an increase in β-sheets content. These promote increased exposure of Try residues and hydrophobic groups of myosin, formation of clathrate hydrates, and reduced mobility of bound water. Furthermore, hydrophobic interactions and disulfide bonds caused the head-head and head-hinge to coalesce into a 3D honeycomb network with greater fractal dimension, less lacunarity, smaller water hole diameter and more water holes. This increased the capillary pressure experienced by the bound water, causing immobile water to migrate towards the bound water. The present study may be necessary to improve the mechanism of water migration in protein gel systems and to promote the industrial application of high pressure processing technology in surimi-based foods.
Collapse
Affiliation(s)
- Haiqiang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China
| | - Yiqian Zou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Aimei Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojuan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
19
|
Li Y, Guo J, Wang Y, Zhang F, Chen S, Hu Y, Zhou M. Effects of hydrocolloids as fat-replacers on the physicochemical and structural properties of salt-soluble protein isolated from water-boiled pork meatballs. Meat Sci 2023; 204:109280. [PMID: 37453293 DOI: 10.1016/j.meatsci.2023.109280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Konjac glucomannan (KGM), xanthan gum (XG), guar gum (GG), and κ-carrageenan (KC), as substituent, are commonly used in ground pork products. Here, the content of these (0.5, 1.0, 1.5, and 2.0%, w/w) on the gel properties, thermal properties, and interaction forces of salt-soluble protein (SSP) isolated from water-boiled pork meatballs were investigated. We found 1.0% KGM, 0.5% XG, 0.5-2.0% GG, and 0.5-2.0% KC to water-boiled pork meatballs exerted a positive effect on the denaturation temperature, hydrogen bonds, hydrophobic interactions, disulfide bonds, α-helix, and β-sheet content of SSP, as well as the strength and storage modulus of the modified protein gel. The addition of these hydrocolloids with the addition of 1.0% aggregated myosin and actin, led to the enhancement of the bands corresponding to myosin heavy chain and actin. The prediction model of gel strength showed that the gel strength was negatively correlated with Tpeak1, Tpeak2, and ionic bond. This study provides theoretical guidance for improving the application of hydrocolloids in pork-based foods.
Collapse
Affiliation(s)
- Yanhui Li
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China.
| | - Yingying Wang
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Fan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Shuxing Chen
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China; Food Laboratory of Zhongyuan, 462000 Luohe, Henan, China
| | - Yuxi Hu
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| | - Mingyi Zhou
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, Henan, PR China
| |
Collapse
|
20
|
Chen R, Jin H, Pan J, Zeng Q, Lv X, Xia J, Ma J, Shi M, Jin Y. Underlying mechanisms of egg white thinning in hot spring eggs during storage: Weak gel properties and quantitative proteome analysis. Food Res Int 2023; 172:113157. [PMID: 37689846 DOI: 10.1016/j.foodres.2023.113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
As a weakly gelling protein, hot spring egg white underwent thinning during storage. This study explored the mechanism of thinning in hot spring egg white from the perspective of "gel structure and protein composition" using quantitative proteomics, SEM, SDS-PAGE, and other techniques. Quantitative proteomics analysis showed that there were 81 (44 up-regulated and 21 down-regulated) key proteins related to thinning of hot spring egg white. The changes in the relative abundance of proteins such as ovalbumin-related Y, mucin-6, lysozyme, ovomucoid, and ovotransferrin might be important reasons for thinning in hot spring egg white. SEM results indicated that the gel network gradually became regular and uniform, with large pores appearing on the cross-section and being pierced. Along with the decrease in intermolecular electrostatic repulsion, protein molecules gradually aggregated. The particle size gradually increased from 139.1 nm to 422.5 nm. Meanwhile, the surface hydrophobicity, and disulfide bond content gradually increased. These changes might be the reasons for thinning in hot spring egg white during storage. It can provide a new perspective for studying the thinning mechanism of weakly gelling egg whites.
Collapse
Affiliation(s)
- Rong Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajing Pan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyu Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manqi Shi
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Chen Z, Li Y, Wang H, Tian H, Feng X, Tan L, Liu X. Synergistic effects of oxidized konjac glucomannan on rheological, thermal and structural properties of gluten protein. Int J Biol Macromol 2023; 248:125598. [PMID: 37423447 DOI: 10.1016/j.ijbiomac.2023.125598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Oxidation is an effective way to prepare depolymerized konjac glucomannan (KGM). The oxidized KGM (OKGM) differed from native KGM in physicochemical properties due to different molecular structure. In this study, the effects of OKGM on the properties of gluten protein were investigated and compared with native KGM (NKGM) and enzymatic hydrolysis KGM (EKGM). Results showed that the OKGM with a low molecular weight and viscosity could improve rheological properties and enhance thermal stability. Compared to native gluten protein (NGP), OKGM stabilized the protein secondary structure by increasing the contents of β-sheet and α-helix, and improved the tertiary structure through increasing the disulfide bonds. The compact holes with shrunk pore size confirmed a stronger interaction between OKGM and gluten protein through scanning electron microscopy, forming a highly networked gluten structure. Furthermore, OKGM depolymerized by the moderate ozone-microwave treatment of 40 min had a higher effect on gluten proteins than that by the 100 min treatment, demonstrating that the excessive degradation of KGM weakened the interaction between the gluten protein and OKGM. These findings demonstrated that incorporating moderately oxidized KGM into gluten protein was an effective strategy to improve the properties of gluten protein.
