1
|
Li X, Xu T, Fan G, Wu C. The morphologies, physicochemical properties and sustained-release features of short amylose/WPI modified by DBD plasma-rutin nanocomplex. Food Chem 2025; 477:143594. [PMID: 40020622 DOI: 10.1016/j.foodchem.2025.143594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
To further improve the sustained-release feature of whey protein isolate (WPI) modified by dielectric barrier discharge (DBD) plasma (DWPI) for rutin, short amylose (SA) was used to fabricate DWPI/SA-rutin ternary complex. The physicochemical properties of complexes with different DWPI/SA ratios were investigated and compared. The results showed that the ternary complex nanoparticles gradually tended to be spherical and increased in particle size with the increase of the SA addition. The primary interaction forces between DWPI and SA were hydrogen bond, electrostatic and hydrophobic interactions, which made the ΔH of ternary complex be increased by 649.71 % when the DWPI/SA ratio was 1:1, and the radical scavenging activities of rutin significantly be improved. The cumulative release rate of rutin in the ternary complex was only 27.11 % when the ratio of DWPI/SA was 1:4 after oral and stomach digestion. The research provided a new method for fabricating starch/protein nanocarriers with a sustained-release effect.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
Yang T, Bian Y, Qu Z, Zhang Y, Li S, Chen G, Chen Y. Gastrointestinal pH-sensitive Pickering emulsions stabilized by glycosylated zein conjugates ferulic acid nanoparticles: Improving oral bioaccessibility of Coenzyme Q10. Colloids Surf B Biointerfaces 2025; 249:114502. [PMID: 39799611 DOI: 10.1016/j.colsurfb.2025.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied. The results showed that covalent embedding of ferulic acid (ZGF-con) effectively improved the surface properties of zein nanoparticles based on glycosylation modification of zein, further regulating their behavior at the oil-water interface. In addition, the particle size of ZGF-con was small (92.93 nm), the wettability was moderate (89.85 °), and it was spherical, with orderly transition of secondary structure, which was conducive to the formation of stable emulsion at the oil-water interface. The stable Pickering emulsion formed by ZGF-con showed ideal emulsification performance, and the electrostatic repulsion between droplets and the formation of a robust spatial network structure promoted the stability of the emulsion. In addition, the encapsulation efficiency of CoQ10 in ZGF-con stabilized Pickering emulsion reached 96.11 %. In vitro simulated digestion, ZGF-con stabilized Pickering emulsion was relatively stable in the gastric acid environment, and slowly released in the small intestine, realizing the small intestine targeted release of CoQ10, which increased its bioaccessibility from 10.57 % to 56.42 %. This study provides an effective strategy for the preparation of pH-sensitive Pickering emulsion to improve the bioaccessibility of hydrophobic active ingredients.
Collapse
Affiliation(s)
- Tongliang Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Bian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihan Qu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yifu Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuhong Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guiyun Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ye Chen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Teng F, Liu Y, Peng R, Wang Z, Xu J, Yang Y. Preparation of polysaccharide-surfactant modified gliadin nanoparticles and loading with resveratrol. Int J Biol Macromol 2025; 302:140541. [PMID: 39894128 DOI: 10.1016/j.ijbiomac.2025.140541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
In the presented research, environmentally friendly, nontoxic, and biodegradable nanoparticles were synthesized from gliadin, hyaluronic acid (HA), and sophorolipid (SPL) for the delivery of resveratrol (Res). The incorporation of HA and SPL leads to an increase in nanoparticle size. The unfolding of proteins was facilitated by HA and SPL through non-covalent interactions. Res-loaded gliadin nanoparticles modified with surfactant-polysaccharides (GHS/RNPs) exhibited the highest encapsulation efficiency of Res. Molecular docking analyses revealed that the binding between Res and gliadin primarily involved hydrogen bonds, π-alkyl interactions, electrostatic forces, and van der Waals attractions, findings that were corroborated by spectroscopic investigations. The GHS/RNPs demonstrated superior stability and sustained Res retention across various conditions. Intriguingly, during in vitro gastrointestinal digestion, the HA and SPL components within the nanoparticle shell facilitated the controlled release of Res, significantly enhancing its bioavailability in the small intestine. This study holds significant implications for advancing gliadin-based oral delivery systems for bioactive compounds in both the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Fei Teng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yapeng Liu
- Yili Industrial Group Co., Ltd, Hohhot, Inner Mongolia 010110, China
| | - Ruiqi Peng
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yuling Yang
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201600, China.
| |
Collapse
|
4
|
Hong R, Han Y, Chen S. Advances in micro- and nano- delivery systems for increasing the stability, bioavailability and bioactivity of coenzyme Q 10. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39819160 DOI: 10.1080/10408398.2025.2450543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coenzyme Q10 acts as a liposoluble quinone compound in mitochondrial oxidative phosphorylation, serving as an electron carrier and protecting the cell membrane structure as an antioxidant. Coenzyme Q10 has notable health benefits, including anti-aging, anti-inflammatory, prevention of cardiovascular diseases, and assistance in cancer treatment. However, its poor water solubility, unstable chemical properties, and low bioavailability significantly limit its application. This article reviewed the design and development processes of various delivery systems for coenzyme Q10, discussing the advantages and disadvantages of different delivery systems and their improvement strategies, including improvements in the stability and accessibility of emulsions, achieving higher penetration rates for oleogels, and reducing the use of toxic substances in the production process of liposomes. The mechanisms behind coenzyme Q10's low stability and bioavailability were analyzed, and the bioactivity and research prospects of coenzyme Q10 were also discussed. In summary, this review offered valuable insights into the design and application of delivery systems for coenzyme Q10, which may provide a reference for its development and application in pharmaceuticals, cosmetics, health products, and other industries in the future.
