1
|
Liu XL, Duan Z, Yu M, Liu X. Epigenetic control of circadian clocks by environmental signals. Trends Cell Biol 2024; 34:992-1006. [PMID: 38423855 DOI: 10.1016/j.tcb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Circadian clocks have evolved to enable organisms to respond to daily environmental changes. Maintaining a robust circadian rhythm under various perturbations and stresses is essential for the fitness of an organism. In the core circadian oscillator conserved in eukaryotes (from fungi to mammals), a negative feedback loop based on both transcription and translation drives circadian rhythms. The expression of circadian clock genes depends both on the binding of transcription activators at the promoter and on the chromatin state of the clock genes, and epigenetic modifications of chromatin are crucial for transcriptional regulation of circadian clock genes. Herein we review current knowledge of epigenetic regulation of circadian clock mechanisms and discuss how environmental cues can control clock gene expression by affecting chromatin states.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muqun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Liu P, Nadeef S, Serag MF, Paytuví-Gallart A, Abadi M, Della Valle F, Radío S, Roda X, Dilmé Capó J, Adroub S, Hosny El Said N, Fallatah B, Celii M, Messa GM, Wang M, Li M, Tognini P, Aguilar-Arnal L, Habuchi S, Masri S, Sassone-Corsi P, Orlando V. PRC2-EZH1 contributes to circadian gene expression by orchestrating chromatin states and RNA polymerase II complex stability. EMBO J 2024; 43:6052-6075. [PMID: 39433902 PMCID: PMC11612306 DOI: 10.1038/s44318-024-00267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Circadian rhythmicity of gene expression is a conserved feature of cell physiology. This involves fine-tuning between transcriptional and post-transcriptional mechanisms and strongly depends on the metabolic state of the cell. Together these processes guarantee an adaptive plasticity of tissue-specific genetic programs. However, it is unclear how the epigenome and RNA Pol II rhythmicity are integrated. Here we show that the PcG protein EZH1 has a gateway bridging function in postmitotic skeletal muscle cells. On the one hand, the circadian clock master regulator BMAL1 directly controls oscillatory behavior and periodic assembly of core components of the PRC2-EZH1 complex. On the other hand, EZH1 is essential for circadian gene expression at alternate Zeitgeber times, through stabilization of RNA Polymerase II preinitiation complexes, thereby controlling nascent transcription. Collectively, our data show that PRC2-EZH1 regulates circadian transcription both negatively and positively by modulating chromatin states and basal transcription complex stability.
Collapse
Affiliation(s)
- Peng Liu
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Seba Nadeef
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maged F Serag
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Maram Abadi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Francesco Della Valle
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Institute of Science, San Diego, CA, 92121, USA
| | - Santiago Radío
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Xènia Roda
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Jaïr Dilmé Capó
- Sequentia Biotech SL, Carrer Comte D'Urgell 240, Barcelona, 08036, Spain
| | - Sabir Adroub
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nadine Hosny El Said
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bodor Fallatah
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mirko Celii
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gian Marco Messa
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Paola Tognini
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, 56126, Italy
| | - Lorena Aguilar-Arnal
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Mexico City, 04510, Mexico
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, Bioscience Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Selma Masri
- University of California Irvine, Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, Irvine, CA, 92697, USA
| | - Paolo Sassone-Corsi
- University of California, Irvine, Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Irvine, CA, 92697, USA
| | - Valerio Orlando
- King Abdullah University of Science and Technology, KAUST, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
Crowthers R, Thi Mong Nguyen T, Martinez D. Circadian disruptions and their role in the development of hypertension. Front Neurosci 2024; 18:1433512. [PMID: 39170672 PMCID: PMC11335678 DOI: 10.3389/fnins.2024.1433512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Circadian fluctuations in physiological setpoints are determined by the suprachiasmatic nucleus (SCN) which exerts control over many target structures within and beyond the hypothalamus via projections. The SCN, or central pacemaker, orchestrates synchrony between the external environment and the internal circadian mechanism. The resulting cycles in hormone levels and autonomic nervous system (ANS) activity provide precise messages to specific organs, adjusting, for example, their sensitivity to approaching hormones or metabolites. The SCN responds to both photic (light) and non-photic input. Circadian patterns are found in both heart rate and blood pressure, which are linked to daily variations in activity and autonomic nervous system activity. Variations in blood pressure are of great interest as several cardiovascular diseases such as stroke, arrhythmias, and hypertension are linked to circadian rhythm dysregulation. The disruption of normal day-night cycles, such as in shift work, social jetlag, or eating outside of normal hours leads to desynchronization of the central and peripheral clocks. This desynchronization leads to disorganization of the cellular processes that are normally driven by the interactions of the SCN and photic input. Here, we review autonomic system function and dysfunction due to regulation and interaction between different cardiorespiratory brain centers and the SCN, as well as social, lifestyle, and external factors that may impact the circadian control of blood pressure.
