1
|
Xu Z, Zhan Y, Zhang S, Xun Z, Wang L, Chen X, Liu B, Peng X. An albumin fluorescent sensor array discriminates ochratoxins. Chem Commun (Camb) 2025; 61:564-567. [PMID: 39655994 DOI: 10.1039/d4cc05946h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A sensor array that can distinguish ochratoxins based on the fluorescence of the albumin-ochratoxin complex has been developed. This sensor array enabled the identification of ochratoxins and their mixtures in real food samples.
Collapse
Affiliation(s)
- Zhongyong Xu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Yilin Zhan
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Shiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518060, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Lei Wang
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Xiaoqiang Chen
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Bin Liu
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| | - Xiaojun Peng
- College of Material Science and Engineering, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Contreras Alvarez LA, Lazo Jara MD, Campos FV, de Oliveira JP, Guimarães MCC. Barcode-style lateral flow immunochromatographic strip for the semi-quantitative detection of ochratoxin A in coffee samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:424-437. [PMID: 38415981 DOI: 10.1080/19440049.2024.2313115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin contaminating agricultural products produced by fungi, associated with important toxic effects. Thus, the development of fast, sensitive, and economical approaches for OTA detection is crucial. In this study, a barcode-style lateral flow assay for the semi-quantitative detection of OTA in coffee samples was developed. To achieve this goal, a BSA-OTA complex was immobilized in three test zones to compete with OTA molecules in the sample for binding with anti-OTA antibodies labeled with gold nanoparticles. Different concentrations of OTA in the sample produced distinct colour patterns, allowing semi-quantification of the analyte. The assay exhibited high sensitivity, with a limit of detection of 2.5 µg.L-1, and high reproducibility, with variation coefficient values between 2% and 13%. Moreover, the colour patterns obtained in the analysis with coffee samples were similar to the results obtained with standard OTA solutions, demonstrating a reliable applicability in real samples.
Collapse
|
3
|
Pochivalov A, Fedorova A, Yakimova N, Safonova E, Bulatov A. Primary amine citrate-based supramolecular designer solvent: Preconcentration of ochratoxin A for determination in foods by liquid chromatography. Anal Chim Acta 2024; 1285:341991. [PMID: 38057045 DOI: 10.1016/j.aca.2023.341991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Supramolecular solvents are nanostructured liquids that are separated from colloidal solutions of amphiphilic compounds as a result of self-assembly of amphiphiles and coacervation under changing conditions. They are considered to be designer solvents as their properties can be tailored to a specific analytical task by controlling the conditions of their formation (amphiphile, coacervation inducer, medium, concentration of components). The discovery of new extraction systems based on supramolecular solvents and their application to relevant analytical tasks are of great importance for the advancement of environmentally-friendly sample preparation. RESULTS A novel green liquid-phase microextraction approach involving in situ formation of 1-octylamine citrate followed by preconcentration of ochratoxin A from aqueous extract of food sample in supramolecular solvent droplets was developed. The extraction system was carefully characterized. The density of the solvent allowed it to be to retrieved from the extraction system by its solidification. The alkaline nature of the obtained extract allowed the use of acetic acid for its dissolution instead of more toxic organic solvents followed by high-performance liquid chromatography with fluorometric detection. An excellent extraction recovery of 99 % and a satisfactory enrichment factor of 8.3 were achieved. The limit of detection was 0.5 μg kg-1, while the calibration plot was linear over the range of 1.5-50 μg kg-1. Cereal and roasted coffee bean samples were successfully analyzed with a relative bias less than 20 %. SIGNIFICANCE In the present work, a phenomenon of supramolecular solvent formation based on primary amine citrate was presented for the first time. Tetrabutylammonium bromide was investigated as a coacervation agent in an extraction system, and possible interactions responsible for its ability to induce phase separation in a micellar solution of primary amine citrate were described. The critical micelle concentration of 1-octylamine citrate in aqueous solution of tetrabutylammonium bromide was firstly determined.
Collapse
Affiliation(s)
- Aleksei Pochivalov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Anastasia Fedorova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Nina Yakimova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Evgenia Safonova
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University St, Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Yang H, Li J, Mao J, Xu C, Song J, Xie F. Deep Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Coupled with LC-MS/MS for the Analysis of Two Ochratoxins in Capsicum. Molecules 2023; 28:7634. [PMID: 38005355 PMCID: PMC10673409 DOI: 10.3390/molecules28227634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Ochratoxins, a common class of mycotoxin in capsicum, and techniques and methods for the determination of mycotoxins in spices have been increasingly developed in recent years. An innovative and eco-friendly method of dispersive liquid-liquid microextraction (DLLME) was demonstrated in this study, based on a synthesized deep eutectic solvent (DES) combined with LC-MS/MS, for the quantification and analysis of two ochratoxins in capsicum. The DES-DLLME method parameters entail selecting the DES type (thymol:decanoic acid, molar ratio 1:1) and DES volume (100 μL). The volume of water (3 mL) and salt concentration (0 g) undergo optimization following a step-by-step approach to achieve optimal target substance extraction efficiency. The matrix effect associated with the direct detection of the target substance in capsicum was significantly reduced in this study by the addition of isotopic internal standards corresponding to the target substance. This facilitated optimal conditions wherein quantitative analysis using LC-MS/MS revealed a linear range of 0.50-250.00 µg/mL, with all two curves calibrated with internal standards showing correlation coefficients (r2) greater than 0.9995. The method's limits of detection (LODs) and limits of quantification (LOQs) fell in the ranges of 0.14-0.45 μg/kg and 0.45-1.45 μg/kg, respectively. The method's spiked recoveries ranged from 81.97 to 105.17%, indicating its sensitivity and accuracy. The environmental friendliness of the technique was assessed using two green assessment tools, AGREE and complexGAPI, and the results showed that the technique was more in line with the concept of sustainable development compared to other techniques for detecting ochratoxins in capsicum. Overall, this study provides a new approach for the determination of mycotoxins in a complex food matrix such as capsicum and other spices using DES and also contributes to the application of green analytical chemistry methods in the food industry.
Collapse
Affiliation(s)
- Hongbo Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Jin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Jianfei Mao
- College of Chemistry, Sichuan University, Chengdu 610064, China
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China
| | - Chan Xu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Jieyu Song
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
| | - Feng Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; (J.L.); (C.X.); (J.S.); (F.X.)