Collapse
Affiliation(s)
- Ruoxuan Hong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Yahong Han
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Liu Y, Tan X, Li L, Xie T, Teng F. Co-encapsulation of vitamin E and quercetin by soybean lipophilic proteins based on pH-shifting and ultrasonication: Focus on interaction mechanisms, structural and physicochemical properties. Food Chem 2024; 460:140608. [PMID: 39089031 DOI: 10.1016/j.foodchem.2024.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
This study explored the mechanism of interaction of pH-shifting combined ultrasonication and its effect on soybean lipophilic proteins (SLP) and the potential of modified SLP as the carrier for vitamin E (VE) and quercetin (QU). The spectroscopy results revealed that both VE and QU changed the SLP conformation and exposed hydrophobic groups. The loading rates of VE and QU by SLP with alkaline pH-shifting combined with ultrasonication (300 w,20 min) were 86.91% and 75.99%, respectively. According to the antioxidant analysis, with an increase in the ultrasonication power, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity of the samples increased, where the DPPH and ABTS radical scavenging capacity of sample SQV-6 were 70.90% and 63.43%, respectively. The physicochemical properties, microstructure, and stability of the SLP-VE-QU complex improved significantly. Overall, the present findings broadened the application of simple structural carriers for co-encapsulating functional factors.
Collapse
Affiliation(s)
- Yue Liu
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lijia Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tiegang Xie
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Sakellari GI, Batchelor H, Spyropoulos F. The role of lipid particle-laden interfaces in regulating the co-delivery of two hydrophobic actives from o/w emulsions. Drug Deliv 2024; 31:2425158. [PMID: 39513340 PMCID: PMC11552284 DOI: 10.1080/10717544.2024.2425158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Co-delivery strategies have become an integral active delivery approach, although understanding of how the microstructural characteristics could be deployed to achieve independently regulated active co-delivery profiles, is still an area at its infancy. Herein, the capacity to provide such control was explored by utilizing Pickering emulsions stabilized by lipid particles, namely solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). These dual functional species, regarding their concurrent Pickering stabilization and active carrying/delivery capabilities, were formulated with different solid lipid and surfactant types, and the effect on the release and co-release modulation of two hydrophobic actives separately encapsulated within the lipid particles themselves and within the emulsion droplets was investigated. Disparities between the release profiles from the particles in aqueous dispersions or at an emulsion interface, were related to the specific lipid matrix composition. Particles composed of lipids with higher oil phase compatibility of the emulsion droplets were shown to exert less control over their release regulation ability, as were particles in the presence of surfactant micelles in the continuous phase. Irrespective of their formulation characteristics, all particles provided a level of active release control from within the emulsion droplets, which was dependant on the permeability of the formed interfacial layer. Specifically, use of a bulkier particle surfactant or particle sintering at the droplet interface resulted in more sustained droplet release rates. Compared to sole release, the co-release performance remained unaffected by the co-existence of the two hydrophobic actives with the co-release behavior persisting over a storage period of 1 month.
Collapse
Affiliation(s)
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Fotis Spyropoulos
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Lin X, Chen M, Rodriguez Gonzalez P, Danino D, Corke H. Advancing coenzyme Q10 delivery with plant protein-based nanoparticle-mediated nanosuspensions. Food Res Int 2024; 197:115120. [PMID: 39593351 DOI: 10.1016/j.foodres.2024.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Coenzyme Q10 (CoQ10) possesses significant health-promoting potential, yet its oral delivery encounters obstacles stemming from its distinctive physicochemical characteristics, such as poor solubility, sensitivity to environmental factors and low bioaccessibility. To overcome these challenges, we developed high-payload CoQ10 nanosuspensions (CQ@SPNP, CQ@RPNP, and CQ@WPNP) using plant-based protein nanoparticles (NPs) derived from soybean (SPNP), rice (RPNP), and walnut (WPNP). The nanosuspensions include spherical particles, characterized by small particle size (<230 nm), low polydispersity (PDI < 0.15), and a high zeta potential (<-44 mV). CoQ10 loading capacity exceeded 70.3 %, with an encapsulation efficiency of over 77.4 %. CoQ10 interacted with plant protein-based NPs via hydrophobic effect without losing its crystal structure. Moreover, SPNP, RPNP, and WPNP significantly increased the stability of CoQ10 nanosuspensions against light, heat, long-term storage, and in vitro digestion. In particular, CQ@WPNP exhibited the highest stability and CoQ10 bioaccessibility post-digestion. The observed increases in stability and bioaccessibility were closely related to the specific NPs utilized. This study highlights the potential of plant protein-based NPs in addressing challenges of CoQ10 delivery, offering a promising approach to improve its efficacy.
Collapse
Affiliation(s)
- Xiaoling Lin
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Meier Chen
- Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Pedro Rodriguez Gonzalez
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Dganit Danino
- Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Cryo-EM Laboratory of Soft Matter, Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
8
|
Abidin NZ, Ooi CH, Nosaka K, Rathakrishnan V, Chan SY, Karim NKA. Effects of Resveratrol Supplementation on Delayed Onset Muscle Soreness and Muscle Recovery: A Systematic Review. Malays J Med Sci 2024; 31:77-102. [PMID: 39830113 PMCID: PMC11740816 DOI: 10.21315/mjms2024.31.6.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 01/22/2025] Open
Abstract
Delayed onset muscle soreness (DOMS) and impaired muscle recovery significantly affect athletes and recreational exercisers, influencing their performance and training consistency. Resveratrol, a natural polyphenol known for its anti-inflammatory and antioxidant properties, is thought to mitigate these effects, yet its effectiveness remains to be fully verified. This systematic review evaluates the impact of RES supplementation on muscle recovery in adults by examining its influence on DOMS, oxidative stress, and inflammation, along with its interactions with other supplements. Three electronic databases and one registry were searched in October 2023. A total of 10 studies met the inclusion criteria, encompassing a combined participant count of 238 (N=238). The review encompassed diverse participant populations, exercise types, and resveratrol dosages. The findings indicated that resveratrol potentially reduces markers of muscle damage, such as creatine kinase and lactate dehydrogenase, and alleviates DOMS symptoms to varying degrees. However, results varied based on exercise intensity, participant demographics, timing of supplementations and dosages. Synergistic interaction studies suggested that resveratrol, in combination with other compounds, could be more effective in exerting its effects. Despite promising findings, the research was limited by diverse study designs and the absence of long-term impact assessments. Further studies should standardise methods and explore resveratrol's long-term safety and effectiveness. Nevertheless, these results underscore resveratrol's potential as a beneficial supplement in exercise and sports medicine, meriting additional detailed exploration to refine its use.