Collapse
|
4
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. PLoS Genet 2024; 20:e1011278. [PMID: 38805552 PMCID: PMC11161047 DOI: 10.1371/journal.pgen.1011278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/07/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility at dawn and dusk over the circadian cycle. We observed significant oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible at both dawn and dusk, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase at dawn. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
7
|
Zhang X, Huang S, Kim JY. Cell-type specific circadian transcription factor BMAL1 roles in excitotoxic hippocampal lesions to enhance neurogenesis. iScience 2024; 27:108829. [PMID: 38303690 PMCID: PMC10831945 DOI: 10.1016/j.isci.2024.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/11/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Circadian clocks, generating daily rhythms in biological processes, maintain homeostasis in physiology, so clock alterations are considered detrimental. Studies in brain pathology support this by reporting abnormal circadian phenotypes in patients, but restoring the abnormalities by light therapy shows no dramatic effects. Recent studies on glial clocks report the complex effects of altered clocks by showing their beneficial effects on brain repairs. However, how neuronal clocks respond to brain pathology is elusive. This study shows that neuronal BMAL1, a core of circadian clocks, reduces its expression levels in neurodegenerative excitotoxicity. In the dentate gyrus of excitotoxic hippocampal lesions, reduced BMAL1 in granule cells precedes apoptosis. This subsequently reduces BMAL1 levels in neighbor neural stem cells and progenitors in the subgranular zone, enhancing proliferation. This shows the various BMAL1 roles depending on cell types, and its alterations can benefit brain repair. Thus, cell-type-specific BMAL1 targeting is necessary to treat brain pathology.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Yuan Y, Chen Q, Brovkina M, Clowney EJ, Yadlapalli S. Clock-dependent chromatin accessibility rhythms regulate circadian transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553315. [PMID: 37645872 PMCID: PMC10462003 DOI: 10.1101/2023.08.15.553315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility over the circadian cycle. We observed significant circadian oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible throughout the circadian cycle, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qianqian Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margarita Brovkina
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - E Josephine Clowney
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Tabuloc CA, Cai YD, Kwok RS, Chan EC, Hidalgo S, Chiu JC. CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters. PLoS Genet 2023; 19:e1010649. [PMID: 36809369 PMCID: PMC9983840 DOI: 10.1371/journal.pgen.1010649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.
Collapse
Affiliation(s)
- Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Elizabeth C. Chan
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
10
|
Cao X, Wang L, Selby CP, Lindsey-Boltz LA, Sancar A. Analysis of mammalian circadian clock protein complexes over a circadian cycle. J Biol Chem 2023; 299:102929. [PMID: 36682495 PMCID: PMC9950529 DOI: 10.1016/j.jbc.2023.102929] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Circadian rhythmicity is maintained by a set of core clock proteins including the transcriptional activators CLOCK and BMAL1, and the repressors PER (PER1, PER2, and PER3), CRY (CRY1 and CRY2), and CK1δ. In mice, peak expression of the repressors in the early morning reduces CLOCK- and BMAL1-mediated transcription/translation of the repressors themselves. By late afternoon the repressors are largely depleted by degradation, and thereby their expression is reactivated in a cycle repeated every 24 h. Studies have characterized a variety of possible protein interactions and complexes associated with the function of this transcription-translation feedback loop. Our prior investigation suggested there were two circadian complexes responsible for rhythmicity, one containing CLOCK-BMAL and the other containing PER2, CRY1, and CK1δ. In this investigation, we acquired data from glycerol gradient centrifugation and gel filtration chromatography of mouse liver extracts obtained at different circadian times to further characterize circadian complexes. In addition, anti-PER2 and anti-CRY1 immunoprecipitates obtained from the same extracts were analyzed by liquid chromatography-tandem mass spectrometry to identify components of circadian complexes. Our results confirm the presence of discrete CLOCK-BMAL1 and PER-CRY-CK1δ complexes at the different circadian time points, provide masses of 255 and 707 kDa, respectively, for these complexes, and indicate that these complexes are composed principally of the core circadian proteins.
Collapse
Affiliation(s)
- Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
11
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2022; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Tung Foundation Biomedical Sciences Centre, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nat Struct Mol Biol 2022; 29:549-562. [PMID: 35606517 DOI: 10.1038/s41594-022-00777-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per-/- fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition. Knocking out H2A.Z mimicked the Per null chromatin state and disrupted cellular rhythms. We found that endogenous mPER2 complexes retained CTCF as well as the specific H2A.Z-deposition chaperone YL1-a component of the ATP-dependent remodeler SRCAP and p400-TIP60 complex. While depleting YL1 or mutating chaperone-binding sites on H2A.Z lengthened the circadian period, H2A.Z deletion abrogated BMAL1 chromatin recruitment and promoted its proteasomal degradation. We propose that a PER2-mediated H2A.Z deposition pathway (1) compacts CLOCK-BMAL1 binding sites to establish negative feedback, (2) organizes circadian chromatin landscapes using CTCF and (3) bookmarks genomic loci for BMAL1 binding to impinge on the positive arm of the subsequent cycle.
Collapse
|
13
|
The Effect of the Concentration of Copper Ions on the Unfrozen Water Content in Bentonites Measured with the Use of DSC Method. MINERALS 2022. [DOI: 10.3390/min12050632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Studies on changes of unfrozen water content in calcium bentonite from Slovakia, with various concentrations of copper ions, were carried out using the method of differential scanning calorimetry (DSC). In this study, the influence of molar concentration of copper(II) chloride solution (1 M, 0.5 M, 0.25 M, 0.1 M), used to saturate clay, was analyzed, as well as the impact of copper ions contained in bentonite and how the copper concentration affects to changes of unfrozen water content versus temperature. The results suggest that new mineral phases originate in bentonite saturated with highly concentrated solutions due to the reaction with copper(II) chloride solutions. These minerals, identified based on XRD and SEM-EDS (X-ray Diffraction and Scanning Electron Microscopy with Energy Dispersive Spectroscopy) studies, are from the atacamite group. ANOVA (Analysis of Variance) has shown a statistically significant relationship between the unfrozen water content and the molar concentration of the solution used to saturate bentonite and between the unfrozen water content and the content of copper ions in the bentonite. The analysis of multiple regression has shown that the change of unfrozen water content in copper bentonites is related to the temperature change, specific surface, and the concentration of copper ions in the clay. An empirical equation was developed to estimate the content of unfrozen water at a given negative temperature in Cu-bentonites, in which the specific surface and copper ions concentration in the bentonite are the main parameters.