- Guizhou Academy of Testing and Analysis, Guiyang 550014, China
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China
| |
Collapse
|
5
|
Ren Y, Tian R, Wang T, Cao J, Li J, Deng A. An Extremely Highly Sensitive ELISA in pg mL -1 Level Based on a Newly Produced Monoclonal Antibody for the Detection of Ochratoxin A in Food Samples. Molecules 2023; 28:5743. [PMID: 37570711 PMCID: PMC10420233 DOI: 10.3390/molecules28155743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, an extremely highly sensitive enzyme-linked immunosorbent assay (ELISA) based on a newly produced monoclonal antibody (mAb) for the detection of ochratoxin A (OTA) in food samples was developed. OTA-Bovine serum albumin (BSA) conjugate was prepared and used as the immunogen for the production of the mAb. Among four hybridoma clones (8B10, 5C2, 9B7, and 5E11), the antibody from 8B10 displayed the highest affinity recognition for OTA. Based on the mAb (8B10), the IC50 and LOD of the ELISA for OTA were 34.8 pg mL-1 and 1.5 pg mL-1, respectively, which was 1.53~147 times lower than those in published ELISAs, indicating the ultra-sensitivity of our assay. There was no cross-reactivity of the mAb with the other four mycotoxins (AFB1, ZEN, DON, and T-2). Due to the high similarity in molecular structures among OTA, ochratoxin B (OTB), and ochratoxin C (OTC), the CR values of the mAb with OTB and OTC were 96.67% and 22.02%, respectively. Taking this advantage, the ELISA may be able to evaluate total ochratoxin levels in food samples. The recoveries of the ELISA for OTA in spiked samples (corn, wheat, and feed) were 96.5-110.8%, 89.5-94.4%, and 91.8-113.3%; and the RSDs were 5.2-13.6%, 8.2-13.0%, and 7.7-13.7% (n = 3), respectively. The spiked food samples (corn) were measured by ELISA and HPLC-FLD simultaneously. A good correlation between ELISA (x) and HPLC-FLD (y) with the linear regression equation of y = 0.918x - 0.034 (R2 = 0.985, n = 5) was obtained. These results demonstrated that the newly produced mAb-based ELISA was a feasible and ultra-sensitive analytical method for the detection of OTA in food samples.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| | - Anping Deng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (Y.R.); (R.T.); (T.W.); (J.C.)
| |
Collapse
|
6
|
Analysis of residual monepantel sulfone in milk using icELISA based on a monoclonal antibody developed from an easy-synthesized and low-cost hapten. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Guo M, zhang J, Lv J, Ke T, Tian J, Miao K, Wang Y, Kong D, Ruan H, Luo J, Yang M. Development of broad-specific monoclonal antibody-based immunoassays for simultaneous ochratoxin screening in medicinal and edible herbs. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Chen W, Zhang X, Zhang Q, Zhang G, Wu S, Yang H, Zhou Y. Cerium ions triggered dual-readout immunoassay based on aggregation induced emission effect and 3,3′,5,5′-tetramethylbenzidine for fluorescent and colorimetric detection of ochratoxin A. Anal Chim Acta 2022; 1231:340445. [DOI: 10.1016/j.aca.2022.340445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
|
9
|
Feng J, Xue Y, Wang X, Song Q, Wang B, Ren X, Zhang L, Liu Z. Sensitive, simultaneous and quantitative detection of deoxynivalenol and fumonisin B 1 in the water environment using lateral flow immunoassay integrated with smartphone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155354. [PMID: 35460773 DOI: 10.1016/j.scitotenv.2022.155354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Deoxynivalenol (DON) and fumonisin B1 (FB1), as a group of highly toxic secondary metabolites, have become a potential source of water environmental pollutants. To minimize two mycotoxins exposure to consumers, a dual lateral flow immunoassay (LFIA) integrated with the smartphone was reported for simultaneous and quantitative detection of DON and FB1 in the water environment. The significantly improved sensitivity was contributed to a smartphone-based device with the ability to image and analyze results. Under optimized conditions, the detection limits of DON and FB1 were calculated to be 3.46 and 2.65 ng/mL, which were approximately 25 and 10 folds lower than those of the visual detection of the LFIA. This method showed good specificity and a good dynamic linear detection for DON and FB1. The recoveries of DON and FB1 were evaluated by the spiked lake water, river water, and pond water, ranging from 92.47% to 106.2% with the relative standard deviation under 9.13%. Moreover, the results of the developed LFIA showed a high correlation with enzyme-linked immunosorbent assay (ELISA) results, with a correlation coefficient of 0.999 for DON and 0.996 for FB1, respectively. To sum up, the developed LFIA provides a promising platform for sensitive, simultaneous, quantitative, and on-site detection of DON and FB1 in the water environment.
Collapse
Affiliation(s)
- Jiankun Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Xue
- Guizhou Anshun Tobacco Co., Ltd., Anshun 561000, China
| | - Xinwei Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingsong Song
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Baojian Wang
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xuexiang Ren
- Institute of Protection and Agro-Products Safety, Anhui Academy of Agricultural Science, Hefei 230031, China.
| | - Leigang Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhenjiang Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Nanobody multimerization strategy to enhance the sensitivity of competitive ELISA for detection of ochratoxin A in coffee samples. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Pereira RHA, Keijok WJ, Prado AR, de Oliveira JP, Guimarães MCC. Rapid and sensitive detection of ochratoxin A using antibody-conjugated gold nanoparticles based on Localized Surface Plasmon Resonance. Toxicon 2021; 199:139-144. [PMID: 34153309 DOI: 10.1016/j.toxicon.2021.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
The regulation of tolerable levels of ochratoxin A in food for human and animal consumption has been defined in some countries. To meet these levels, simpler, more efficient, and faster analytical methods are being developed to facilitate the identification of this dangerous contaminant in food. Here, we combined gold nanoparticles (AuNPs) with anti-ochratoxin A (OTA) IgG to detect elementary levels of OTA based on Localized Surface Plasmon Resonance. AuNPs were prepared with trisodium citrate and characterized by UV-visible spectroscopy, X-ray, dynamic light scattering, and transmission electron microscopy. The conjugation of AuNPs to IgG anti-OTA was confirmed by bathochromic shift (UV-vis) and RAMAN spectroscopy. The sensitivity of the nanosensor was investigated by measuring LSPR band λmax shifts. Our results suggest this assay is highly sensitive, with a lower detection limit of about 0.001 pg mL-1. The LSPR nanosensor reduced detection limits by roughly 10 times compared to other methods. We demonstrated that the approach investigated here is a rapid and sensitive method for OTA detection.
Collapse
Affiliation(s)
| | | | | | - Jairo Pinto de Oliveira
- Federal University of Espirito Santo, Av Marechal Campos1468, Vitoria, ES, 29.040-090, Brazil
| | | |
Collapse
|
12
|
Charlermroj R, Phuengwas S, Makornwattana M, Sooksimuang T, Sahasithiwat S, Panchan W, Sukbangnop W, Elliott CT, Karoonuthaisiri N. Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta 2021; 233:122540. [PMID: 34215043 DOI: 10.1016/j.talanta.2021.122540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
While lateral flow immunoassay (LFIA) is a simple technique that offers a rapid, robust, user friendly, and point-of-care test, its capacity for multiplex detection is rather limited. This study therefore combined the multiplexity of microarray technique and the simple and rapid characteristics of LFIA to enable simultaneous and quantitative detection of five mycotoxins, namely aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FUMB1), T-2 toxin (T-2), and zearalenone (ZON). In addition, we have synthesized a novel extra-large Stokes shift and strong fluorescence organic compound to be used as a reporter molecule which can be detected under UV light without light filter requirement. Many parameters including microarray spotting buffer, blocking buffer, and concentrations of mycotoxin antibodies were optimized for the microarray LFIA (μLFIA) construction. With the optimal conditions, the μLFIA could accurately and quantitatively detect multiple mycotoxins at the same time. The limits of detection of AFB1, DON, FUMB1, T-2, and ZON were 1.3, 0.5, 0.4, 0.4, and 0.9 ppb, respectively. The recoveries of these five mycotoxins were 70.7%-119.5% and 80.4%-124.8% for intra-assay and inter-assay, respectively. Combining the advantages of the novel reporter molecule and the multiplex capability of μLFIA test, this system could simultaneously detect multiple mycotoxins in one sample with high specificity and high sensitivity. Moreover, this system presents a promising affordable point-of-care platform to detect other analytes as well.