Collapse
Affiliation(s)
- Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Yao Li
- College of Food Science, Southwest University, Chongqing 400715, China; College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hui Wang
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Hongmei Tian
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xin Feng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lulin Tan
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Hu Q, Ma F, Wei H, Yang W, Deng S, Yu X, Huang T. Comparative investigation of various modification methods on Trachypenaeus Curvirostris surimi gel: Gelling properties, rheological behaviors and structure characteristics. J Texture Stud 2023; 54:582-594. [PMID: 37400374 DOI: 10.1111/jtxs.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
The aim of this study was to compare the investigations of various contents of egg white protein (2.0%-8.0%, EWP), microbial transglutaminase (0.1%-0.4%, MTGase), and konjac glucomannan (0.5%-2.0%, KGM) on the gelling properties and rheological behavior of Trachypenaeus Curvirostris shrimp surimi gel (SSG), and assessed the modification mechanisms through the analysis of structure characteristics. The findings suggested that all modified SSG samples (expect SSG-KGM2.0% ) had the higher gelling properties and the denser network structure than those of unmodified SSG. Meanwhile, EWP could give SSG a better appearance than MTGase and KGM. Rheological results showed that SSG-EWP6% and SSG-KGM1.0% had the highest G' and G″, demonstrating that the formation of higher levels of elasticity and hardness. All modifications could increase gelation rates of SSG along with the reduction of G″ during the degeneration of protein. According to the FTIR results, three modification methods changed SSG protein conformation with the increasing α-helix and β-sheet contents and the decreasing of random coil content. LF-NMR results indicated that more free water could be transformed into immobilized water in the modified SSG gels, which contributed to improve the gelling properties. Furthermore, molecular forces showed that EWP and KGM could further increase the hydrogen bonds and hydrophobic interaction in SSG gels, while MTGase could induce the formation of more disulfide bonds. Thus, compared with another two modifications, EWP modified SSG gels showed the highest gelling properties.
Collapse
Affiliation(s)
- Qiuyue Hu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Fuhao Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xunxin Yu
- Zhejiang Tianhe Aquatic Products Co., Ltd., Wenling, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo, China
| |
Collapse
|
23
|
Yuan D, Liang X, Kong B, Sun F, Li X, Cao C, Liu Q. In-Depth Insight into the Mechanism of Incorporation of Abelmoschus manihot Gum on the Enhancement of Gel Properties and In Vitro Digestibility of Frankfurters. Foods 2023; 12:foods12071507. [PMID: 37048328 PMCID: PMC10094229 DOI: 10.3390/foods12071507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to investigate the effects of different concentrations (0.1, 0.2, 0.3, 0.4, and 0.5% w/w) of Abelmoschus manihot gum (AMG) on the gel properties and in vitro digestibility of frankfurters. The results indicated that AMG incorporation significantly enhanced the emulsion stability and texture of frankfurters, as well as the dynamic rheological characteristics of raw meat batter, with the optimal concentration being 0.3% (p < 0.05). Furthermore, hydrogen bonds and disulphide bonds were the main molecular forces of the frankfurters in the presence of AMG. Microstructural images showed that more uniform and dense microstructures of frankfurters were formed due to AMG supplementation. In addition, AMG incorporation significantly increased the in vitro protein digestibility of frankfurters as the level of addition increased (p < 0.05). In conclusion, our results provided critical information for the practical application of AMG in the production of emulsified meat products.