Collapse
|
14
|
Sato T, Sassone-Corsi P. Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 2022; 23:e52412. [PMID: 35412705 PMCID: PMC9066069 DOI: 10.15252/embr.202152412] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24-h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high-fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.
Collapse
Affiliation(s)
- Tomoki Sato
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, INSERM U1233, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Tartour K, Padmanabhan K. The Clock Takes Shape-24 h Dynamics in Genome Topology. Front Cell Dev Biol 2022; 9:799971. [PMID: 35047508 PMCID: PMC8762244 DOI: 10.3389/fcell.2021.799971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior-go hand in hand with 24 h rhythms in genome topology.
Collapse
Affiliation(s)
- Kévin Tartour
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| |
Collapse
|
16
|
Levine DC, Ramsey KM, Bass J. Circadian NAD(P)(H) cycles in cell metabolism. Semin Cell Dev Biol 2021; 126:15-26. [PMID: 34281771 DOI: 10.1016/j.semcdb.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.
Collapse
Affiliation(s)
- Daniel C Levine
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn M Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Gabriel CH, Del Olmo M, Zehtabian A, Jäger M, Reischl S, van Dijk H, Ulbricht C, Rakhymzhan A, Korte T, Koller B, Grudziecki A, Maier B, Herrmann A, Niesner R, Zemojtel T, Ewers H, Granada AE, Herzel H, Kramer A. Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells. Nat Commun 2021; 12:3796. [PMID: 34145278 PMCID: PMC8213786 DOI: 10.1038/s41467-021-24086-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.
Collapse
Affiliation(s)
- Christian H Gabriel
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Amin Zehtabian
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marten Jäger
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Reischl
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Hannah van Dijk
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Carolin Ulbricht
- Immune Dynamics, Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Korte
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Barbara Koller
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Astrid Grudziecki
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Bert Maier
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Department of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Raluca Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Tomasz Zemojtel
- Berlin Institute of Health (BIH) Core Genomics Facility, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Adrián E Granada
- Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
18
|
Phosphorylation of GAPVD1 Is Regulated by the PER Complex and Linked to GAPVD1 Degradation. Int J Mol Sci 2021; 22:ijms22073787. [PMID: 33917494 PMCID: PMC8038846 DOI: 10.3390/ijms22073787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.
Collapse
|
19
|
Chirico N, Van Laake LW, Sluijter JPG, van Mil A, Dierickx P. Cardiac circadian rhythms in time and space: The future is in 4D. Curr Opin Pharmacol 2020; 57:49-59. [PMID: 33338891 DOI: 10.1016/j.coph.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
The circadian clock synchronizes the body into 24-h cycles, thereby anticipating variations in tissue-specific diurnal tasks, such as response to increased cardiac metabolic demand during the active period of the day. As a result, blood pressure, heart rate, cardiac output, and occurrence of fatal cardiovascular events fluctuate in a diurnal manner. The heart contains different cell types that make up and reside in an environment of biochemical, mechanical, and topographical signaling. Cardiac architecture is essential for proper heart development as well as for maintenance of cell homeostasis and tissue repair. In this review, we describe the possibilities of studying circadian rhythmicity in the heart by using advanced in vitro systems that mimic the native cardiac 3D microenvironment which can be tuned in time and space. Harnessing the knowledge that originates from those in vitro models could significantly improve innovative cardiac modeling and regenerative strategies.
Collapse
Affiliation(s)
- Nino Chirico
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Linda W Van Laake
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alain van Mil
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
20
|
Greco CM, Cervantes M, Fustin JM, Ito K, Ceglia N, Samad M, Shi J, Koronowski KB, Forne I, Ranjit S, Gaucher J, Kinouchi K, Kojima R, Gratton E, Li W, Baldi P, Imhof A, Okamura H, Sassone-Corsi P. S-adenosyl-l-homocysteine hydrolase links methionine metabolism to the circadian clock and chromatin remodeling. SCIENCE ADVANCES 2020; 6:eabc5629. [PMID: 33328229 PMCID: PMC7744083 DOI: 10.1126/sciadv.abc5629] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 05/03/2023]
Abstract
Circadian gene expression driven by transcription activators CLOCK and BMAL1 is intimately associated with dynamic chromatin remodeling. However, how cellular metabolism directs circadian chromatin remodeling is virtually unexplored. We report that the S-adenosylhomocysteine (SAH) hydrolyzing enzyme adenosylhomocysteinase (AHCY) cyclically associates to CLOCK-BMAL1 at chromatin sites and promotes circadian transcriptional activity. SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases, and timely hydrolysis of SAH by AHCY is critical to sustain methylation reactions. We show that AHCY is essential for cyclic H3K4 trimethylation, genome-wide recruitment of BMAL1 to chromatin, and subsequent circadian transcription. Depletion or targeted pharmacological inhibition of AHCY in mammalian cells markedly decreases the amplitude of circadian gene expression. In mice, pharmacological inhibition of AHCY in the hypothalamus alters circadian locomotor activity and rhythmic transcription within the suprachiasmatic nucleus. These results reveal a previously unappreciated connection between cellular metabolism, chromatin dynamics, and circadian regulation.