Collapse
Affiliation(s)
- Ratthaphol Charlermroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Sudtida Phuengwas
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Manlika Makornwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Wannee Sukbangnop
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Biological Sciences Building, 19 Chlorine Gardens, Queen's University, Belfast, BT9 5DL, United Kingdom
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathum Thani, 12120, Thailand.
| |
Collapse
|
13
|
Akgönüllü S, Armutcu C, Denizli A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03699-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
15
|
Li H, He S, Liu G, Li C, Ma Z, Zhang X. Residue and dissipation kinetics of toosendanin in cabbage, tobacco and soil using IC-ELISA detection. Food Chem 2021; 335:127600. [PMID: 32736155 DOI: 10.1016/j.foodchem.2020.127600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022]
Abstract
Toosendanin (TSN), as an important Chinese traditional insecticide, has been registered and commercialized in China. In this report, the residual analytical methods, residue dynamics and final residues of TSN in tobacco, cabbage and soil under field condition were studied by IC-ELISA and HPLC. The sensitivity, precision and repeatability of IC-ELISA method were more suitable in comparison with HPLC for the demand of TSN residue analysis. Using IC-ELISA, the half-lives (t1/2) of TSN were found to be 1.30 days in cabbage, 1.70 days in tabacco and 0.71 days in soil, respectively. At the recommended dose, the final residues of TSN detection by IC-ELISA was 0.009 mg·kg-1 in cabbage and 0.043 mg·kg-1 in tobacco, as well as was not detected in soil. Therefore, TSN is easily degradable, and IC-ELISA could be a convenient and supplemental analytical tool for monitoring TSN residue in crops and environment.
Collapse
Affiliation(s)
- Hai Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siqi He
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guilin Liu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| | - Xing Zhang
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
16
|
Tao X, Chang X, Wan X, Guo Y, Zhang Y, Liao Z, Song Y, Song E. Impact of Protein Corona on Noncovalent Molecule-Gold Nanoparticle-Based Sensing. Anal Chem 2020; 92:14990-14998. [PMID: 33104346 DOI: 10.1021/acs.analchem.0c02850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanoparticle (AuNP)-based sensors have been extensively applied for sensing or imaging. It is known that a protein shell named protein corona (PC) formed around the nanomaterials could not only block the desired function of nanomaterials but also affect their behavior, which is a hot and important issue needing consideration. Therefore, we hypothesize that the formation of PC around AuNPs could inevitably affect the AuNP-based target assay. In this work, the effects of PC on the detection results in sensors based on AuNPs were studied. Three types of noncovalent molecule-AuNP sensors including AuNP-dichlorofluorescein, AuNP-aptamer, and AuNP-antibody-DNA were constructed, and several typical proteins (bovine serum albumin, fibrinogen, hemoglobin, and β-lactoglobulin), milk, and fetal bovine serum were selected as models for the formation of PCs. This study shows that the PC could cause the loss of detection signals (up to 80%) and result in positive deviation of the measuring value compared with the true value. Moreover, the loss of detection signals could also increase the limits of detection (almost 10 times), decreasing the sensitivity of the three types of sensors, as proposed in this work compared to that without PC. Moreover, the polyethylene glycol backfilling strategy could not resolve the negative effects of PC on noncovalent molecule-AuNP sensors. The impacts of PC on detection results from noncovalent molecule-AuNP sensors would cause misdiagnosis or wasted production, which needs careful reconsideration of the AuNP-based detection in application fields like clinic diagnosis, food safety control, and so forth.
Collapse
Affiliation(s)
- Xiaoqi Tao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaoxi Chang
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xulin Wan
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yina Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Yaqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Ziyi Liao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Beibei, Chongqing 400715, China
| |
Collapse
|
17
|
Jiang YY, Zhao X, Chen LJ, Yang C, Yin XB, Yan XP. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin. Talanta 2020; 218:121101. [PMID: 32797868 DOI: 10.1016/j.talanta.2020.121101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Serious ochratoxin A (OTA) contamination necessitates the development of rapid, sensitive and selective analytical methods for its determination in food safety. Herein, we report a persistent luminescence resonance energy transfer (LRET) based aptasensor for the autofluorescence-free detection of OTA. OTA aptamer functionalized persistent luminescence nanorod (PLNR) Zn2GeO4:Mn2+ and the aptamer complementary DNA modified gold nanoparticle (AuNP) were used as the donor and the acceptor, respectively. The developed LRET aptasensor integrated the advantages of the long-lasting persistent luminescence of PLNR, the high selectivity of aptamer and the low probe background of LRET sensors, allowing autofluorescence-free detection of OTA in biological samples with high sensitivity and selectivity. The developed LRET aptasensor gave an excellent linearity in the range of 0.01-10 ng mL-1, the detection limit of 3 pg mL-1 and the precision of 2.7% (RSD, n = 11) at 1 ng mL-1 level. The applicability of the developed aptasensor was demonstrated by analyzing beer samples for OTA with the recoveries of 92.3%-104%.
Collapse
Affiliation(s)
- Yuan-Yuan Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xue-Bo Yin
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Fadlalla MH, Ling S, Wang R, Li X, Yuan J, Xiao S, Wang K, Tang S, Elsir H, Wang S. Development of ELISA and Lateral Flow Immunoassays for Ochratoxins (OTA and OTB) Detection Based on Monoclonal Antibody. Front Cell Infect Microbiol 2020; 10:80. [PMID: 32211342 PMCID: PMC7067699 DOI: 10.3389/fcimb.2020.00080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Ochratoxins were important secondary metabolites secreted by fungi, and OTA and OTB are mainly significant mycotoxin, having toxic effects on humans and animals. Therefore, it is important to establish a rapid, sensitive, and precise method for ochratoxins detection and quantification in real samples. In this study, a stable monoclonal antibody (mAb) that recognizing both OTA and OTB toxins was employed for the establishment of indirect competitive ELISA (ic-ELISA), colloidal gold nanoparticles (CGNs), and nanoflowers gold strips (AuNFs) for detection of ochratoxins in real samples. A 6E5 hybridoma cell line stable secreting mAb against both OTA and OTB toxins was obtained by fusion of splenocytes with myeloma SP2/0 cells. The 6E5 mAb had a high affinity (3.7 × 108 L/mol) to OTA, and also showed similar binding activity to OTB. The optimized ic-ELISA resulted in a linear range of 0.06–0.6 ng/mL for ochratoxins (OTA and OTB) detection. The IC50 was 0.2 ng/mL and the limit of detection (LOD) was 0.03 ng/mL. The mean recovery rate from the spiked samples was 89.315 ± 2.257%, with a coefficient variation of 2.182%. The result from lateral flow immunoassays indicated that the LOD of CGNs and AuNFs were 5 and 1 μg/mL, respectively. All these results indicated that the developed ic-ELISA, CGNs, and AuNFs in this study could be used for the analysis of the residual of ochratoxins (OTA and OTB) in food and agricultural products.