Collapse
Affiliation(s)
- Dongxue Yuan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
| |
Collapse
|
24
|
Guan H, Tian Y, Liu D, Diao X, Feng C, Xu X. Impacts of soybean protein isolate hydrolysates produced at high hydrostatic pressure on gelling properties, structural characteristics, and molecular forces of myofibrillar protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2752-2761. [PMID: 36273266 DOI: 10.1002/jsfa.12290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soybean protein isolate hydrolysates (SPIHs) produced at high hydrostatic pressure have higher bioactivity. The aim of the study was to analyze the effects of different SPIH concentrations obtained under various pressures (0.1, 100, 200, and 300 MPa) on gelling properties, structural characteristics, and main forces of myofibrillar protein (MP) in MP-SPIH plural gels. RESULTS The MP-SPIH plural gel with 3% SPIH produced under 200 MPa had the maximum gel strength (0.42 N) and water holding capacity (53.69%). A decline in thermal stability and a rise in storage modulus (G') of MP-SPIH plural gels were found with increased SPIH pressure and concentration. Additionally, the addition of SPIHs increased the amounts of α-helix and β-sheet, decreased random coil structural content of MP in MP-SPIH plural gels, and facilitated the generation of a denser and uniform gels network. The molecular forces in MP-SPIH plural gels were mainly hydrophobic interaction and hydrogen bond. CONCLUSION This study showed that the interaction of MP with 3% SPIH obtained at 200 MPa improved the quality of plural gels. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haining Guan
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Jinzhou, China
| | - Yanli Tian
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Jinzhou, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Jinzhou, China
| | - Xiaoqin Diao
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Jinzhou, China
| | - Chunmei Feng
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Jinzhou, China
| | - Xiaojun Xu
- College of Food Science and Technology, Bohai University, National and Local Joint Engineering Research Center of Storage, Jinzhou, China
| |
Collapse
|
25
|
Su X, Cui W, Zhang Z, Zhang J, Zhou H, Zhou K, Xu Y, Wang Z, Xu B. Effects of L-lysine and L-arginine on the structure and gel properties of konjac glucomannan. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Li Y, Li Y, Zhao N, Shi D, Yi S, Li J. Insights into the interaction mechanism of acid phosphatase from Lateolabrax japonicus livers and rosmarinic acid using multispectroscopy and molecular docking. Food Chem 2023; 418:135945. [PMID: 36989640 DOI: 10.1016/j.foodchem.2023.135945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023]
Abstract
Acid phosphatase (ACP) is a key enzyme that hydrolyzes inosinic acid. The mechanisms underlying the interaction between rosmarinic acid (RA) and ACP and the inhibition of the enzyme were investigated using inhibition kinetics, UV-visible and fluorescence spectroscopy, circular dichroism, and molecular docking. The results showed that RA was a reversible inhibitor of ACP and that the inhibition mechanism was uncompetitive. The ACP fluorescence was quenched by RA, and the quenching mode was static. The interaction of ACP with RA was driven by H bonds and van der Waals forces. The addition of RA increased the α-helix content and decreased the β-sheet, β-turn, and random coil contents in ACP, thereby altering the secondary structure of the enzyme. This study enriched our understanding of inhibitory and interaction mechanisms involving ACP and RA.
Collapse
|
27
|
Lv Y, Xu L, Tang T, Li J, Gu L, Chang C, Zhang M, Yang Y, Su Y. Gel properties of soy protein isolate-potato protein-egg white composite gel: Study on rheological properties, microstructure, and digestibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Long K, Zhang T, Park JW, Park J, Yin T. Effect of modified washing process on water usage, composition and gelling properties of grass carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7136-7143. [PMID: 35715889 DOI: 10.1002/jsfa.12079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Washing is an essential process in surimi production, from which a large amount of wastewater is generated. Due to the increasing pressure of environmental protection, it is an urgent technical requirement for surimi manufacturers to reduce water usage while maintaining the quality of surimi. In this study, composition, structure and gelling properties of grass carp surimi prepared with a modified washing process (MWP) were investigated. Intermediate dehydration with various compression ratios were utilized between two washing cycles. RESULTS Water usage and wastewater discharge were reduced significantly by 33% and 38%, respectively, when MWP was applied. As the compression ratio increased, composition of fat, cathepsins, transglutaminase and heme proteins in surimi decreased gradually. Yield, protein content and the major protein pattern of surimi were not changed, but surface hydrophobicity gradually decreased. As the compression rate increased to 1:2.0, textural values and water holding capacity of the corresponding surimi gel decreased gradually, while whiteness increased and then remained unchanged. At a higher compression ratio (>1:1.5), aggregated network and excessive free water were observed in the surimi gel. Composition and gelling properties of the MWP surimi with a compression ratio of 1:1.2-1:1.5 were equal to those of the surimi prepared under conventional three-cycle washing. CONCLUSION Results indicated that MWP demonstrated its great potential in surimi production by dramatically reducing the usage of cold water and discharge of wastewater without scarifying surimi quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangyuan Long
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Tonghao Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jae W Park
- Oregon State University Seafood Research and Education Center, Astoria, Oregon, USA
| | | | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, PR China
| |
Collapse
|
29
|
Promoted strain-hardening and crystallinity of a soy protein-konjac glucomannan complex gel by konjac glucomannan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Lee MH, In Yong H, Kim YJ, Choi YS. High-pressure induced structural modification of porcine myofibrillar protein and its relation to rheological and emulsifying properties. Meat Sci 2022; 196:109032. [DOI: 10.1016/j.meatsci.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
31
|
Konjac glucomannan improves the gel properties of low salt myofibrillar protein through modifying protein conformation. Food Chem 2022; 393:133400. [PMID: 35688089 DOI: 10.1016/j.foodchem.2022.133400] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
Improving the characteristics of low salt proteins is the key to the gel properties of low-salt meat products which are demanded by people nowadays. The present study focused on the effects of KGM concentrations on the changes in structure and gelling properties of low-salt myofibrillar protein (MP). KGM addition (≤0.75 %) irrespective of salt concentration modified secondary and tertiary structures of MPs, enhanced the binding capacity of Troponin-T and Tropomyosin, augmented the gelling behavior of proteins, and remarkably improved the storage modulus (G') and gel strength of heat-induced MP gels. Interestingly, KGM addition in low salt condition showed the transformation of the all-gauche SS conformation into gauche-gauche-trans and trans-gauche-trans, and the partial transformation of α-helices into β-sheets. overall, KGM modified the structure of low salt MPs and thus improved the gel properties of low salt MPs. Therefore, KGM is recommended for low-salt meat processing to enhance the MP gelling potential.