Collapse
Affiliation(s)
- Carolina Magdalen Greco
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Jean-Michel Fustin
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Kakeru Ito
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Nicholas Ceglia
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Jiejun Shi
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Brian Koronowski
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Suman Ranjit
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Jonathan Gaucher
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA
| | - Rika Kojima
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine (UCI), Irvine, CA, USA
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine (UCI), Irvine, CA, USA
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine (UCI), Irvine, CA, USA
| | - Axel Imhof
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Department of Systems Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism; U1233 INSERM; Department of Biological Chemistry, School of Medicine, University of California, Irvine (UCI), Irvine, CA, USA.
| |
Collapse
|
21
|
Huang S, Choi MH, Huang H, Wang X, Chang YC, Kim JY. Demyelination Regulates the Circadian Transcription Factor BMAL1 to Signal Adult Neural Stem Cells to Initiate Oligodendrogenesis. Cell Rep 2020; 33:108394. [PMID: 33207207 DOI: 10.1016/j.celrep.2020.108394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022] Open
Abstract
Circadian clocks are endogenous oscillators that generate cell-autonomous rhythms that govern cellular processes and are synchronized by external cues in the local macro- and micro-environments. Demyelination, a common brain pathology with variable degrees of recovery, changes the microenvironment via damaged myelin and activation of glial cells. How these microenvironmental changes affect local circadian clocks and with what consequences is mostly unknown. Here, we show that within demyelinating lesions, astrocyte circadian clocks produce the Wnt inhibitors SFRP1 and SFRP5. Unexpectedly, SFRP1 and SFRP5 signal to the subventricular zone (SVZ) to reduce the circadian transcription factor BMAL1. This sequence of events causes adult neural stem cells in the SVZ to differentiate into oligodendrocyte lineage cells, which are then supplied to demyelinated lesions. Our findings show that circadian clocks in demyelinating lesions respond to microenvironmental changes and communicate with the SVZ to enhance a natural repair system of spontaneous remyelination.
Collapse
Affiliation(s)
- Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ming Ho Choi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hao Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
22
|
Mahesh G, Rivas GBS, Caster C, Ost EB, Amunugama R, Jones R, Allen DL, Hardin PE. Proteomic analysis of Drosophila CLOCK complexes identifies rhythmic interactions with SAGA and Tip60 complex component NIPPED-A. Sci Rep 2020; 10:17951. [PMID: 33087840 PMCID: PMC7578830 DOI: 10.1038/s41598-020-75009-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks keep time via ~ 24 h transcriptional feedback loops. In Drosophila, CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors are feedback loop components whose transcriptional status varies over a circadian cycle. Although changes in the state of activators and repressors has been characterized, how their status is translated to transcriptional activity is not understood. We used mass spectrometry to identify proteins that interact with GFP-tagged CLK (GFP-CLK) in fly heads at different times of day. Many expected and novel interacting proteins were detected, of which several interacted rhythmically and were potential regulators of protein levels, activity or transcriptional output. Genes encoding these proteins were tested to determine if they altered circadian behavior via RNAi knockdown in clock cells. The NIPPED-A protein, a scaffold for the SAGA and Tip60 histone modifying complexes, interacts with GFP-CLK as transcription is activated, and reducing Nipped-A expression lengthens circadian period. RNAi analysis of other SAGA complex components shows that the SAGA histone deubiquitination (DUB) module lengthened period similarly to Nipped-A RNAi knockdown and weakened rhythmicity, whereas reducing Tip60 HAT expression drastically weakened rhythmicity. These results suggest that CLK-CYC binds NIPPED-A early in the day to promote transcription through SAGA DUB and Tip60 HAT activity.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Gustavo B S Rivas
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Courtney Caster
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Evan B Ost
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | | | | | | | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
23
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Lu X, Chu CS, Fang T, Rayon-Estrada V, Fang F, Patke A, Qian Y, Clarke SH, Melnick AM, Zhang Y, Papavasiliou FN, Roeder RG. MTA2/NuRD Regulates B Cell Development and Cooperates with OCA-B in Controlling the Pre-B to Immature B Cell Transition. Cell Rep 2020; 28:472-485.e5. [PMID: 31291582 PMCID: PMC6690613 DOI: 10.1016/j.celrep.2019.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/21/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The NuRD complex contains both chromatin remodeling and histone deacetylase activities. Mice lacking the MTA2 subunit of NuRD show developmental defects in pro-B, pre-B, immature B, and marginal zone B cells, and abnormal germinal center B cell differentiation during immune responses. Mta2 inactivation also causes a derepression of Igll1 and VpreB1 genes in pre-B cells. Furthermore, MTA2/NuRD interacts directly with AIOLOS/IKAROS and shows a striking overlap with AIOLOS/IKAROS target genes in human pre-B cells, suggesting a functional interdependence between MTA2/NuRD and AIOLOS. Mechanistically, MTA2 deficiency in mice leads to increased H3K27 acetylation at both Igll1 and VpreB1 promoters. Gene profiling analyses also identify distinct MTA2-dependent transcription programs in pro-B and pre-B cells. In addition, we find a strong synergy between MTA2 and OCA-B in repressing Igll1 and VpreB1 at the pre-B cell stage, and in regulating both the pre-B to immature B transition and splenic B cell development. Lu et al. examine B cell developmental defects in MTA2-deficient mice. MTA2 interacts with AIOLOS/IKAROS, represses Igll1 expression, co-binds to most AIOLOS/IKAROS target genes in pre-B cells, and cooperates with OCA-B in the pre-B to immature B transition. These data suggest that AIOLOS/IKAROS functions through MTA2/NuRD during B cell development.