Collapse
Affiliation(s)
- Nurdiana Zainol Abidin
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Cheong Hwa Ooi
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Vishanth Rathakrishnan
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Noor Khairiah A Karim
- Department of Biomedical Imaging, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
9
|
Wei Y, Shao J, Wei K, Peng L, Wei X. Influence of Qingzhuan Tea Polysaccharides on F - Adsorption: Molecular Structure, Binding Behavior, and In Vitro and In Vivo Digestion and Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26384-26403. [PMID: 39545705 DOI: 10.1021/acs.jafc.4c05734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The high level of fluoride in Qingzhuan tea (QZT) poses a potential health risk to consumers. This study aims to explore the binding behavior of purified Qingzhuan tea polysaccharides (pTPS) and fluoride ions (F-), as well as their regulatory role in the digestion and metabolism of fluoride. The sugar content of pTPS was 94.64 ± 3.01%, with a molecular weight of 7.373 × 104 Da and high homogeneity. The effects of different proportions and environmental conditions on the adsorption of F- by pTPS were investigated. The influence of the complexation of pTPS and F- on the digestion and metabolism of fluoride was explored using an in vitro gastrointestinal digestion model and C57BL/6 mice. The structural alterations of pTPS were observed during simulated gastrointestinal digestion. Furthermore, pTPS were found to reduce serum fluoride levels and inhibit accumulation in major organs and tissues, especially the heart, liver, kidneys, muscles, and femur. This study investigated the binding pattern between fluorine and pTPS and its influence on the digestion and absorption of fluorine, providing a promising potential for pTPS as a bioadsorbent of fluorine to alleviate the toxicity of fluorine in QZT, which laid a theoretical foundation for the safety of consumption of QZT.
Collapse
Affiliation(s)
- Yang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jie Shao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kang Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lanlan Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinlin Wei
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
10
|
Subhasri D, Leena MM, Moses JA, Anandharamakrishnan C. Factors affecting the fate of nanoencapsulates post administration. Crit Rev Food Sci Nutr 2024; 64:11949-11973. [PMID: 37599624 DOI: 10.1080/10408398.2023.2245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.
Collapse
Affiliation(s)
- D Subhasri
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Ministry of Science and Technology, Government of India, Industrial Estate PO, Thiruvananthapuram, INDIA
| |
Collapse
|
11
|
Huang J, Zhang S, Liu D, Wang Q, Feng X, Chu L. Coenzyme Q10-loaded microcapsules stabilized by glyceryl monostearate and soy protein isolates-flaxseed gum: Characterization, in vitro release and digestive behavior. Int J Biol Macromol 2024; 278:134680. [PMID: 39142479 DOI: 10.1016/j.ijbiomac.2024.134680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
This study aimed to stabilize microcapsules with core materials of glyceryl monostearate (GMS) and octyl and decyl glycerate, and wall materials of soy protein isolates (SPI) and flaxseed gum (FG) by complex coacervation method to overcome the drawbacks of coenzyme Q10 (CoQ10). It was demonstrated by the study that the obtained microcapsules were irregular aggregates. Differential scanning calorimetry and x-ray diffraction patterns indicated that CoQ10 was entrapped inside the disordered semisolid cores of microcapsules. The CoQ10 loading and encapsulation efficiency analysis revealed that GMS and FG helped CoQ10 better encapsulated inside the microcapsules. The in vitro release curve showed a "burst" release of CoQ10 absorbed on the surface of microcapsules for the first 180 min, followed by a sustained release of the encapsulated CoQ10. GMS and FG contributed to the sustained release and the release mechanism of the microcapsules was Fickian diffusion. The in vitro simulated digestion demonstrated that the constructed microcapsules improved the bio-accessibility of CoQ10. Finally, due to the protection of GMS and FG, microcapsules had good storage stability. In conclusion, this study emphasized the potential of using new microcapsules to deliver and protect lipophilic ingredients, providing valuable information for developing functional foods with higher bioavailability.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; The East China Science and Technology Research Institute of Changshu Company Limited, Changshu 215500, China.
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Trautmann D, Suazo F, Torres K, Simón L. Antitumor Effects of Resveratrol Opposing Mechanisms of Helicobacter pylori in Gastric Cancer. Nutrients 2024; 16:2141. [PMID: 38999888 PMCID: PMC11243391 DOI: 10.3390/nu16132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Gastric cancer is an aggressive and multifactorial disease. Helicobacter pylori (H. pylori) is identified as a significant etiological factor in gastric cancer. Although only a fraction of patients infected with H. pylori progresses to gastric cancer, bacterial infection is critical in the pathology and development of this malignancy. The pathogenic mechanisms of this bacterium involve the disruption of the gastric epithelial barrier and the induction of chronic inflammation, oxidative stress, angiogenesis and metastasis. Adherence molecules, virulence (CagA and VacA) and colonization (urease) factors are important in its pathogenicity. On the other hand, resveratrol is a natural polyphenol with anti-inflammatory and antioxidant properties. Resveratrol also inhibits cancer cell proliferation and angiogenesis, suggesting a role as a potential therapeutic agent against cancer. This review explores resveratrol as an alternative cancer treatment, particularly against H. pylori-induced gastric cancer, due to its ability to mitigate the pathogenic effects induced by bacterial infection. Resveratrol has shown efficacy in reducing the proliferation of gastric cancer cells in vitro and in vivo. Moreover, the synergistic effects of resveratrol with chemotherapy and radiotherapy underline its therapeutic potential. However, further research is needed to fully describe its efficacy and safety in treating gastric cancer.
Collapse
Affiliation(s)
- Daniela Trautmann
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Francesca Suazo
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501015, Chile
| |
Collapse
|
13
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Hua Y, Wei Z, Xue C, Si J. Stability and programmed sequential release of Lactobacillus plantarum and curcumin encapsulated in bilayer-stabilized W 1/O/W 2 double emulsion: Effect of pectin as protective shell. Int J Biol Macromol 2024; 265:130805. [PMID: 38490382 DOI: 10.1016/j.ijbiomac.2024.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
In order to overcome the problem that traditional W1/O/W2 double emulsions do not have targeted release performance, thereby better meeting the health needs of consumers, ovalbumin fibrils/pectin-based bilayer-stabilized double emulsion (OP-BDE) co-encapsulated with Lactobacillus plantarum and curcumin was constructed with pectin as the outer protective shell, which was expected to be used in the development of novel functional foods. The effects of pectin coating on the viability of Lactobacillus plantarum under conditions including storage, pasteurization, freeze-thaw cycles and in vitro simulated digestion were investigated. Results showed that pectin as protective shell could significantly enhance the tolerance of Lactobacillus plantarum to various environmental factors. Besides, the adsorption of pectin endowed OP-BDE with higher lipolysis and stronger protective effect on curcumin, remarkably improving the photostability and bioaccessibility of curcumin. In addition, in vitro simulated gastrointestinal release study indicated that OP-BDE possessed programmed sequential release property, allowing curcumin and Lactobacillus plantarum to be released in small intestine and colon, respectively. OP-BDE is the first reported co-delivery emulsion system with programmed release characteristic. This study provides new insights into OP-BDE in constructing co-delivery systems and programmed sequential release of active substances, and has potential reference and application value in actual food production.