Collapse
|
32
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
33
|
Chen X, Dai Y, Huang Z, Zhao L, Du J, Li W, Yu D. Effect of ultrasound on the glycosylation reaction of pea protein isolate-arabinose: Structure and emulsifying properties. ULTRASONICS SONOCHEMISTRY 2022; 89:106157. [PMID: 36088895 PMCID: PMC9474918 DOI: 10.1016/j.ultsonch.2022.106157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/26/2023]
Abstract
This study investigated the effects of different ultrasonic power and ultrasonic time on the structure and emulsifying properties of pea protein isolate (PPI)-arabinose conjugates. An examination of the absorbance and color development of PPI-d-arabinose (Ara) conjugates found that compared with traditional heating, the degree of glycosylation of protein reached the maximum when the ultrasonic treatment power was 150 and the treatment time was 30 min. Structural analysis revealed that the content of disordered structures (β-turn and random coil) of the protein conjugates increased, the maximum emission wavelength of the fluorescence spectrum was red-shifted, and the UV second-order derivative values decreased. The protein structure unfolded, exposing more hydrophobic groups on the molecular surface. Ultrasonic treatment improved the emulsification of protein conjugates. The emulsifying activity index (EAI) increased to 19.7 and 19.3 m2/g, and the emulsifying stability index (ESI) also increased. The contact angle and zeta potential also demonstrate that ultrasonic power has a positive effect on emulsion stability. Based on examining the thermal stability of the emulsion, the ultrasonic treatment increased the thermal denaturation resistance of the protein. This result confirms that mild sonication can increase the degree of glycosylation reaction and improve the emulsification properties of protein-Ara conjugates, providing a theoretical basis for developing foods with excellent emulsification properties.
Collapse
Affiliation(s)
- Xing Chen
- Northeast Agricultural University, Harbin, 150030, China
| | - Yajie Dai
- Northeast Agricultural University, Harbin, 150030, China
| | - Zhe Huang
- Northeast Agricultural University, Harbin, 150030, China
| | - Linwei Zhao
- Northeast Agricultural University, Harbin, 150030, China
| | - Jing Du
- Northeast Agricultural University, Harbin, 150030, China
| | - Wei Li
- Northeast Agricultural University, Harbin, 150030, China
| | - Dianyu Yu
- Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
34
|
Cao C, Yuan D, Kong B, Chen Q, He J, Liu Q. Effect of different κ-carrageenan incorporation forms on the gel properties and in vitro digestibility of frankfurters. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Hoque M, McDonagh C, Tiwari BK, Kerry JP, Pathania S. Effect of High-Pressure Processing on the Packaging Properties of Biopolymer-Based Films: A Review. Polymers (Basel) 2022; 14:polym14153009. [PMID: 35893971 PMCID: PMC9331499 DOI: 10.3390/polym14153009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Suitable packaging material in combination with high-pressure processing (HPP) can retain nutritional and organoleptic qualities besides extending the product’s shelf life of food products. However, the selection of appropriate packaging materials suitable for HPP is tremendously important because harsh environments like high pressure and high temperature during the processing can result in deviation in the visual and functional properties of the packaging materials. Traditionally, fossil-based plastic packaging is preferred for the HPP of food products, but these materials are of serious concern to the environment. Therefore, bio-based packaging systems are proposed to be a promising alternative to fossil-based plastic packaging. Some studies have scrutinized the impact of HPP on the functional properties of biopolymer-based packaging materials. This review summarizes the HPP application on biopolymer-based film-forming solutions and pre-formed biopolymer-based films. The impact of HPP on the key packaging properties such as structural, mechanical, thermal, and barrier properties in addition to the migration of additives from the packaging material into food products were systemically analyzed. HPP can be applied either to the film-forming solution or preformed packages. Structural, mechanical, hydrophobic, barrier, and thermal characteristics of the films are enhanced when the film-forming solution is exposed to HPP overcoming the shortcomings of the native biopolymers-based film. Also, biopolymer-based packaging mostly PLA based when exposed to HPP at low temperature showed no significant deviation in packaging properties indicating the suitability of their applications. HPP may induce the migration of packaging additives and thus should be thoroughly studied. Overall, HPP can be one way to enhance the properties of biopolymer-based films and can also be used for packaging food materials intended for HPP.