Collapse
Affiliation(s)
- Xiangdong Lu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Terry Fang
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Violeta Rayon-Estrada
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
| | - Fang Fang
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alina Patke
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Ye Qian
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi Zhang
- HHMI, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - F Nina Papavasiliou
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA; Division of Immune Diversity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Chang YC, Kim JY. Therapeutic implications of circadian clocks in neurodegenerative diseases. J Neurosci Res 2020; 98:1095-1113. [PMID: 31833091 DOI: 10.1002/jnr.24572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Circadian clocks, endogenous oscillators generating daily biological rhythms, have important roles in the nervous system to control diverse cellular processes-not only in the suprachiasmatic nucleus (SCN), where the master clocks reside to synchronize all circadian clocks in the body but also in other non-SCN areas. Accumulating evidence has shown relationships between circadian abnormalities (e.g., sleep disturbances and abnormal rest-activity rhythms) and disease progressions in various neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's (PD) disease. Although circadian abnormalities were frequently considered as consequences of disease onsets, recent studies suggest altered circadian clocks as risk factors to develop neurodegenerative diseases via altered production or clearance rates of toxic metabolites like amyloid β. In this review, we will summarize circadian clock-related pathologies in the most common neurodegenerative diseases in the central nervous system, AD and PD. Then, we will introduce the current clinical trials to rescue circadian abnormalities in AD and PD patients. Finally, a discussion about how to improve targeting circadian clocks to increase treatment efficiencies and specificities will be followed. This discussion will provide insight into circadian clocks as potential therapeutic targets to attenuate onsets and progressions of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
26
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
27
|
Partch CL. Orchestration of Circadian Timing by Macromolecular Protein Assemblies. J Mol Biol 2020; 432:3426-3448. [DOI: 10.1016/j.jmb.2019.12.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
|
28
|
Common Functions of Disordered Proteins across Evolutionary Distant Organisms. Int J Mol Sci 2020; 21:ijms21062105. [PMID: 32204351 PMCID: PMC7139818 DOI: 10.3390/ijms21062105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.
Collapse
|
29
|
Beytebiere JR, Greenwell BJ, Sahasrabudhe A, Menet JS. Clock-controlled rhythmic transcription: is the clock enough and how does it work? Transcription 2019; 10:212-221. [PMID: 31595813 DOI: 10.1080/21541264.2019.1673636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks regulate the rhythmic expression of thousands of genes underlying the daily oscillations of biological functions. Here, we discuss recent findings showing that circadian clock rhythmic transcriptional outputs rely on additional mechanisms than just clock gene DNA binding, which may ultimately contribute to the plasticity of circadian transcriptional programs.
Collapse
Affiliation(s)
- Joshua R Beytebiere
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Ben J Greenwell
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| | - Aishwarya Sahasrabudhe
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, TX, USA.,Program of Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
30
|
Hoffmann A, Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front Genet 2019; 10:682. [PMID: 31396263 PMCID: PMC6667665 DOI: 10.3389/fgene.2019.00682] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD's role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the formation of the cerebellar and cerebral cortex, NuRD facilitates experience-dependent cerebellar plasticity and regulates additionally cerebral subtype specification and connectivity in postmitotic neurons. Consistent with these properties, genetic variation in NuRD's subunits emerges as important risk factor in common polygenic forms of neurodevelopmental disorders (NDDs) and neurodevelopment-related psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BD). Overall, these findings highlight the critical role of NuRD in chromatin regulation in brain development and in mental health and disease.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
31
|
Petkau N, Budak H, Zhou X, Oster H, Eichele G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife 2019; 8:e43235. [PMID: 31294688 PMCID: PMC6650244 DOI: 10.7554/elife.43235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.
Collapse
Affiliation(s)
- Nikolai Petkau
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Harun Budak
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Xunlei Zhou
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Henrik Oster
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
32
|
The circadian clock control of adipose tissue physiology and metabolism. Auton Neurosci 2019; 219:66-70. [DOI: 10.1016/j.autneu.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
|
33
|
Pacheco-Bernal I, Becerril-Pérez F, Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for cyclic transcription. Clin Epigenetics 2019; 11:79. [PMID: 31092281 PMCID: PMC6521413 DOI: 10.1186/s13148-019-0677-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms orchestrate crucial physiological functions and behavioral aspects around a day in almost all living forms. The circadian clock is a time tracking system that permits organisms to predict and anticipate periodic environmental fluctuations. The circadian system is hierarchically organized, and a master pacemaker located in the brain synchronizes subsidiary clocks in the rest of the organism. Adequate synchrony between central and peripheral clocks ensures fitness and potentiates a healthy state. Conversely, disruption of circadian rhythmicity is associated with metabolic diseases, psychiatric disorders, or cancer, amongst other pathologies. Remarkably, the molecular machinery directing circadian rhythms consists of an intricate network of feedback loops in transcription and translation which impose 24-h cycles in gene expression across all tissues. Interestingly, the molecular clock collaborates with multitude of epigenetic remodelers to fine tune transcriptional rhythms in a tissue-specific manner. Very exciting research demonstrate that three-dimensional properties of the genome have a regulatory role on circadian transcriptional rhythmicity, from bacteria to mammals. Unexpectedly, highly dynamic long-range chromatin interactions have been revealed during the circadian cycle in mammalian cells, where thousands of regulatory elements physically interact with promoter regions every 24 h. Molecular mechanisms directing circadian dynamics on chromatin folding are emerging, and the coordinated action between the core clock and epigenetic remodelers appears to be essential for these movements. These evidences reveal a critical epigenetic regulatory layer for circadian rhythms and pave the way to uncover molecular mechanisms triggering pathological states associated to circadian misalignment.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
34
|
The Phospho-Code Determining Circadian Feedback Loop Closure and Output in Neurospora. Mol Cell 2019; 74:771-784.e3. [PMID: 30954403 DOI: 10.1016/j.molcel.2019.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
In the negative feedback loop driving fungal and animal circadian oscillators, negative elements (FREQUENCY [FRQ], PERIODS [PERs], and CRYPTOCHROMES [CRYs]) are understood to inhibit their own expression, in part by promoting the phosphorylation of their heterodimeric transcriptional activators (e.g., White Collar-1 [WC-1]-WC-2 [White Collar complex; WCC] and BMAL1/Circadian Locomotor Output Cycles Kaput [CLOCK]). However, correlations between heterodimer activity and phosphorylation are weak, contradictions exist, and mechanistic details are almost wholly lacking. We report mapping of 80 phosphosites on WC-1 and 15 on WC-2 and elucidation of the time-of-day-specific code, requiring both a group of phosphoevents on WC-1 and two distinct clusters on WC-2, that governs circadian repression, leading to feedback loop closure. Combinatorial control via phosphorylation also governs rhythmic WCC binding to the promoters of clock-controlled genes mediating the essential first step in circadian output, a group encoding both transcription factors and signaling proteins. These data provide a basic mechanistic understanding for fundamental events underlying circadian negative feedback and output, key aspects of circadian biology.