Collapse
Affiliation(s)
- Yijie Hua
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jingyu Si
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
15
|
Yang X, Lv Z, Han C, Zhang J, Duan Y, Guo Q. Stability and encapsulation properties of daidzein in zein/carrageenan/sodium alginate nanoparticles with ultrasound treatment. Int J Biol Macromol 2024; 262:130070. [PMID: 38340944 DOI: 10.1016/j.ijbiomac.2024.130070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
This study aimed to prepare carrageenan/sodium alginate double-stabilized layers of zein nanoparticles loaded with daidzein using ultrasound technology to investigate the effect of ultrasound treatment on the stability of composite nanoparticles and encapsulation of daidzein. Compared with composite nanoparticles without ultrasound treatment, the encapsulation efficiency of nanoparticles was increased (90.36 %) after ultrasound treatment (320 W, 15 min). Ultrasound treatment reduced the particle size and PDI of nanoparticles and improved the stability and solubility of nanoparticles. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanoparticles treated with ultrasound were smooth spherical and uniformly distributed. Fourier transform infrared spectroscopy (FTIR) results showed that the main forces that form nanoparticles are hydrogen bonding, electrostatic interactions and hydrophobic interactions. Fluorescence and CD chromatography showed that ultrasound treatment alters the secondary structure of zein and maintains nanoparticle stability. Encapsulation of daidzein in nanocarriers with ultrasound treatment can effectively scavenge DPPH and ABTS free radicals, improve antioxidant activity, and realize the slow release of daidzein in the gastrointestinal tract. The results showed that ultrasonication helps the construction of hydrophobic bioactives delivery carriers and provides better protection for unstable bioactives.
Collapse
Affiliation(s)
- Xue Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhuojia Lv
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cuiping Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Junfang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Duan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Gu X, Li W, Jiang X, Chang C, Wu J. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Int J Biol Macromol 2024; 258:128892. [PMID: 38134988 DOI: 10.1016/j.ijbiomac.2023.128892] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In this work, pectin was employed as a coating material to fabricate zein/whey protein isolate (WPI)/pectin complex nanoparticles via a pH-adjusted and heat-induced electrostatic adsorption process for potential oral administration applications of curcumin. Factors such as the order of raw material addition, heating temperature and pH, and zein concentration were comprehensively examined. In addition to electrostatic interactions, Fourier transform infrared and fluorescence spectroscopy indicated that hydrophobic interactions and hydrogen bonds were also involved in the development of complex nanoparticles. The complex nanoparticles obtained not only improved the antioxidant activity of curcumin in aqueous phase, but also contributed to its controlled release under gastrointestinal conditions. Our findings revealed that the heating pH and adding sequence of raw materials had a notable impact on the properties of complex nanoparticles, and that pectin coating had an exceptional stabilizing effect on complex nanoparticles under gastrointestinal circumstances. This study provides novel insights and perspectives for the preparation of polysaccharide-protein complex nanoparticles, signifying the potential use of zein/WPI/pectin complex nanoparticles as delivery vehicles in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| |
Collapse
|
17
|
Dávila León R, González‐Vázquez M, Lima‐Villegas KE, Mora‐Escobedo R, Calderón‐Domínguez G. In vitro gastrointestinal digestion methods of carbohydrate-rich foods. Food Sci Nutr 2024; 12:722-733. [PMID: 38370076 PMCID: PMC10867469 DOI: 10.1002/fsn3.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 02/20/2024] Open
Abstract
The trend toward healthier food products has led to an increase in the research of in vitro gastrointestinal digestion methods. Among the most used models, static models are the simplest. Most static models have three stages: oral, gastric, and intestinal, simulating the enzymatic, electrolyte, pH, temperature, and bile salt conditions. The studies that have taken the most notice are those related to antioxidant activity, followed by those dealing with proteins and carbohydrates using most of them static in vitro digestion models. The number of these studies has increased over the years, passing from 45 to 415 in a 10-year period (2012-2023) and showing an interest in knowing the impact of food on human health. Nevertheless, published papers report different methodologies and analytical approaches. This review discusses the similarities and differences between the published static in vitro gastrointestinal digestion methods, with a focus on carbohydrates, finding that the most used protocol is Infogest, but with differences, mainly in the type of enzymes and their activity. Regarding in vitro gastrointestinal digestion of carbohydrates, many of the published studies are related to food and biomacromolecules, being the oral phase the most omitted, while the intestinal phase in the most diverse. Other methodologies to study the intestinal phase have been recommended, but the number of in vitro digestion studies using these methodologies (RSIE and BBMV) is still scarce but could represent a good alternative to analyze carbohydrates foods when combining with Infogest. More studies are required in this area.