Collapse
Affiliation(s)
- Mohamed Hassan Fadlalla
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sumei Ling
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongzhi Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiulan Li
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiwei Xiao
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqin Tang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hoyda Elsir
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Sun C, Liao X, Huang P, Shan G, Ma X, Fu L, Zhou L, Kong W. A self-assembled electrochemical immunosensor for ultra-sensitive detection of ochratoxin A in medicinal and edible malt. Food Chem 2020; 315:126289. [PMID: 32014670 DOI: 10.1016/j.foodchem.2020.126289] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/25/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Trace residue of mycotoxins in complex medicinal and edible food matrices has brought huge challenges for the development of ultrasensitive analytical methods. Here, a green electrochemical immunosensor for the ultrasensitive detection of ochratoxin A (OTA) was fabricated by self-assembling a compact 2-mercaptoacetic (TGA) monolayer on the surface of the working Au electrode to form the Au/TGA/bovine serum aibumin (BSA)-OTA/anti-OTA monoclonal antibody composite probes for selective and ultra-sensitive detection of OTA based on indirect competitive principle and differential pulse voltammetry analysis. The electrochemical impedance spectroscopy and cyclic voltammetry methods were introduced to characterize the assemble situation of the TGA-modified Au electrode and optimize some critical parameters for the green electrochemical immunoseonsor. Under the optimal conditions, the developed immunosensor exhibited much lower limit of detection (0.08 ng/mL) in the range of 0.1-1.0 ng/mL for OTA compared with other direct or disposable electrochemical immunosensors. Real application in the spiked malt samples verified high accuracy with no matrix interferences of the proposed immunoseonsor. This is a meaningful study on a self-assembled electrochemical immunoseonsor for ultra-sensitive and rapid detection of OTA in malt samples, which suggested a general simple-to-use sensing platform and prospect as an economical and green tool for ultra-sensitive detection of much more trace-level of toxic small molecules in other complex matrices to ensure their quality and safety.
Collapse
Affiliation(s)
- Chaonan Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Pinxuan Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lizhu Fu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
20
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
21
|
Valera E, García-Febrero R, Elliott CT, Sánchez-Baeza F, Marco MP. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Anal Bioanal Chem 2019; 411:1915-1926. [DOI: 10.1007/s00216-018-1538-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023]
|
22
|
A novel hapten and monoclonal antibody-based indirect competitive ELISA for simultaneous analysis of alternariol and alternariol monomethyl ether in wheat. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Tang Z, Wang X, Lv J, Hu X, Liu X. One-step detection of ochratoxin A in cereal by dot immunoassay using a nanobody-alkaline phosphatase fusion protein. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Majdinasab M, Zareian M, Zhang Q, Li P. Development of a new format of competitive immunochromatographic assay using secondary antibody-europium nanoparticle conjugates for ultrasensitive and quantitative determination of ochratoxin A. Food Chem 2018; 275:721-729. [PMID: 30724255 DOI: 10.1016/j.foodchem.2018.09.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/18/2023]
Abstract
In this study, to enhance the sensitivity of conventional immunochromatographic assay (ICA) two strategies including using a high sensitive label and changing the assay format, were simultaneously applied to develop an ultrasensitive format of ICA. In new format, primary monoclonal antibody against ochratoxin A (OTA) was used without any labeling, and a secondary polycolonal antibody was labeled with europium fluorescent nanoparticles (EuNPs). Detection was performed in a single step by inserting the test strip into a microtube containing all reagents. The results were obtained within 12 min and read by a portable fluorescent strip reader. Salient features of the new format of ICA compared with conventional format include: (1) A 100-fold decrease in limit of detection (LOD) due to application of two amplification strategy; (2) Reduction in expensive monoclonal antibody consumption. The established method was evaluated for the quantitative determination of OTA with LOD as low as 0.4 pg mL-1.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Mohsen Zareian
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, People's Republic of China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, People's Republic of China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, People's Republic of China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan 430062, People's Republic of China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, People's Republic of China.
| |
Collapse
|
25
|
Geremew T, Haesaert G, Abate D, Audenaert K. An HPLC-FLD method to measure ochratoxin A in teff (Eragrostis tef) and wheat (Triticum spp.) destined for the local Ethiopian market. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wheat (Triticum spp.) is among the top cereal grains in terms of production and consumption in Ethiopia. It can be typically infected with ochratoxin A (OTA) producing fungi both in the field and during storage resulting in animal and human health problems. While there is a wealth of information on the presence of OTA in wheat, the incidence of OTA in teff (Eragrostis tef), a cereal grain produced and consumed traditionally in Ethiopia and Eretria, remains insufficient. The purpose of this study was to develop and validate a high performance liquid chromatography (HPLC) method for OTA analysis in teff and wheat flours and to analyse the characteristic distribution of OTA in teff and wheat flours samples destined for local consumption in Ethiopia using a survey-approach. Wheat and teff flour samples were examined for OTA contamination. OTA was detected in 20% of the teff flour samples and in 50% of the wheat flour samples with median contamination levels of 1.04 μg/kg (limit of detection (LOD) = 0.78 μg/kg) and 7.23 μg/kg (LOD = 0.58 μg/kg) respectively. The validated method for OTA detection and quantification in teff and wheat using HPLC meets the European Union performance criteria for OTA (EC 2006/401) and the Eurachem Guideline validation requirements. An insight into the occurrence of OTA in teff is very valuable because the cereal might provide a lower OTA risk alternative for wheat in Ethiopia. In addition, for the world market, an insight into the occurrence of OTA in teff is important in the light of an increasing interest in teff as a gluten free cereal.