Collapse
|
35
|
Rosensweig C, Green CB. Periodicity, repression, and the molecular architecture of the mammalian circadian clock. Eur J Neurosci 2018; 51:139-165. [PMID: 30402960 DOI: 10.1111/ejn.14254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Large molecular machines regulate daily cycles of transcriptional activity and help generate rhythmic behavior. In recent years, structural and biochemical analyses have elucidated a number of principles guiding the interactions of proteins that form the basis of circadian timing. In its simplest form, the circadian clock is composed of a transcription/translation feedback loop. However, this description elides a complicated process of activator recruitment, chromatin decompaction, recruitment of coactivators, expression of repressors, formation of a repressive complex, repression of the activators, and ultimately degradation of the repressors and reinitiation of the cycle. Understanding the core principles underlying the clock requires careful examination of molecular and even atomic level details of these processes. Here, we review major structural and biochemical findings in circadian biology and make the argument that shared protein interfaces within the clockwork are critical for both the generation of rhythmicity and timing of the clock.
Collapse
Affiliation(s)
- Clark Rosensweig
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
36
|
Shakhmantsir I, Nayak S, Grant GR, Sehgal A. Spliceosome factors target timeless ( tim) mRNA to control clock protein accumulation and circadian behavior in Drosophila. eLife 2018; 7:39821. [PMID: 30516472 PMCID: PMC6281371 DOI: 10.7554/elife.39821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Transcription-translation feedback loops that comprise eukaryotic circadian clocks rely upon temporal delays that separate the phase of active transcription of clock genes, such as Drosophila period (per) and timeless (tim), from negative feedback by the two proteins. However, our understanding of the mechanisms involved is incomplete. Through an RNA interference screen, we found that pre-mRNA processing 4 (PRP4) kinase, a component of the U4/U5.U6 triple small nuclear ribonucleoprotein (tri-snRNP) spliceosome, and other tri-snRNP components regulate cycling of the molecular clock as well as rest:activity rhythms. Unbiased RNA-Sequencing uncovered an alternatively spliced intron in tim whose increased retention upon prp4 downregulation leads to decreased TIM levels. We demonstrate that the splicing of tim is rhythmic with a phase that parallels delayed accumulation of the protein in a 24 hr cycle. We propose that alternative splicing constitutes an important clock mechanism for delaying the daily accumulation of clock proteins, and thereby negative feedback by them. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Chronobiology Program at Penn, Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Soumyashant Nayak
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Gregory R Grant
- The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| | - Amita Sehgal
- Chronobiology Program at Penn, Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,The Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
37
|
Hong HK, Maury E, Ramsey KM, Perelis M, Marcheva B, Omura C, Kobayashi Y, Guttridge DC, Barish GD, Bass J. Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes Dev 2018; 32:1367-1379. [PMID: 30366905 PMCID: PMC6217733 DOI: 10.1101/gad.319228.118] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.
Collapse
Affiliation(s)
- Hee-Kyung Hong
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Eleonore Maury
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
- Unit of Endocrinology, Diabetes, and Nutrition, Université Catholique de Louvain (UCL), Brussels B-1200, Belgium
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Chiaki Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Yumiko Kobayashi
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Denis C Guttridge
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Grant D Barish
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
38
|
Park J, Belden WJ. Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin. BMC Genomics 2018; 19:777. [PMID: 30373515 PMCID: PMC6206985 DOI: 10.1186/s12864-018-5170-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background Disrupted diurnal rhythms cause accelerated aging and an increased incidence in age-related disease and morbidity. The circadian clock governs cell physiology and metabolism by controlling transcription and chromatin. The goal of this study is to further understand the mechanism of age-related changes to circadian chromatin with a focus on facultative heterochromatin and diurnal non-coding RNAs. Results We performed a combined RNA-seq and ChIP-seq at two diurnal time-points for three different age groups to examine the connection between age-related changes to circadian transcription and heterochromatin in neuronal tissue. Our analysis focused on uncovering the relationships between long non-coding RNA (lncRNA) and age-related changes to histone H3 lysine 9 tri-methylation (H3K9me3), in part because the Period (Per) complex can direct facultative heterochromatin and models of aging suggest age-related changes to heterochromatin and DNA methylation. Our results reveal that lncRNAs and circadian output change dramatically with age, but the core clock genes remain rhythmic. Age-related changes in clock-controlled gene (ccg) expression indicate there are age-dependent circadian output that change from anabolic to catabolic processes during aging. In addition, there are diurnal and age-related changes in H3K9me3 that coincide with changes in transcription. Conclusions The data suggest a model where some age-related changes in diurnal expression are partially attributed to age-related alterations to rhythmic facultative heterochromatin. The changes in heterochromatin are potentially mediated by changes in diurnal lncRNA creating an interlocked circadian-chromatin regulatory network that undergoes age-dependent metamorphosis. Electronic supplementary material The online version of this article (10.1186/s12864-018-5170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William J Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
39
|
Jiang X, Zhang T, Wang H, Wang T, Qin M, Bao P, Wang R, Liu Y, Chang HC, Yan J, Xu J. Neurodegeneration-associated FUS is a novel regulator of circadian gene expression. Transl Neurodegener 2018; 7:24. [PMID: 30338063 PMCID: PMC6182827 DOI: 10.1186/s40035-018-0131-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background Circadian rhythms are oscillating physiological and behavioral changes governed by an internal molecular clock, and dysfunctions in circadian rhythms have been associated with ageing and various neurodegenerative diseases. However, the evidence directly connecting the neurodegeneration-associated proteins to circadian control at the molecular level remains sparse. Methods Using meta-analysis, synchronized animals and cell lines, cells and tissues from FUS R521C knock-in rats, we examined the role of FUS in circadian gene expression regulation. Results We found that FUS, an oscillating expressed nuclear protein implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), exerted a novel feedback route to regulate circadian gene expression. Nr1d1-encoded core circadian protein REV-ERBα bound the Fus promoter and regulated the expression of Fus. Meanwhile, FUS was in the same complex as PER/CRY, and repressed the expression of E box-containing core circadian genes, such as Per2, by mediating the promoter occupancy of PSF-HDAC1. Remarkably, a common pathogenic mutant FUS (R521C) showed increased binding to PSF, and caused decreased expression of Per2. Conclusions Therefore, we have demonstrated FUS as a modulator of circadian gene expression, and provided novel mechanistic insights into the mutual influence between circadian control and neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Xin Jiang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China.,2University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Tao Zhang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China.,2University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Haifang Wang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Tao Wang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Meiling Qin