Collapse
Affiliation(s)
- Rebeca Dávila León
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | | | | - Rosalva Mora‐Escobedo
- Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
| | | |
Collapse
|
18
|
Wang L, Wei Z, Lv L, Xue C. An efficient co-delivery system based on multilayer structural nanoparticles for programmed sequential release of resveratrol and vitamin D3 to combat dextran sodium sulfate-induced colitis in mice. Int J Biol Macromol 2024; 254:127962. [PMID: 37952331 DOI: 10.1016/j.ijbiomac.2023.127962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Multilayer structural nanoparticles (MSNPs) fabricated by layer-by-layer self-assembly were used for the co-encapsulation of resveratrol (Res) and vitamin D3 (Vd). Res and Vd co-encapsulated MSNPs (Res-Vd-MSNPs) were evaluated by appearance, morphology, particle size, ζ potential and encapsulation efficiency (EE). The results showed that Res-Vd-MSNPs were spherical in shape with a particle size of 625.4 nm and a surface charge of +26.1 mV. The EE of Res and Vd was as high as 93.6 % and 90.8 %, respectively. Res-Vd-MSNPs exhibited better stability and lower degradation rate in simulated gastric fluid, allowing the programmed sequential release of Vd and Res in simulated intestinal fluid and simulated colonic fluid, which was also confirmed by in vivo fluorescence imaging of mice. In addition, Res-Vd-MSNPs effectively alleviated the clinical symptoms of dextran sulfate sodium salt (DSS)-induced colitis in mice, including weight loss, diarrhea and fecal bleeding, and it especially exerted a preventive effect on DSS-induced colon tissue damage and colon shortening. Furthermore, Res-Vd-MSNPs suppressed the expression of anti-inflammatory cytokines such as TNF-α, IL-1β and IL-6 and ameliorated DSS-induced oxidative damage, decreased colonic myeloperoxidase (MPO) and nitric oxide (NO) activities and elevated glutathione (GSH) level in DSS-treated mice. This study illustrated that MSNPs were potential carriers for developing the co-delivery system for the synergistic prevention and treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Ling Lv
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
19
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
20
|
Wang X, Shi G, Fan S, Ma J, Yan Y, Wang M, Tang X, Lv P, Zhang Y. Targeted delivery of food functional ingredients in precise nutrition: design strategy and application of nutritional intervention. Crit Rev Food Sci Nutr 2023; 64:7854-7877. [PMID: 36999956 DOI: 10.1080/10408398.2023.2193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
With the high incidence of chronic diseases, precise nutrition is a safe and efficient nutritional intervention method to improve human health. Food functional ingredients are an important material base for precision nutrition, which have been researched for their application in preventing diseases and improving health. However, their poor solubility, stability, and bad absorption largely limit their effect on nutritional intervention. The establishment of a stable targeted delivery system is helpful to enhance their bioavailability, realize the controlled release of functional ingredients at the targeted action sites in vivo, and provide nutritional intervention approaches and methods for precise nutrition. In this review, we summarized recent studies about the types of targeted delivery systems for the delivery of functional ingredients and their digestion fate in the gastrointestinal tract, including emulsion-based delivery systems and polymer-based delivery systems. The building materials, structure, size and charge of the particles in these delivery systems were manipulated to fabricate targeted carriers. Finally, the targeted delivery systems for food functional ingredients have gained some achievements in nutritional intervention for inflammatory bowel disease (IBD), liver disease, obesity, and cancer. These findings will help in designing fine targeted delivery systems, and achieving precise nutritional intervention for food functional ingredients on human health.
Collapse
Affiliation(s)
- Xu Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Guohua Shi
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Sufang Fan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Junmei Ma
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, China
- School of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Fu JJ, Fu DW, Zhang GY, Zhang ZH, Xu XB, Song L. Fabrication of glycated yeast cell protein via Maillard reaction for delivery of curcumin: improved environmental stability, antioxidant activity, and bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2544-2553. [PMID: 36571448 DOI: 10.1002/jsfa.12413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The application of curcumin (CUR) in the food industry is limited by its instability, hydrophobicity and low bioavailability. Yeast cell protein (YCP) is a by-product of spent brewer's yeast, which has the potential to deliver bioactive substances. However, the environmental stresses such as pH, salt and heat treatment has restricted its application in the food industry. Maillard reaction as a non-enzymatic browning reaction can improve protein stability under environmental stress. RESULTS The CUR was successfully encapsulated into the hydrophobic core of YCP/glycated YCP (GYCP) and enhanced by hydrogen bonding, resulting in static fluorescence quenching of YCP/GYCP. The average diameter and dispersibility of GYPC-CUR nanocomplex were significantly improved after glucose glycation (121.40 nm versus 139.70 nm). Moreover, the encapsulation capacity of CUR was not influenced by glucose glycation. The oxidative stability and bioaccessibility of CUR in nanocomplexes were increased compared with free CUR, especially complexed with GYCP conjugates. CONCLUSION Steric hindrance provided by glucose conjugation improved the enviriomental stability, oxidative activity and bioaccessibility of CUR in nanocomplexes. Thus, glucose-glycated YCP has potential application as a delivery carrier for hydrophobic compounds in functional foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Dong-Wen Fu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guang-Yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhi-Hui Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Xian-Bing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
22
|
Cheng H, Chen W, Jiang J, Khan MA, Wusigale, Liang L. A comprehensive review of protein-based carriers with simple structures for the co-encapsulation of bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:2017-2042. [PMID: 36938993 DOI: 10.1111/1541-4337.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein-ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Wang L, Wei Z, Xue C, Yang L. Co-delivery system based on multilayer structural nanoparticles for programmed sequential release of fucoxanthin and curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Falsafi SR, Wang Y, Ashaolu TJ, Sharma M, Rawal S, Patel K, Askari G, Javanmard SH, Rostamabadi H. Biopolymer Nanovehicles for Oral Delivery of Natural Anticancer Agents. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202209419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/06/2025]
Abstract
AbstractCancer is the second leading cause of death throughout the world. Nature‐inspired anticancer agents (NAAs) that are a gift of nature to humanity have been extensively utilized in the alleviation/prevention of the disease due to their numerous pharmacological activities. While the oral route is an ideal and common way of drug administration, the application of NAAs through the oral pathway has been extremely limited owing to their inherent features, e.g., poor solubility, gastrointestinal (GI) instability, and low bioavailability. With the development of nano‐driven encapsulation strategies, polymeric vehicles, especially those with natural origins, have demonstrated a potent platform, which can professionally shield versatile NAAs against GI barricades and safely deliver them to the site of action. In this review, the predicament of orally delivering NAAs and the encapsulation strategy solutions based on biopolymer matrices are summarized. Proof‐of‐concept in vitro/in vivo results are also discussed for oral delivery of these agents by various biopolymer vehicles, which can be found so far from the literature. Last but not the least, the challenges and new opportunities in the field are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Yong Wang
- School of Chemical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang 550000 Viet Nam
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobasés Haute Ecole Provinciale de Hainaut‐Condorcet Département AgroBioscience et Chimie 11, Rue de la Sucrerie 7800 ATH Belgium
- Department of Applied Biology University of Science and Technology Ri‐Bhoi Meghalaya 793101 India
| | - Shruti Rawal
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
- Department of Pharmaceutics Institute of Pharmacy Nirma University S.G. Highway, Chharodi Ahmedabad Gujarat 382481 India
| | - Kaushika Patel
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
| | - Gholamreza Askari
- Department of Community Nutrition School of Nutrition and Food Science Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center Cardiovascular Research Institute Isfahan University of Medical Isfahan 81746‐73461 Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| |
Collapse
|
25
|
Ding X, Wang F, Hu H, Imhanria S, Wang W, Zhang J. Tea-polyphenol green fabricating catkin-like CuAg for electrochemical H 2O 2 detection. Colloids Surf B Biointerfaces 2022; 219:112827. [PMID: 36154997 DOI: 10.1016/j.colsurfb.2022.112827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
Green fabrication of unique structural nanoparticles has always been of increasing interest in many fields. Herein, a facile and green strategy of fabricating catkin-like CuAg nanocomposites using tea-polyphenols as reduction agent is reported. As-prepared nanocomposites have been characterized by a series of analysis. Physical characterizations show the synthesised of nanocomposites whose catkin-like special morphology. The electrochemical detection hydrogen peroxide (H2O2) results show that, catkin-like CuAg nanocomposites have good sensitivity, stability and anti-interference and it could detect without any additional mediator or enzyme. Specifically, it shows good H2O2 sensitivity of 2.55 μA mM-1cm-2 with range of 0.1-120 mM. Therefore, the catkin-like CuAg nanocomposites prepared by an environmental-friendly synthetic strategy, would provide a good reference for other green syntheses in the future.