Collapse
Affiliation(s)
- Monjurul Hoque
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (M.H.); (C.M.)
- School of Food and Nutritional Sciences, University College Cork, T12 R229 Cork, Ireland;
| | - Ciara McDonagh
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (M.H.); (C.M.)
| | - Brijesh K. Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Joseph P. Kerry
- School of Food and Nutritional Sciences, University College Cork, T12 R229 Cork, Ireland;
| | - Shivani Pathania
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (M.H.); (C.M.)
- Correspondence:
| |
Collapse
|
36
|
Zhou A, Chen H, Zou Y, Liu X, Benjakul S. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration. Food Res Int 2022; 157:111230. [DOI: 10.1016/j.foodres.2022.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
|
37
|
Han G, Xu J, Chen Q, Xia X, Liu H, Kong B. Improving the solubility of myofibrillar proteins in water by destroying and suppressing myosin molecular assembly via glycation. Food Chem 2022; 395:133590. [PMID: 35779510 DOI: 10.1016/j.foodchem.2022.133590] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/04/2022] [Accepted: 06/26/2022] [Indexed: 11/04/2022]
Abstract
Filamentous myosin is a self-assembling polymer that prevents myofibrillar proteins (MPs) from functioning in low ionic strength media. This study was aimed at investigating if glycation has the potential to improve the solubility of MPs in water. MPs were conjugated with monosaccharides, oligosaccharides, and polysaccharides under wet reaction conditions at 37 °C. The conjugation was verified by SDS-PAGE, FT-IR and amino acid analyses. MPs conjugated with dextran (DX) exhibited a higher solubility and dispersion stability in water, which corresponded to smaller particle size and more uniform distribution (P < 0.05). According to secondary and tertiary structure analyses, the loss of α-helix structures and unfolding of the MPs appear to be the main reasons for MP solubilization. Additionally, according to the zeta-potential, confocal laser scanning microscopy, and atomic force microscopy observation results, glycation can provide electrostatic repulsion or steric hindrance to disintegrate existing filamentous myosin aggregates and inhibit further self-assembly behavior.
Collapse
Affiliation(s)
- Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jianhang Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
38
|
Aanisah N, Wardhana YW, Chaerunisaa AY, Budiman A. Review on Modification of Glucomannan as an Excipient in Solid Dosage Forms. Polymers (Basel) 2022; 14:2550. [PMID: 35808596 PMCID: PMC9269564 DOI: 10.3390/polym14132550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023] Open
Abstract
Glucomannan (GM)-a polysaccharide generally extracted from the tuber of Amorphophallus konjac-has great potential as a filler-binder in direct compression, disintegrant in tablets, or gelling agent due to its strong hydrophilicity and extremely high viscosity. However, it has poor water resistance and low mechanical strength when used as an excipient in solid form. Several physical and chemical modifications have been carried out to improve these drawbacks. Chemical modification affects the characteristics of GM based on the DS. Carboxymethylation improves GM functionality by modifying its solubility and viscosity, which in turn allows it to bind water more efficiently and thus improve its elongation and gel homogeneity. Meanwhile, physical modification enhances functionality through combination with other excipients to improve mechanical properties and modify swelling ability and drug release from the matrix. This review discusses extraction of GM and its modification to enhance its applicability as an excipient in solid form. Modified GM is a novel excipient applicable in the pharmaceutical industry for direct compression, as a tablet disintegrant, a film-forming agent, and for encapsulation of macromolecular compounds or drug carriers for controlled release.
Collapse
Affiliation(s)
- Nuur Aanisah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94118, Indonesia
| | - Yoga W. Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Study Center Development of Pharmaceutical Preparations, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Anis Y. Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Study Center Development of Pharmaceutical Preparations, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.A.); (A.Y.C.); (A.B.)