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Puhua Bao
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Ruiqi Wang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Yuwei Liu
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Hung-Chun Chang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Jun Yan
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| | - Jin Xu
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, New Life Science Bldg, 320 Yue Yang Road, Shanghai, 200031 China
| |
Collapse
|
40
|
Kim JK. Protein sequestration versus Hill-type repression in circadian clock models. IET Syst Biol 2018; 10:125-35. [PMID: 27444022 DOI: 10.1049/iet-syb.2015.0090] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circadian (∼24 h) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional-translational feedback loops to generate rhythms that are robust against intrinsic and extrinsic perturbations. To investigate the dynamics and mechanisms of the intracellular feedback loops in circadian clocks, a number of mathematical models have been developed. The majority of the models use Hill functions to describe transcriptional repression in a way that is similar to the Goodwin model. Recently, a new class of models with protein sequestration-based repression has been introduced. Here, the author discusses how this new class of models differs dramatically from those based on Hill-type repression in several fundamental aspects: conditions for rhythm generation, robust network designs and the periods of coupled oscillators. Consistently, these fundamental properties of circadian clocks also differ among Neurospora, Drosophila, and mammals depending on their key transcriptional repression mechanisms (Hill-type repression or protein sequestration). Based on both theoretical and experimental studies, this review highlights the importance of careful modelling of transcriptional repression mechanisms in molecular circadian clocks.
Collapse
Affiliation(s)
- Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
41
|
Wong DCS, O’Neill JS. Non-transcriptional processes in circadian rhythm generation. CURRENT OPINION IN PHYSIOLOGY 2018; 5:117-132. [PMID: 30596188 PMCID: PMC6302373 DOI: 10.1016/j.cophys.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
'Biological clocks' orchestrate mammalian biology to a daily rhythm. Whilst 'clock gene' transcriptional circuits impart rhythmic regulation to myriad cellular systems, our picture of the biochemical mechanisms that determine their circadian (∼24 hour) period is incomplete. Here we consider the evidence supporting different models for circadian rhythm generation in mammalian cells in light of evolutionary factors. We find it plausible that the circadian timekeeping mechanism in mammalian cells is primarily protein-based, signalling biological timing information to the nucleus by the post-translational regulation of transcription factor activity, with transcriptional feedback imparting robustness to the oscillation via hysteresis. We conclude by suggesting experiments that might distinguish this model from competing paradigms.
Collapse
|
42
|
Rimpelä JM, Pörsti IH, Jula A, Lehtimäki T, Niiranen TJ, Oikarinen L, Porthan K, Tikkakoski A, Virolainen J, Kontula KK, Hiltunen TP. Genome-wide association study of nocturnal blood pressure dipping in hypertensive patients. BMC MEDICAL GENETICS 2018; 19:110. [PMID: 29973135 PMCID: PMC6032801 DOI: 10.1186/s12881-018-0624-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
Background Reduced nocturnal fall (non-dipping) of blood pressure (BP) is a predictor of cardiovascular target organ damage. No genome-wide association studies (GWAS) on BP dipping have been previously reported. Methods To study genetic variation affecting BP dipping, we conducted a GWAS in Genetics of Drug Responsiveness in Essential Hypertension (GENRES) cohort (n = 204) using the mean night-to-day BP ratio from up to four ambulatory BP recordings conducted on placebo. Associations with P < 1 × 10− 5 were further tested in two independent cohorts: Haemodynamics in Primary and Secondary Hypertension (DYNAMIC) (n = 183) and Dietary, Lifestyle and Genetic determinants of Obesity and Metabolic Syndrome (DILGOM) (n = 180). We also tested the genome-wide significant single nucleotide polymorphism (SNP) for association with left ventricular hypertrophy in GENRES. Results In GENRES GWAS, rs4905794 near BCL11B achieved genome-wide significance (β = − 4.8%, P = 9.6 × 10− 9 for systolic and β = − 4.3%, P = 2.2 × 10− 6 for diastolic night-to-day BP ratio). Seven additional SNPs in five loci had P values < 1 × 10− 5. The association of rs4905794 did not significantly replicate, even though in DYNAMIC the effect was in the same direction (β = − 0.8%, P = 0.4 for systolic and β = − 1.6%, P = 0.13 for diastolic night-to-day BP ratio). In GENRES, the associations remained significant even during administration of four different antihypertensive drugs. In separate analysis in GENRES, rs4905794 was associated with echocardiographic left ventricular mass (β = − 7.6 g/m2, P = 0.02). Conclusions rs4905794 near BCL11B showed evidence for association with nocturnal BP dipping. It also associated with left ventricular mass in GENRES. Combined with earlier data, our results provide support to the idea that BCL11B could play a role in cardiovascular pathophysiology. Electronic supplementary material The online version of this article (10.1186/s12881-018-0624-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenni M Rimpelä
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Ilkka H Pörsti
- Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Antti Jula
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Teemu J Niiranen
- National Institute for Health and Welfare (THL), Helsinki, Finland.,National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Lasse Oikarinen
- Division of Cardiology, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Porthan
- Division of Cardiology, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Tikkakoski
- Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Juha Virolainen
- Division of Cardiology, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo K Kontula
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Timo P Hiltunen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
| |
Collapse
|
43
|
Wachtel M, Schäfer BW. PAX3-FOXO1: Zooming in on an “undruggable” target. Semin Cancer Biol 2018; 50:115-123. [DOI: 10.1016/j.semcancer.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
44
|
Crnko S, Cour M, Van Laake LW, Lecour S. Vasculature on the clock: Circadian rhythm and vascular dysfunction. Vascul Pharmacol 2018; 108:1-7. [PMID: 29778521 DOI: 10.1016/j.vph.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/23/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease.