Collapse
Affiliation(s)
- Xu Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Fengxia Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.
| | - Hui Hu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Sarah Imhanria
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
26
|
Wu B, Li Y, Li Y, Li H, Li L, Xia Q. Encapsulation of resveratrol-loaded Pickering emulsions in alginate/pectin hydrogel beads: Improved stability and modification of digestive behavior in the gastrointestinal tract. Int J Biol Macromol 2022; 222:337-347. [PMID: 36152701 DOI: 10.1016/j.ijbiomac.2022.09.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
In this study, alginate/pectin hydrogel beads were prepared with different mixing ratios (9:1, 8:2, 7:3, 6:4, and 5:5) to encapsulate resveratrol-loaded Pickering emulsions using Ca2+ crosslinking. The system with a suitable ratio of pectin and alginate can enhance the encapsulation efficiency and loading capacity. Scanning electron microscopy (SEM) study confirmed that the hydrogel beads were spherical, in which Pickering emulsion was distributed evenly within the polymer network. Fourier Transform Infrared Spectroscopy (FTIR) study indicated that the hydrogel beads were formed by physical cross-linking. X-ray diffraction (XRD) study demonstrated that resveratrol existed in hydrogel beads with an amorphous or dissolved form. Besides, the stability and antioxidant capacity suggested that hydrogel beads could offer protection to resveratrol by preventing degradation through environmental stresses, while maintaining its antioxidant capacity. Importantly, hydrogels significantly reduced the release of free fatty acids and resveratrol during in vitro digestion compared to emulsions, especially with the appropriate ratio of sodium alginate and pectin. Overall, Pickering emulsions-loaded alginate/pectin hydrogel beads could offer a novel option for the preparation of low-calorie foods and a potential substitute model for controlling the release of free fatty acids contributing to the transportation of resveratrol.
Collapse
Affiliation(s)
- Bi Wu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150000, China
| | - Yuanyuan Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; School of Pharmacy Administration, Southeast University Chengxian Colleague, Nanjing 210096, China
| | - Heng Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Lele Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
27
|
Encapsulation of curcumin in gliadin-pectin in a core–shell nanostructure for efficient delivery of curcumin to cancer cells in vitro. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Deng Z, Li J, Chen Y, Huang C, Zhong N, Hu Y. Microparticle‐hydrogel hybrids for sustained release of dual bioactive compounds. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhicheng Deng
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Jinjun Li
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Yun Chen
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Chao Huang
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Nanjing Zhong
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
| | - Yong Hu
- School of Food Science Guangdong Pharmaceutical University Zhongshan People's Republic of China
- GDPU‐HKU Zhongshan Biomedical Innovation Platform Zhongshan People's Republic of China
| |
Collapse
|
29
|
Guan T, Zhang Z, Li X, Cui S, McClements DJ, Wu X, Chen L, Long J, Jiao A, Qiu C, Jin Z. Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery Systems. Foods 2022; 11:foods11111562. [PMID: 35681312 PMCID: PMC9180007 DOI: 10.3390/foods11111562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
As a renewable resource, the market trend of plant protein has increased significantly in recent years. Compared with animal protein, plant protein production has strong sustainability factors and a lower environmental impact. Many bioactive substances have poor stability, and poor absorption effects limit their application in food. Plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems. In this review, we present a detailed and concise summary of the effects and advantages of various plant protein-based carriers in the encapsulation, protection, and delivery of bioactive substances. Furthermore, the research progress of food-grade bioactive ingredient delivery systems based on plant protein preparation in recent years is summarized, and some current challenges and future research priorities are highlighted. There are some key findings and conclusions: (i) plant proteins have numerous functions: as carriers for transportation systems, a shell or core of a system, or food ingredients; (ii) plant protein-based carriers could improve the water solubility, stability, and bioavailability of bioactive substances by different types of delivery systems; and (iii) plant protein-based carriers stabilize bioactive substances with potential applications in the food and nutrition fields.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Shaoning Cui
- Department of Food, Yantai Nanshan University, Yantai 264005, China;
| | | | - Xiaotian Wu
- College of Food & Bioengineering, Xihua University, Chengdu 610039, China; (T.G.); (X.W.)
| | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Z.Z.); (L.C.); (J.L.); (A.J.); (C.Q.)