Collapse
Affiliation(s)
- T. Geremew
- Department of Microbial Cellular and Molecular Biology, Faculty of Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - G. Haesaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - D. Abate
- Department of Microbial Cellular and Molecular Biology, Faculty of Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - K. Audenaert
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Armutcu C, Uzun L, Denizli A. Determination of Ochratoxin A traces in foodstuffs: Comparison of an automated on-line two-dimensional high-performance liquid chromatography and off-line immunoaffinity-high-performance liquid chromatography system. J Chromatogr A 2018; 1569:139-148. [PMID: 30054130 DOI: 10.1016/j.chroma.2018.07.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
Abstract
Automated on-line two-dimensional high-performance liquid chromatography method (2D-HPLC) is proposed to determine Ochratoxin A (OTA) in food samples as an alternative to OTA immunoaffinity column (IAC). An on-line 2D-HPLC system is designed for the analysis of OTA using an affinity-based monolithic column in the first dimension and reversed-phase C18 column in the second dimension. Initially, optimal OTA separation efficiency is determined through traditional HPLC system consisting of a P(HEMAPA) monolithic column coupled with HPLC system. Secondly, after providing optimum conditions, OTA determination was investigated through the 2D-HPLC system. According to results, 2D-HPLC system showed good linearity in the range 0.5 to 20 ng/mL with limit of detection (LOD) and limit of quantification (LOQ) values of 21.2 pg/mL and 64.3 pg/mL, respectively. The P(HEMAPA)-4 monolithic column displayed good recovery of OTA ranging from 104.34% to 107.33%. Relative standard deviations (RSD) varied in the range 0.21% to 1.31% thus indicating the efficiency of P(HEMAPA)-4 monolithic column developed for OTA.
Collapse
Affiliation(s)
- Canan Armutcu
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| |
Collapse
|
27
|
Preparation of Monoclonal Antibody for Brevetoxin 1 and Development of Ic-ELISA and Colloidal Gold Strip to Detect Brevetoxin 1. Toxins (Basel) 2018; 10:toxins10020075. [PMID: 29419743 PMCID: PMC5848176 DOI: 10.3390/toxins10020075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 11/24/2022] Open
Abstract
Brevetoxin-1 (BTX-1), a marine toxin mostly produced by the dinoflagellatae Karenia brevis, has caused the death of marine organisms and has had numerous toxicological effects on human health. Hence, it is very necessary to develop a rapid, economical, and reliable immunoassay method for BTX-1 detection. In this study, two kinds of complete antigen were synthesized using the succinic anhydride and isobutyl chloroformate two-step methods. Conjugate BTX-1-OVA was used as an antigen for mice immunization, and BTX-1-BSA for measuring the titer of the produced antibodies. A hybridoma cell line 6C6 stably secreting monoclonal antibody (mAb) against BTX-1 was obtained by fusing SP2/0 myeloma cells with the spleen cells from the immunized mouse. The hybridoma 6C6 was injected into the abdomen of BALB/c mice to obtain ascites, and the anti-BTX-1 mAb was harvested from ascites by precipitation with caprylic acid/ammonium sulfate (CA-AS). The anti-BTX-1 mAb was identified as an IgG1 subtype, and the cross-reactivity results showed that anti-BTX-1 mAb was highly specific to BTX-1 with the affinity of 1.06 × 108 L/mol. The indirect competitive ELISA results indicated that the linear range for BTX-1 detection was 14–263 ng/mL with IC50 of 60 ng/mL, and a detection limit of 14 ng/mL. The average recovery rate from the spiked samples was 88 ± 2% in intra-assay and 89 ± 2% in inter-assay. The limit of detection (LOD) using the colloidal gold strip was 200 ng/mL with high specificity. Therefore, the anti-BTX-1 mAb can be used to detect BTX-1 in shellfish and other related samples.
Collapse
|
28
|
Huertas-Pérez JF, Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L. Solid phase extraction as sample treatment for the determination of Ochratoxin A in foods: A review. Crit Rev Food Sci Nutr 2018; 57:3405-3420. [PMID: 26744990 DOI: 10.1080/10408398.2015.1126548] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by two main types of fungi, Aspergillus and Penicillium species. OTA is a natural contaminant found in a large number of different matrices and is considered as a possible carcinogen for humans. Hence, low maximum permitted levels in foods have been established by competent authorities around the world, making essential the use of very sensitive analytical methods for OTA detection. Sample treatment is a crucial step of analytical methodology to get clean and concentrated extracts, and therefore low limits of quantification. Solid phase extraction (SPE) is a useful technique for rapid and selective sample preparation. This sample treatment enables the concentration and purification of analytes from the sample solution or extract by sorption on a solid sorbent. This review is focused on sample treatment procedures based on SPE prior to the determination of OTA in food matrices, published from 2010.
Collapse
Affiliation(s)
- J Fernando Huertas-Pérez
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Natalia Arroyo-Manzanares
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Ana M García-Campaña
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| | - Laura Gámiz-Gracia
- a Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Campus Fuentenueva s/n, Granada , Spain
| |
Collapse
|
29
|
Oplatowska-Stachowiak M, Kleintjens T, Sajic N, Haasnoot W, Campbell K, Elliott CT, Salden M. T-2 Toxin/HT-2 Toxin and Ochratoxin A ELISAs Development and In-House Validation in Food in Accordance with the Commission Regulation (EU) No 519/2014. Toxins (Basel) 2017; 9:E388. [PMID: 29189752 PMCID: PMC5744108 DOI: 10.3390/toxins9120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
T-2 toxin/HT-2 toxin (T-2/HT-2) and ochratoxin A (OTA) are mycotoxins that can contaminate a variety of agricultural commodities. To protect consumers' health, indicative limits for T-2/HT-2 and maximum limits for OTA have been set by the European Commission, requiring food business operators and controlling agencies to conduct routine checks for the presence of these harmful contaminants. Screening methods are increasingly used for monitoring purposes. Due to the demand for new and improved screening tools, two individual detection methods, T-2/HT-2 and OTA enzyme-linked immunosorbent assays (ELISAs), were developed in this study. The T-2/HT-2 ELISA was based on a T-2 monoclonal antibody with an IC50 (50% inhibitory concentration) of 0.28 ng/mL and 125% cross-reactivity with HT-2. As regards the OTA ELISA, a new sensitive monoclonal antibody specific to OTA with an IC50 of 0.13 ng/mL was produced. Both developed ELISA tests were then validated in agricultural commodities in accordance with the new performance criteria guidelines for the validation of screening methods for mycotoxins included in Commission Regulation (EU) No 519/2014. The T-2/HT-2 ELISA was demonstrated to be suitable for the detection of T-2/HT-2 in cereals and baby food at and above the screening target concentration (STC) of 12.5 μg/kg and 7.5 μg/kg, respectively. The OTA ELISA was shown to be applicable for the detection of OTA in cereals, coffee, cocoa and wine at and above the STC of 2 μg/kg, 2.5 μg/kg, 2.5 μg/kg and 0.4 ng/mL, respectively. The accuracy of both ELISAs was further confirmed by analysing proficiency test and reference samples. The developed methods can be used for sensitive and high-throughput screening for the presence of T-2/HT-2 and OTA in agricultural commodities.
Collapse
Affiliation(s)
| | | | - Nermin Sajic
- EuroProxima B.V., Arnhem 6827 BN, The Netherlands.
| | | | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, UK.