- Study Center Development of Pharmaceutical Preparations, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
39
|
Wang N, Hu L, Guo X, Zhao Y, Deng X, Lei Y, Zhang L, Zhang J. Effects of malondialdehyde on the protein oxidation and protein degradation of Coregonus Peled myofibrillar protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Zou PR, Hu F, Ni ZJ, Zhang F, Thakur K, Zhang JG, Wei ZJ. Effects of phosphorylation pretreatment and subsequent transglutaminase cross-linking on physicochemical, structural, and gel properties of wheat gluten. Food Chem 2022; 392:133296. [PMID: 35636191 DOI: 10.1016/j.foodchem.2022.133296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 05/21/2022] [Indexed: 01/10/2023]
Abstract
The presence of a large number of hydrophobic groups and non-polar amino acids in the wheat gluten (WG) is responsible for its poor water solubility, greatly limiting its industrial applications. Our results showed that the solubility and zeta potential of WG were significantly (P < 0.05) improved with the increasing concentration of sodium tripolyphosphate (STP), while the average particle size of WG was decreased. After WG was incubated with TGase, phosphorylation pretreatment significantly increased apparent viscosity of WG dispersant solution, suggesting that phosphorylation treatment promoted the generation of cross-linked polymers. In addition, phosphorylation pretreatment enhanced hydrophobic interactions and disulfide bond formation between TGase-induced WG gels, thus leading to a more homogeneous and dense three-dimensional network structure of gel, which was confirmed by SEM micrographs. To summarize, STP can be used as an effective additive for the modification of WG with an improved degree of TGase-mediated cross-linking for better rheological and gel properties.
Collapse
Affiliation(s)
- Peng-Ren Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| | - Zhi-Jing Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
41
|
Jiang Q, Wu W, Han J, Chung HY, Gao P, Yu D, Yu P, Xu Y, Xia W. Characteristics of silver carp surimi gel under high temperature (≥100 °C): quality changes, water distribution and protein pattern. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Food and Nutritional Sciences Programme School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Wenmin Wu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Jingwen Han
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme School of Life Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Peipei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
42
|
Li J, Zhang Q, Chang C, Gu L, Su Y, Yang Y, Han Q. The slow release behavior of soy protein isolate/κ-carrageenan composite hydrogel: Effect of konjac glucomannan. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Gao Y, Wang L, Qiu Y, Fan X, Zhang L, Yu Q. Valorization of Cattle Slaughtering Industry By-Products: Modification of the Functional Properties and Structural Characteristics of Cowhide Gelatin Induced by High Hydrostatic Pressure. Gels 2022; 8:gels8040243. [PMID: 35448144 PMCID: PMC9029605 DOI: 10.3390/gels8040243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigates the effects of different pressures (200, 250, 300, 350, and 400 MPa) and durations (5, 10, 15, 20, and 25 min) on the functional properties, secondary structure, and intermolecular forces of cowhide gelatin. Our results show that high hydrostatic pressure significantly affected the two, three, and four-level structures of gelatin and caused the contents of the α-helix and β-turn to decrease by 68.86% and 78.58%, respectively (p < 0.05). In particular, the gelatin at 300 MPa for 15 min had the highest gel strength, emulsification, solubility, and foaming of all the treatment conditions under study. The analysis of the surface hydrophobicity, sulfhydryl content, zeta potential, and Raman spectroscopy shows that at a pressure of 300 MPa (15 min), the hydrogen bonds and hydrophobic interactions between collagen molecules are strongly destroyed, leading to changes in the tertiary and quaternary conformation of the protein and unfolding, with the electrostatic repulsion between protein particles making the decentralized state stable. In conclusion, moderate pressure and time can significantly improve the functional and structural properties of collagen, which provides theoretical support and guidance for realizing the high-value utilization of cowhide.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- Correspondence: ; Tel.: +86-937-7631-201
| | | |
Collapse
|
44
|
Zhu X, Zhang J, Liu S, Gu Y, Yu X, Gao F, Wang R. Relationship between Molecular Structure and Heat-Induced Gel Properties of Duck Myofibrillar Proteins Affected by the Addition of Pea Protein Isolate. Foods 2022; 11:foods11071040. [PMID: 35407127 PMCID: PMC8997435 DOI: 10.3390/foods11071040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
This paper investigates the relationship between the molecular structure and thermally induced gel properties of duck myofibrillar protein isolate (DMPI) as influenced by the addition of pea protein isolate (PPI). The results showed that b* value of the gels increased; however, a* value decreased with the increase of PPI content (p < 0.05). The whiteness of the gels decreased significantly with the addition of pea protein compared with 0% vs. 0.5% addition. Nuclear magnetic resonance tests showed the area of immobilized water also increased with increasing PPI addition (0−2%), thus consistent with the increased water-holding capacity (p < 0.05). The penetration force of the gels increased with increasing PPI addition (p < 0.05), while the storage modulus and loss modulus of the gels were also found to increase, accompanied by the transformation of the α-helix structure into β-sheet, resulting in better dynamics of gel formation. These results indicated the gel-forming ability of DMPI, including water retention and textural properties, improves with increasing PPI addition. Principal component analysis verified these interrelationships. Thus, pea protein could improve the properties of duck myofibrillar protein gels to some extent and improve their microstructure, potentially facilitating the transition from a weak to a non-aggregated, rigid structure.