- Correspondence: ; Tel.: +86-5108-5327-006
| |
Collapse
|
30
|
Huang M, Wang J, Tan C, Ying R, Wu X, Chen W, Liu J, Ahmad M. Liposomal co‐delivery strategy to improve stability and antioxidant activity of trans‐resveratrol and naringenin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Meigui Huang
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Jin Wang
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Engineering and Technology Research Center of Food Additives Beijing Technology & Business University (BTBU) Beijing 100048 China
| | - Ruifeng Ying
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford OH 45056 USA
| | - Wei Chen
- Department of Information Systems and Analytics Miami University Oxford OH 45056 USA
| | - Jianhua Liu
- International Faculty of Applied Technology Yibin University Yibin Sichuan 644000 China
| | - Mehraj Ahmad
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing Jiangsu 210037 China
| |
Collapse
|
31
|
Liu K, Chen YY, Pan LH, Li QM, Luo JP, Zha XQ. Co-encapsulation systems for delivery of bioactive ingredients. Food Res Int 2022; 155:111073. [DOI: 10.1016/j.foodres.2022.111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/26/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
32
|
Yuan Y, Ma M, Wang D, Xu Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: from construction to application. Crit Rev Food Sci Nutr 2022; 63:7529-7545. [PMID: 35253532 DOI: 10.1080/10408398.2022.2047881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zein-based nanoparticles loaded with bioactive compounds have positive prospects in the food industry, but an important limiting factor for development is colloidal instability. Currently, extensive researches are focused on solving the instability of zein nanoparticles, but since the beginning of the studies, there has not been a summary of the factors affecting the stability of zein-based nanoparticles. In the present work, the factors were reviewed comprehensively from the perspective of carrier construction and application evaluation. The former mainly includes type, quantity, and characteristics of biopolymer, the mass ratio of biopolymer/bioactive compound to zein, blending sequence of biopolymer, and location of encapsulated bioactive compounds. The latter mainly includes pH, heating, ionic strength, storage, freeze-drying, and gastrointestinal digestion. The former is the prerequisite for the success of the latter. The challenge is that stability research is limited to the laboratory level, and it is difficult to ensure that the stability results are suitable for commercial food matrices due to their complexity. At the laboratory level, the future trends are the influence of external energy and the cross-complexity and uniformity of stability research. The review is expected to provide systematic understanding and guidance for the development of zein-based nanoparticles stability.
Collapse
Affiliation(s)
- Yongkai Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Mengjie Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
33
|
Zhang X, Lu Y, Zhao R, Wang C, Wang C, Zhang T. Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Surface coating of zein nanoparticles to improve the application of bioactive compounds: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Fabricating of grape seed proanthocyanidins loaded Zein-NaCas composite nanoparticles to exert effective inhibition of Q235 steel corrosion in seawater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Zhang X, Wei Z, Xue C. Physicochemical properties of fucoidan and its applications as building blocks of nutraceutical delivery systems. Crit Rev Food Sci Nutr 2022; 62:8935-8953. [PMID: 34132606 DOI: 10.1080/10408398.2021.1937042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many bioactive ingredients with health effects such as antioxidant, anti-inflammatory and neuroprotective possess low bioavailability due to poor solubility and sensitivity. Fucoidan is an ideal material for encapsulating bioactive ingredients because of its unique physicochemical and biological properties, which can improve the function and application of bioactive ingredients. Nevertheless, there is still a lack of review about the physicochemical properties as well as functionalities of fucoidan and the application of fucoidan-based delivery systems in functional food. Hence, in this review, recent advances on the structure, chemical modification, physicochemical properties and biological activity of fucoidan are summarized. This review systematacially describes the recent update on the fucoidan as a wall material for delivering nutraceuticals with a broad discussion on various types of delivery systems ranging from nanoparticles, nanoparticle/bead complexes, emulsions, edible films, nanocapsules and hydrogels. Futhermore, the technical scientific issues of the application of fucoidan in the field of food are emphasized. On the basis of more comprehensive and deeper understandings, the review ends with a concluding remark on future directions of fucoidan-based delivery systems for purposes. Novel fucoidan-based delivery systems such as aerogels, Pickering emulsions, emulsion-filled-hydrogels, liposomes-in-fucoidan, co-delivery systems of bioactive igredients can be designed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
38
|
Yang Z, McClements DJ, Peng X, Qiu C, Long J, Zhao J, Xu Z, Meng M, Chen L, Jin Z. Co-encapsulation of quercetin and resveratrol in zein/carboxymethyl cellulose nanoparticles: characterization, stability and in vitro digestion. Food Funct 2022; 13:11652-11663. [DOI: 10.1039/d2fo02718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation and investigation of zein/carboxymethyl cellulose composite nanoparticles to co-deliver quercetin and resveratrol.
Collapse
Affiliation(s)
- Zhongyu Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, 528436, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan, 528436, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
39
|
Liu Y, Liang Q, Liu X, Raza H, Ma H, Ren X. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Zhao W, Liu Z, Liang X, Wang S, Ding J, Li Z, Wang L, Jiang Y. Preparation and characterization of epigallocatechin-3-gallate loaded melanin nanocomposite (EGCG @MNPs) for improved thermal stability, antioxidant and antibacterial activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Fabrication and characterization of TPP-β-cyclodextrin/chitosan supramolecular nanoparticles for delivery dual bioactive compounds. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
A Novel Zein-Based Composite Nanoparticles for Improving Bioaccessibility and Anti-Inflammatory Activity of Resveratrol. Foods 2021; 10:foods10112773. [PMID: 34829054 PMCID: PMC8624517 DOI: 10.3390/foods10112773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
A microbial transglutaminase-induced cross-linked sodium caseinate (MSC) was used to stabilize zein nanoparticles, and the study was to investigate whether zein-MSC nanoparticles (zein-MSC NPs) can be used as an encapsulation carrier for resveratrol. A group of resveratrol-loaded zein-MSC nanoparticles (Res-zein-MSC NPs) with varying zein to Res mass ratios was first prepared. The particle sizes and zeta-potentials were in the ranges from 215.00 to 225.00 nm and from −29.00 to −31.00 mV. The encapsulation efficiency (EE) of Res was also influenced by the zein to Res mass ratio, and the encapsulated Res existed in an amorphous form. The major interactions between Res and zein-MSC NPs were hydrogen bonding and hydrophobic interaction. Furthermore, compared with free Res, the photo-stability and bioaccessibility of Res-zein-MSC NPs were significantly improved. The cellular studies also showed that Res-zein-MSC NPs exhibited lower cytotoxicity and desirable anti-inflammatory activity.