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, UK.
| | | |
Collapse
|
30
|
Zhang Y, Wang L, Shen X, Wei X, Huang X, Liu Y, Sun X, Wang Z, Sun Y, Xu Z, Eremin SA, Lei H. Broad-Specificity Immunoassay for Simultaneous Detection of Ochratoxins A, B, and C in Millet and Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4830-4838. [PMID: 28535353 DOI: 10.1021/acs.jafc.7b00770] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ochratoxins A, B, and C (OTA, OTB, and OTC) can be found in cereals and feeds; the simultaneous detection of these ochratoxins holds a great need in food safety. In this study, four antibodies raised from two ochrotoxin haptens and two coating antigens were compared, and then a sensitive and broad-specificity enzyme-linked immunosorbent assay (ELISA) was established for the simultaneous determination of three ochratoxins, where the detection limits were 0.005, 0.001, and 0.001 ng/mL for OTA, OTB, and OTC, respectively, and recoveries of three ochratoxins were between 84.3% and 111.7%. This developed method had been successfully applied to detect ochratoxins in both millet and maize. Molecular modeling revealed that the broad-specificity was related with the chlorine electronegativity on OTA and OTC and the potential of the acetyl ester group on OTC. The proposed ELISA can be used for simultaneous detection of three ochratoxins.
Collapse
Affiliation(s)
| | | | | | | | - Xinan Huang
- Tropical Medicine Institute & South China Chinese Medicine Collaborative Innovation Center, Guangzhou University of Chinese Medicine , Guangzhou 510405, China
| | | | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University , Beijing 100094, China
| | | | | | - Sergei A Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University , Leninskie gory 1, Building 3, Moscow 119991, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow 119071, Russia
| | | |
Collapse
|
31
|
Bánáti H, Darvas B, Fehér-Tóth S, Czéh Á, Székács A. Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry. Toxins (Basel) 2017; 9:E70. [PMID: 28241411 PMCID: PMC5331449 DOI: 10.3390/toxins9020070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-59122-7, and their isogenic counterparts. Cobs were artificially infested by F. verticillioides and F. proliferatum conidia, and contained F. graminearum and F. sporotrichoides natural infestation. The production of fumonisin B1 and deoxynivalenol was substantially affected in GM maize lines: F. verticillioides, with the addition of F. graminearum and F. sporotrichoides, produced significantly lower levels of fumonisin B1 (~300 mg·kg-1) in DAS-59122-7 than in its isogenic line (~580 mg·kg-1), while F. proliferatum, in addition to F. graminearum and F. sporotrichoides, produced significantly higher levels of deoxynivalenol (~18 mg·kg-1) in MON 810 than in its isogenic line (~5 mg·kg-1). Fusarium verticillioides, with F. graminearum and F. sporotrichoides, produced lower amounts of deoxynivalenol and zearalenone than F. proliferatum, with F. graminearum and F. sporotrichoides. T-2 toxin production remained unchanged when considering the maize variety. The results demonstrate the utility of the Fungi-Plex™ quantitative flow immunocytometry method, applied for the high throughput parallel determination of the target mycotoxins.
Collapse
Affiliation(s)
- Hajnalka Bánáti
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary.
| | - Béla Darvas
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary.
| | | | - Árpád Czéh
- Soft Flow Hungary R&D Ltd., Ürögi fasor 2/A, H-7634 Pécs, Hungary.
| | - András Székács
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary.
| |
Collapse
|
32
|
Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, Li C, Qiu J. Differential pulse voltammetric ochratoxin A assay based on the use of an aptamer and hybridization chain reaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2080-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Şen L, Ocak İ, Nas S, Şevik R. Effects of different drying treatments on fungal population and ochratoxin A occurrence in sultana type grapes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1444-55. [PMID: 27461091 DOI: 10.1080/19440049.2016.1217066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aimed to determine the changes in mould and ochratoxin A (OTA) occurrence in sultanas under three different conventional drying conditions. Five different vineyards were chosen, and the three different treatments were applied to these grapes while drying. At the end of the drying process, total mould and black aspergilli (BA) populations in the samples varied from 2.45 to 5.61 log colony-forming units (CFU) g(-)(1) and from 0 to 4.92 log CFU g(-)(1), respectively. Significant increases (p < 0.05) occurred in mould loads depending on the extending drying period. However, independent of vineyard location, all the samples treated with cold dipping solution showed the lowest fungal loads. These results indicate that dipping solution treatment was the most effective drying method to minimise fungal infection of grapes. The expected results could not be achieved by drying grapes artificially contaminated with ochratoxigenic Aspergillus carbonarius spores. Seventy-one of 96 isolates (73.95%) obtained during drying were Aspergillus spp., and the remaining (n = 25, 26.05%) belonged to other genera, such as Penicillium, Trichoderma and Cladosporium. Grape juice-based agar medium was used to determine the realistic OTA production capacities of the isolated mould strains. The highest OTA production capacities were 809.70 ± 9.19, 87.58 ± 16.89 and 45.44 ± 18.78 ng g(-1) in 50% grape juice agar (GJ50), all five of which were from A. niger isolates. OTA was not present in any sample during the drying period; however, OTA was detected in two samples at 0.32 ± 0.15 and 0.52 ± 0.36 µg kg(-)(1) after the end of the drying process. The limit of detection (LOD) and limit of quantitation (LOQ) of the method used for detecting OTA in samples were 0.1 and 0.3 µg kg(-)(1), respectively.
Collapse
Affiliation(s)
- Levent Şen
- a Department of Food Technology, Faculty of Engineering , Giresun University , Giresun , Turkey
| | - İjlal Ocak
- b Department of Science Education, Faculty of Education , Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Sebahattin Nas
- c Department of Food Engineering, Faculty of Engineering , Pamukkale University , Denizli , Turkey
| | - Ramazan Şevik
- d Department of Food Engineering, Faculty of Engineering , Afyon Kocatepe University , Afyonkarahisar , Turkey
| |
Collapse
|
34
|
|
35
|
Venkataramana M, Rashmi R, Uppalapati SR, Chandranayaka S, Balakrishna K, Radhika M, Gupta VK, Batra HV. Development of sandwich dot-ELISA for specific detection of Ochratoxin A and its application on to contaminated cereal grains originating from India. Front Microbiol 2015; 6:511. [PMID: 26074899 PMCID: PMC4443250 DOI: 10.3389/fmicb.2015.00511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/08/2015] [Indexed: 01/20/2023] Open
Abstract
In the present study, generation and characterization of a highly specific monoclonal antibody (mAb) against Ochratoxin A (OTA) was undertaken. The generated mAb was further used to develop a simple, fast, and sensitive sandwich dot-ELISA (s-dot ELISA) method for detection of OTA from contaminated food grain samples. The limit of detection (LOD) of the developed enzyme-linked immunosorbent assay (ELISA) method was determined as 5.0 ng/mL of OTA. Developed method was more specific toward OTA and no cross reactivity was observed with the other tested mycotoxins such as deoxynivalenol, fumonisin B1, or aflatoxin B1. To assess the utility and reliability of the developed method, several field samples of maize, wheat and rice (n = 195) collected from different geographical regions of southern Karnataka region of India were evaluated for the OTA occurrence. Seventy two out of 195 samples (19 maize, 38 wheat, and 15 rice) were found to be contaminated by OTA by s-dot ELISA. The assay results were further co-evaluated with conventional analytical high-performance liquid chromatography (HPLC) method. Results of the s-dot ELISA are in concordance with HPLC except for three samples that were negative for OTA presence by s-dot ELISA but found positive by HPLC. Although positive by HPLC, the amount of OTA in the three samples was found to be lesser than the accepted levels (>5 μg/kg) of OTA presence in cereals. Therefore, in conclusion, the developed s-dot ELISA is a better alternative for routine cereal based food and feed analysis in diagnostic labs to check the presence of OTA over existing conventional culture based, tedious analytical methods.