Collapse
Affiliation(s)
- Xueshen Zhu
- Key Lab of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (X.Z.); (J.Z.); (S.L.); (Y.G.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Zhang
- Key Lab of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (X.Z.); (J.Z.); (S.L.); (Y.G.)
| | - Shaohua Liu
- Key Lab of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (X.Z.); (J.Z.); (S.L.); (Y.G.)
| | - Ying Gu
- Key Lab of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (X.Z.); (J.Z.); (S.L.); (Y.G.)
| | - Xiaobo Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Feng Gao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (F.G.); (R.W.)
| | - Renlei Wang
- Key Lab of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (X.Z.); (J.Z.); (S.L.); (Y.G.)
- Correspondence: (F.G.); (R.W.)
| |
Collapse
|
45
|
Wu W, Que F, Li X, Shi L, Deng W, Fu X, Xiong G, Sun J, Wang L, Xiong S. Effects of Enzymatic Konjac Glucomannan Hydrolysates on Textural Properties, Microstructure, and Water Distribution of Grass Carp Surimi Gels. Foods 2022; 11:foods11050750. [PMID: 35267383 PMCID: PMC8909482 DOI: 10.3390/foods11050750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
This present work investigated the influence of konjac glucomannan (KGM) enzymatic hydrolysates on the textural properties, microstructure, and water distribution of surimi gel from grass carp (Ctenopharyngodon idellus). The molecular weight (Mw) of KGM enzymatic hydrolyzed by β-dextranase degraded from 149.03 kDa to 36.84 kDa with increasing enzymatic time. In the microstructure of surimi gels, KGM enzymatic hydrolysates with higher Mw showed entangled rigid-chains, while KGM enzymatic hydrolysates with lower Mw (36.84 kDa) exhibited swelled fragments. The hardness of surimi gel with a decline in KGM Mw exhibited first increasing then decreasing trends, while the whiteness of surimi gel increased. When KGM Mw decreased, the immobile water percentage of total signals decreased from 96.7% to 93.6%, and mobile water increased from 3.03% to 6.37%. In particular, the surimi gel with the addition of K2 showed better gel strength and water distributions. KGM enzymatic hydrolysates are expected to be used as a low-calorie healthy gel enhancer in surimi processing.
Collapse
Affiliation(s)
- Wenjin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Feng Que
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430064, China
| | - Xuehong Li
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430064, China
| | - Liu Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Wei Deng
- College of Food & Biology Science and Technology, Wuhan Institute of Design and Sciences, Wuhan 430205, China; (W.D.); (X.F.)
| | - Xiaoyan Fu
- College of Food & Biology Science and Technology, Wuhan Institute of Design and Sciences, Wuhan 430205, China; (W.D.); (X.F.)
| | - Guangquan Xiong
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Jing Sun
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China; (F.Q.); (X.L.); (L.S.); (G.X.); (J.S.)
- Correspondence: (L.W.); (S.X.)
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Correspondence: (L.W.); (S.X.)
| |
Collapse
|
46
|
Ma Y, Wang Y, Jiang S, Zeng M. Effect of gelatin on gelation properties of oyster (Crassostrea gigas) protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Influence of konjac glucomannan on the emulsion-filled/non-filled chicken gel: Study on intermolecular forces, microstructure and gelling properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Li M, Shi T, Wang X, Bao Y, Xiong Z, Monto AR, Jin W, Yuan L, Gao R. Plasma-activated water promoted the aggregation of Aristichthys nobilis myofibrillar protein and the effects on gelation properties. Curr Res Food Sci 2022; 5:1616-1624. [PMID: 36161225 PMCID: PMC9493387 DOI: 10.1016/j.crfs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Plasma is a new technology used to modify myofibrillar proteins (MPs) structure and promote protein aggregation. In order to study the mechanism of plasma modifying MPs thus the effects on qualities of MP gels, MPs were extracted by 0.6 M NaCl solution prepared with plasma-activated water (PAW) at different treatment time (0 s, 30 s, 60 s, 120 s, 240 s). With the prolonged PAW treatment time from 0 to 240 s, the pH values of natural MP solutions decreased significantly from 5.91 to 2.61 (P < 0.05), the H2O2 concentration in PAW increased from 0 to 70.82 μg/L (P < 0.05), and the net negative charges of MPs first decreased and then increased (P < 0.05). In addition, PAW caused significantly (P < 0.05) weakened ionic bonds and enhanced hydrophobic interactions, which promoted the aggregation and gelation of MPs thus forming MP gel with higher gel strength and a denser three-dimensional network. Furthermore, Raman spectra and intrinsic fluorescence suggested that PAW promoted the unfolding of MP structures and transformation from α-helixes and random coils to β-sheets and β-turns. Dynamic rheology indicated a gradually increased storage modulus and shortened degradation time of MPs with an increasing treatment time of PAW. Furthermore, PAW modification significantly improved the water holding capacity of MPs gels. These results demonstrated that the declined pH of MP solutions induced by PAW and increased H2O2 in PAW altered the ζ-potential of MP solutions and promoted the unfolding and aggregation of MPs during heating via hydrophobic interactions, ultimately enhancing gelling properties of MPs. The present work suggested the potential use of PAW in preparing freshwater MP gels with high quality. pH values of MP solutions were declined gradually by PAW with the treatment time. The H2O2 concentration in PAW increased gradually with the treatment time. PAW promoted the unfolding of MPs and formation of β-sheets. PAW weakened the ionic bonds and enhanced the hydrophobic interactions among MPs. PAW60 showed the highest WHC and protein solubility contributed by hydrogen bonds.