Collapse
|
43
|
Li D, Wei Z, Xue C. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 20:5345-5369. [PMID: 34596328 DOI: 10.1111/1541-4337.12840] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Due to its advantagessuch as ionic crosslinking, pH responsiveness, excellent biocompatibility, biodegradability and low price, alginate has become one of the most important natural polysaccharides extensively used in constructing desired delivery systems for food bioactive ingredients. In this review, the fundamental knowledge of alginate as a building block for construction of nutraceutical delivery systems is introduced. Then, various types of alginate-based nutraceutical delivery systems are classified and summarized. Furthermore, the future trends of alginate-based delivery systems are highlighted. Currently, alginate-based delivery systems include hydrogel, emulsion, emulsion-filled alginate hydrogel, nanoparticle, microparticle, core-shell particle, liposome, edible film, and aerogel. Although alginate has been widely used in the fabrication of food bioactive ingredient delivery systems, further efforts and improvements are still needed. For this purpose, the future perspectives of alginate-based delivery systems are discussed. The feasible research trends of alginate-based delivery systems include the development of novel large-scale commercial preparation technology, multifunctional delivery system based on alginate, alginate oligosaccharide-based delivery system and alginate-based oleogel. Overall, the objective of this review is to provide useful guidance for rational design and application of alginate-based nutraceutical delivery systems in the future.
Collapse
Affiliation(s)
- Duoduo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
44
|
Ozturk OK, Turasan H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Poureini F, Najafpour GD, Nikzad M, Najafzadehvarzi H, Mohammadi M. Loading of apigenin extracted from parsley leaves on colloidal core-shell nanocomposite for bioavailability enhancement. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Wei Y, Guo A, Liu Z, Zhang L, Liao W, Liu J, Mao L, Yuan F, Gao Y. Development of curcumin loaded core-shell zein microparticles stabilized by cellulose nanocrystals and whey protein microgels through interparticle interactions. Food Funct 2021; 12:6936-6949. [PMID: 34132729 DOI: 10.1039/d1fo00959a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Novel multilayered core-shell microparticles were developed to deliver curcumin using positively charged zein microparticles coated with negatively charged cellulose nanocrystals (CNCs) and positively charged whey protein microgels (WPMs) at pH 4. Different levels of WPMs (0.10%-1.50%, w/v) were utilized to regulate the structure, stability, and in vitro digestion of curcumin loaded zein-CNC core-shell microparticles. The size of zein-CNC-WPM core-shell microparticles ranged from 2087.7 to 2928.2 nm. The electrostatic attraction and hydrogen bonding were mainly involved in the assembly of the core-shell microparticles through particle-particle interactions. The microstructure of the core-shell microparticles was dependent on the level of the WPM. When its appropriate level was adopted (0.50%-1.00%, w/v), the WPM formed a protective shell for zein-CNC-WPM core-shell microparticles. The retention rate of curcumin in the core-shell microparticles increased by 47.56% and 32.79% during light and thermal treatment, respectively. Excess microgels facilitated the bridging aggregation and formation of a network structure on the particle surface, which further reduced their stability and greatly restricted the curcumin release. The potential of nanosized protein microgels was explored to stabilize and modulate the physicochemical properties of multilayered core-shell microparticles through interparticle interactions.
Collapse
Affiliation(s)
- Yang Wei
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Fu JJ, Sun C, Tan ZF, Zhang GY, Chen GB, Song L. Nanocomplexes of curcumin and glycated bovine serum albumin: The formation mechanism and effect of glycation on their physicochemical properties. Food Chem 2021; 368:130651. [PMID: 34392117 DOI: 10.1016/j.foodchem.2021.130651] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Bovine serum albumin (BSA) and BSA-glucose conjugates (GBSAⅠ and GBSAⅠI) with different extent of glycation were complexed with curcumin (CUR). The formation mechanism of BSA/GBSA-CUR complexes and the effect of glycation on their physicochemical properties were investigated. Fluorescence quenching and FTIR analysis indicated that the BSA/GBSA-CUR nanocomplexes were formed mainly by hydrophobic interactions. XRD analysis demonstrated that CUR was present in an amorphous state in the nanocomplexes. BSA with a greater extent of glycation (BSA < GBSAⅠ<GBSAⅠI) displayed a higher binding affinity for CUR. The highest CUR encapsulation efficiency (86.77%) and loading capacity (7.81 mg/g) were obtained in the GBSAⅠI-CUR nanocomplex. The zeta-potential varied from -17.45 to -27.65 mV, depending on the extent of glycation. Furthermore, the physicochemical stability of BSA/GBSA-CUR nanocomplexes increased with the increasing extent of glycation of BSA. Thus, the obtained GBSAⅠI have the potential to become new delivery carriers for encapsulating hydrophobic food components.
Collapse
Affiliation(s)
- Jing-Jing Fu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Cong Sun
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Zhi-Feng Tan
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Guang-Yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China
| | - Gui-Bing Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, United States.
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, PR China; National Engineering Research Center of Seafood, No. 1 Qinggongyuan, Ganjingzi District, Dalian, 116034, PR China.
| |
Collapse
|
49
|
Wei Y, Li C, Dai L, Zhang L, Liu J, Mao L, Yuan F, Gao Y. The construction of resveratrol-loaded protein-polysaccharide-tea saponin complex nanoparticles for controlling physicochemical stability and in vitro digestion. Food Funct 2021; 11:9973-9983. [PMID: 33118591 DOI: 10.1039/d0fo01741h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The novel zein-propylene glycol alginate (PGA) -tea saponin (TS) ternary complex nanoparticles were fabricated to deliver resveratrol. TS was firstly introduced to modulate the functional attributes, microstructure, molecular interactions and gastrointestinal digestion of the complex nanoparticles. The size of zein-PGA-TS complex nanoparticles was between 281.9 and 309.7 nm. In the presence of TS, the encapsulation efficiency of resveratrol was significantly elevated from 58.43% to 85.58%. The environmental stability of resveratrol was improved through entrapping into the complex nanoparticles with the rise in TS proportion. Multiple spectroscopic methods revealed that TS altered the micro-environment and secondary structure of the protein. Hydrogen bonds, hydrophobic effects and electrostatic interactions contributed to the formation of complex nanoparticles. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) patterns showed the amorphous nature of the encapsulated resveratrol. Field emission scanning electron microscopy (FE-SEM) confirmed the globular shape of the nanoparticles and their different aggregation states were dependent on the particle compositions. Moreover, the zein-PGA-TS complex nanoparticles exhibited the best sustained release in the small intestine when the mass ratio of zein to TS was 5 : 1 (23.20% in the stomach and 63.11% in the small intestine). These findings indicated the influence of TS on the properties and applications of the protein-polysaccharide complexes, which provided a new insight into the development of novel food grade nanoparticles with desirable stability and digestion behaviour.
Collapse
Affiliation(s)
- Yang Wei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|