Collapse
Affiliation(s)
- M. Venkataramana
- Division of Toxicology and Immunology, DRDO-BU Center for Life Sciences, Bharathiar University, CoimbatoreIndia
| | - R. Rashmi
- Microbiology Division, Defence Food Research Laboratory, MysoreIndia
| | | | - S. Chandranayaka
- Department of Studies in Biotechnology, University of MysoreMysore, India
| | - K. Balakrishna
- Microbiology Division, Defence Food Research Laboratory, MysoreIndia
| | - M. Radhika
- Microbiology Division, Defence Food Research Laboratory, MysoreIndia
| | - Vijai K. Gupta
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland GalwayGalway, Ireland
| | - H. V. Batra
- Microbiology Division, Defence Food Research Laboratory, MysoreIndia
| |
Collapse
|
36
|
Sun DD, Gu X, Li JG, Yao T, Dong YC. Quality evaluation of five commercial enzyme linked immunosorbent assay kits for detecting aflatoxin b1 in feedstuffs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:691-6. [PMID: 25924961 PMCID: PMC4413000 DOI: 10.5713/ajas.14.0868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/30/2014] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate the quality of five commercial enzyme linked immunosorbent assay (ELISA) kits (A, B, C, D, and E) from different suppliers for detecting aflatoxin B1 (AFB1). AFB1-free corn samples supplemented with different levels of AFB1 (5, 10, and 20 μg/kg) were used as positive controls and 6 replicates of each control sample were tested to evaluate the accuracy and precision of these kits. In addition, we also evaluated the performance of these ELISA kits for AFB1 in 30 feed samples, including corn, distillers dried grains with soluble, wheat samples, soybean meal, and poultry feed, which were verified by high performance liquid chromatography. Results showed that the coefficients of variation ranged from 1.18% to 16.22% in intra-plate and 2.85% to 18.04% in inter-plate for the determination of AFB1. The half maximal inhibitory concentration for five kits ranged from 3.72 to 7.22 μg/kg. The quantitation limits of AFB1 were all under the legal limit in China but somewhat inconsistent with kit instructions. Although the recovery rate of four of the five kits were either less than 90% or more than 110%, all these values were acceptable in practice. Two kits had high false positive rates (C and E). In conclusion, our results revealed that the qualities of five tested ELISA kits were significantly different.
Collapse
Affiliation(s)
- Dan-Dan Sun
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun-Guo Li
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Yao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying-Chao Dong
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
37
|
Kavanagh O, Elliott CT, Campbell K. Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins. Anal Bioanal Chem 2015; 407:2749-70. [PMID: 25716465 DOI: 10.1007/s00216-015-8502-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/08/2023]
Abstract
Rapid immunoanalytical screening of food and environmental samples for small molecular weight (hapten) biotoxin contaminations requires the production of antibody reagents that possess the requisite sensitivity and specificity. To date animal-derived polyclonal (pAb) and monoclonal (mAb) antibodies have provided the binding element of the majority of these assays but recombinant antibodies (rAb) isolated from in vitro combinatorial phage display libraries are an exciting alternative due to (1) circumventing the need for experimental animals, (2) speed of production in commonly used in vitro expression systems and (3) subsequent molecular enhancement of binder performance. Short chain variable fragments (scFv) have been the most commonly employed rAb reagents for hapten biotoxin detection over the last two decades but antibody binding fragments (Fab) and single domain antibodies (sdAb) are increasing in popularity due to increased expression efficiency of functional binders and superior resistance to solvents. rAb-based immunochromatographic assays and surface plasmon resonance (SPR) biosensors have been reported to detect sub-regulatory levels of fungal (mycotoxins), marine (phycotoxins) and aquatic biotoxins in a wide range of food and environmental matrices, however this technology has yet to surpass the performances of the equivalent mAb- and pAb-based formats. As such the full potential of rAb technology in hapten biotoxin detection has yet to be achieved, but in time the inherent advantages of engineered rAb are set to provide the next generation of ultra-high performing binder reagents for the rapid and specific detection of hapten biotoxins.
Collapse
Affiliation(s)
- Owen Kavanagh
- Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK,
| | | | | |
Collapse
|
38
|
Zhao X, Yuan Y, Zhang X, Yue T. Identification of ochratoxin A in Chinese spices using HPLC fluorescent detectors with immunoaffinity column cleanup. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Manoochehri M, Asgharinezhad AA, Safaei M. Determination of Aflatoxin M1 in Milk Powder by Ultrasonic-Assisted Extraction and Dispersive Solid-Phase Clean-up. J Chromatogr Sci 2014; 53:1000-6. [DOI: 10.1093/chromsci/bmu131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Indexed: 11/14/2022]
|
40
|
Jin N, Ling S, Yang C, Wang S. Preparation and identification of monoclonal antibody against Citreoviridin and development of detection by Ic-ELISA. Toxicon 2014; 90:226-36. [DOI: 10.1016/j.toxicon.2014.08.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
41
|
Manoochehri M, Asgharinezhad AA, Safaei M. Determination of aflatoxins in rice samples by ultrasound-assisted matrix solid-phase dispersion. J Chromatogr Sci 2014; 53:189-95. [PMID: 24771057 DOI: 10.1093/chromsci/bmu018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work describes the application of ultrasound-assisted matrix solid-phase dispersion as an extraction and sample preparation approach for aflatoxins (B1, B2, G1 and G2) and subsequent determination of them by high-performance liquid chromatography-fluorescence detection. A Box-Behnken design in combination with response surface methodology was used to determine the affecting parameters on the extraction procedure. The influence of different variables including type of dispersing phase, sample-to-dispersing phase ratio, type and quantity of clean-up phase, ultrasonication time, ultrasonication temperature, nature and volume of the elution solvent was investigated in the optimization study. C18, primary-secondary amine (PSA) and acetonitrile were selected as dispersing phase, clean-up phase and elution solvent, respectively. The obtained optimized values were sample-to-dispersing phase ratio of 1 : 1, 60 mg of PSA, 11 min ultrasonication time, 30°C ultrasonication temperature and 4 mL acetonitrile. Under the optimal conditions, the limits of detection were ranged from 0.09 to 0.14 ng g(-1) and the precisions [relative standard deviation (RSD%)] were <8.6%. The recoveries of the matrix solid-phase dispersion process ranged from 78 to 83% with RSD <10% in all cases. Finally, this method was successfully applied to the extraction of trace amounts of aflatoxins in rice samples.