Collapse
|
49
|
Jiang X, Chen Q, Xiao N, Du Y, Feng Q, Shi W. Changes in Gel Structure and Chemical Interactions of Hypophthalmichthys molitrix Surimi Gels: Effect of Setting Process and Different Starch Addition. Foods 2021; 11:foods11010009. [PMID: 35010135 PMCID: PMC8750783 DOI: 10.3390/foods11010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The modifications of histological properties and chemical forces on heated surimi gels with starch addition (0-12 g/100 g surimi) were investigated. Two types of heating processes (direct heating and two-step heating) were carried out on surimi gels in order to reveal the effect of setting on mixed matrices. The results of transverse relaxation time showed less immobile water and free water converted into bound water in a matrix subjected to the setting process. Scanning electron microscope and light microscopy images revealed inefficient starch-swelling in two-step heated gels. Chemical interactions and forces in direct cooking gels were more vulnerable to starch addition, resulting in significant decreases in hydrophobic interaction and sulfhydryl content (p < 0.05). With the increment of starch, the disulfide stretching vibrations of the gauche-gauche-gauche conformation were reduced in both gel matrices. The structural variations of different components collectively resulted in changes in texture profile analysis and water holding capacity. Overall, the results demonstrated that starch addition had a great and positive effect on the weak gel matrix by direct heating.
Collapse
Affiliation(s)
- Xin Jiang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Qing Chen
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Naiyong Xiao
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Yufan Du
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Qian Feng
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (X.J.); (Q.C.); (N.X.); (Y.D.); (Q.F.)
- National Research and Development Center for Processing Technology of Freshwater Aquatic Products (Shanghai), Shanghai 201306, China
- Correspondence: ; Tel.: +86-156-9216-5859
| |
Collapse
|
50
|
Zou Y, Lu F, Yang B, Ma J, Yang J, Li C, Wang X, Wang D, Xu W. Effect of ultrasound assisted konjac glucomannan treatment on properties of chicken plasma protein gelation. ULTRASONICS SONOCHEMISTRY 2021; 80:105821. [PMID: 34741835 PMCID: PMC8581579 DOI: 10.1016/j.ultsonch.2021.105821] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 05/23/2023]
Abstract
The effect of ultrasound assisted konjac glucomannan treatment on the properties of chicken plasma protein gelation was investigated in this study. There were four gelation groups as follows: untreated plasma protein gelation (Control), gelation added konjac glucomannan (KGG), gelation by ultrasound treatment alone (UG) and gelation added konjac glucomannan combined with ultrasound treatment (KGUG). The data showed that the gelation strength and water-holding capacity of the treated groups were significantly increased compared with those of Control. The strongest bonding water was present in KGUG, followed by KGG and UG in low-field nuclear magnetic resonance. The storage energy (G') and loss energy modulus (G″) of KGUG showed the largest rheological properties, and the G' value was higher than that of G″. Furthermore, the elastic and gelatinous properties of UG, KGG and KGUG played a dominant role in viscoelasticity. After konjac glucomannan addition, the particle size of KGG increased significantly. Compared with that of the Control and KGG, the average particle size of UG and KGUG decreased significantly after ultrasound treatment. The hydrophobicity and disulfide bonds mainly affected the formation of heat-induced gelation in these four groups. Furthermore, KGUG with the highest hydrophobicity and disulfide bonds revealed the best stability. Therefore, the gelation of chicken plasma protein by ultrasound assisted konjac glucomannan treatment had excellent gelling properties.
Collapse
Affiliation(s)
- Ye Zou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Fangyun Lu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Biao Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jingjing Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jing Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Chao Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Nanjing Yurun Food Co., Ltd, No. 19, Zifeng Road, Economic Development Zone, Pukou District, Nanjing, Jiangsu, China
| | - Xin Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Weimin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|