Collapse
Affiliation(s)
- Mahboobeh Manoochehri
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, PO Box 14676-86831, Tehran, Iran
| | - Ali Akbar Asgharinezhad
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, PO Box 31485-313, Karaj, Iran
| | | |
Collapse
|
42
|
Ling S, Pang J, Yu J, Wang R, Liu L, Ma Y, Zhang Y, Jin N, Wang S. Preparation and identification of monoclonal antibody against fumonisin B1 and development of detection by Ic-ELISA. Toxicon 2014; 80:64-72. [DOI: 10.1016/j.toxicon.2013.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 11/25/2022]
|
43
|
Tang X, Li X, Li P, Zhang Q, Li R, Zhang W, Ding X, Lei J, Zhang Z. Development and application of an immunoaffinity column enzyme immunoassay for mycotoxin zearalenone in complicated samples. PLoS One 2014; 9:e85606. [PMID: 24465616 PMCID: PMC3894983 DOI: 10.1371/journal.pone.0085606] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
The zearalenone (ZEA) monoclonal antibody (mAb) 2D3, one of the highest sensitivity antibodies, was developed. Based on this mAb, it was established of an immunoaffinity column (IAC) coupled with an indirect competitive enzyme-linked immunosorbent assay (icELISA). After optimization, the icELISA allowed an IC50 against ZEA of 0.02 µg L(-1). The mAb 2D3 exhibited a high recognition of ZEA (100%) and β-zearalenol (β-ZOL, 88.2%). Its cross-reactivity with α-zearalenol (α-ZOL) and β-zearalanol (β-ZAL) were found to be 4.4% and 4.6%, respectively. The IAC-icELISA method was employed to analyze ZEA contamination in food samples, compared with high-performance liquid chromatography (HPLC). The spiked assay for ZEA demonstrated the considerable recoveries for IAC-icELISA (83-93%) and HPLC (94-108%) methods. Results showed that the mAb 2D3 and IAC-icELISA method posed potential applications in sensitively determination of ZEA in maize.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Xin Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, P. R. China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
| | - Ran Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
| | - Xiaoxia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, P. R. China
| | - Jiawen Lei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- Key laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, P. R. China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, P. R. China
| |
Collapse
|
44
|
Zachariasova M, Cuhra P, Hajslova J. Cross-reactivity of rapid immunochemical methods for mycotoxins detection towards metabolites and masked mycotoxins: the current state of knowledge. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2014.1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cross-reactivity of antibodies employed within immunochemistry-based analytical methods may lead to overestimation of the results. Under certain conditions, specifically when controlling mycotoxin maximum limits serious problems can be encountered. Not only the structurally related mycotoxins, such as their masked (conjugated) forms, but also the unidentified matrix components are responsible for concentration overestimation of respective target analytes. The cross-reactivity phenomenon may also pose a risk of miss-interpretation of the proficiency tests results, when the assigned value becomes influenced by over-estimated results reported by users of immunochemical tests. In this paper, the current state of the knowledge on trueness problems associated with the rapid screening immunochemical methods have been reviewed. Special attention is focused on discussion of cross-reactivity in the ELISA tests, because this rapid test dominates the routine screening practice. However, the cross-reactions reported in lateral flow test strips, fluorescence polarisation immunoassay, or immunosensors have also been addressed.
Collapse
Affiliation(s)
- M. Zachariasova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Institute of Chemical Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - P. Cuhra
- Czech Agriculture and Food Inspection Authority, Za Opravnou 300/6, 150 06 Prague 5, Czech Republic
| | - J. Hajslova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Institute of Chemical Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
45
|
Mashhadizadeh MH, Amoli-Diva M, Pourghazi K. Magnetic nanoparticles solid phase extraction for determination of ochratoxin A in cereals using high-performance liquid chromatography with fluorescence detection. J Chromatogr A 2013; 1320:17-26. [DOI: 10.1016/j.chroma.2013.10.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/13/2013] [Accepted: 10/21/2013] [Indexed: 11/29/2022]
|
46
|
Dzuman Z, Vaclavikova M, Polisenska I, Veprikova Z, Fenclova M, Zachariasova M, Hajslova J. Enzyme-linked immunosorbent assay in analysis of deoxynivalenol: investigation of the impact of sample matrix on results accuracy. Anal Bioanal Chem 2013; 406:505-14. [DOI: 10.1007/s00216-013-7463-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
|
47
|
Li X, Li P, Zhang Q, Li R, Zhang W, Zhang Z, Ding X, Tang X. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens Bioelectron 2013; 49:426-432. [PMID: 23807236 DOI: 10.1016/j.bios.2013.05.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022]
Abstract
Mycotoxins are highly toxic contaminants and have induced health threat to human and animals. Aflatoxin B1 (AFB1), ochratoxin A (OTA) and zearalenone (ZEA) commonly occur in food and feed. A multi-component immunochromatographic assay (ICA) was developed for rapid and simultaneous determination of these three mycotoxins in agro-food. The strategy was performed based on the competitive immunoreactions between antibody-colloidal gold nanoparticle conjugate probes and mycotoxins or mycotixin antigens. Each monoclonal antibody specially recognize its corresponding mycotoxin and antigen, and there was no cross reactivity in the assay. Three mycotixin antigens were immobilized as three test lines in the nitrocellulose membrane reaction zone, which enable the simultaneous detection in one single test. The visible ICA results were obtained in 20 min. The visual detection limits of this strip test for the AFB1, OTA and ZEA were 0.25 ng/mL, 0.5 ng/mL and 1 ng/mL, respectively. The assay was evaluated using spiked and naturally contaminated peanuts, maize and rice samples. The results were in accordance with those obtained using enzyme-linked immunosorbent assay. In summary, this developed ICA could provide an effective and rapid approach for onsite detection of multi-mycotoxin in agro-food samples without any expensive instrument.
Collapse
Affiliation(s)
- Xin Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Manoochehri M, Asgharinezhad AA, Safaei M. Multivariate optimisation of an ultrasound assisted-matrix solid-phase dispersion method combined with LC-fluorescence detection for simultaneous extraction and determination of aflatoxins in pistachio nut samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2013; 30:1954-62. [DOI: 10.1080/19440049.2013.832401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Li X, Li P, Zhang Q, Zhang Z, Li R, Zhang W, Ding X, Chen X, Tang X. A Sensitive Immunoaffinity Column-Linked Indirect Competitive ELISA for Ochratoxin A in Cereal and Oil Products Based on a New Monoclonal Antibody. FOOD ANAL METHOD 2013; 6:1433-1440. [DOI: 10.1007/s12161-013-9561-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Evtugyn G, Porfireva A, Sitdikov R, Evtugyn V, Stoikov I, Antipin I, Hianik T. Electrochemical Aptasensor for the Determination of Ochratoxin A at the Au Electrode Modified with Ag Nanoparticles Decorated with Macrocyclic Ligand. ELECTROANAL 2013. [DOI: 10.1002/elan.201300164] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|