Collapse
Affiliation(s)
- Sandra Crnko
- Division Heart and Lungs and Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Martin Cour
- Hatter Institute for Cardiovascular research in Africa and Lionel Opie Preclinical Imaging Core Facility, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular research in Africa and Lionel Opie Preclinical Imaging Core Facility, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
45
|
Miller A, Hendrich B. Chromatin Remodelling Proteins and Cell Fate Decisions in Mammalian Preimplantation Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 229:3-14. [PMID: 29177761 DOI: 10.1007/978-3-319-63187-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The very first cell divisions in mammalian embryogenesis produce a ball of cells, each with the potential to form any cell in the developing embryo or placenta. At some point, the embryo produces enough cells that some are located on the outside of the embryo, while others are completely surrounded by other cells. It is at this point that cells undergo the very first lineage commitment event: outer cells form the trophectoderm and lose the potential to form embryonic lineages, while inner cells form the Inner Cell Mass, which retain embryonic potential. Cell identity is defined by gene expression patterns, and gene expression is largely controlled by how the DNA is packaged into chromatin. A number of protein complexes exist which are able to use the energy of ATP to remodel chromatin: that is, to alter the nucleosome topology of chromatin. Here, we summarise the evidence that chromatin remodellers play essential roles in the successful completion of preimplantation development in mammals and describe recent efforts to understand the molecular mechanisms through which chromatin remodellers facilitate the successful completion of the first cell fate decisions in mammalian embryogenesis.
Collapse
Affiliation(s)
- Anzy Miller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Brian Hendrich
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK. .,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
46
|
Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet 2018; 14:e1007156. [PMID: 29300726 PMCID: PMC5771620 DOI: 10.1371/journal.pgen.1007156] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/17/2018] [Accepted: 12/14/2017] [Indexed: 01/20/2023] Open
Abstract
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes.
Collapse
Affiliation(s)
- Alexandra J. Trott
- Department of Biology, Program of Genetics and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States of America
| | - Jerome S. Menet
- Department of Biology, Program of Genetics and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
47
|
Griggs CA, Malm SW, Jaime-Frias R, Smith CL. Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors. Toxicol Appl Pharmacol 2017; 339:110-120. [PMID: 29229235 DOI: 10.1016/j.taap.2017.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage.
Collapse
Affiliation(s)
- Chanel A Griggs
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Scott W Malm
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
48
|
D'Alessandro M, Beesley S, Kim JK, Jones Z, Chen R, Wi J, Kyle K, Vera D, Pagano M, Nowakowski R, Lee C. Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein. Curr Biol 2017; 27:3454-3467.e8. [PMID: 29103939 DOI: 10.1016/j.cub.2017.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/14/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Robustness in biology is the stability of phenotype under diverse genetic and/or environmental perturbations. The circadian clock has remarkable stability of period and phase that-unlike other biological oscillators-is maintained over a wide range of conditions. Here, we show that the high fidelity of the circadian system stems from robust degradation of the clock protein PERIOD. We show that PERIOD degradation is regulated by a balance between ubiquitination and deubiquitination, and that disruption of this balance can destabilize the clock. In mice with a loss-of-function mutation of the E3 ligase gene β-Trcp2, the balance of PERIOD degradation is perturbed and the clock becomes dramatically unstable, presenting a unique behavioral phenotype unlike other circadian mutant animal models. We believe that our data provide a molecular explanation for how circadian phases, such as wake-sleep onset times, can become unstable in humans, and we present a unique mouse model to study human circadian disorders with unstable circadian rhythm phases.
Collapse
Affiliation(s)
- Matthew D'Alessandro
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Stephen Beesley
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Zachary Jones
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Rongmin Chen
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Julie Wi
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Kathleen Kyle
- Center for Genomics and Personalized Medicine, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Daniel Vera
- Center for Genomics and Personalized Medicine, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Michele Pagano
- Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA
| | - Richard Nowakowski
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Choogon Lee
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
49
|
Abstract
In this issue of Molecular Cell, two papers address the biochemical structure of a large protein complex containing components of the mammalian circadian clock (Aryal et al., 2017) and a mechanism rendering this molecular timekeeper temperature-compensated (Shinohara et al., 2017).
Collapse
Affiliation(s)
- Ueli Schibler
- Department of Molecular Biology, Sciences III, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
50
|
Paschos GK, FitzGerald GA. Circadian Clocks and Metabolism: Implications for Microbiome and Aging. Trends Genet 2017; 33:760-769. [PMID: 28844699 PMCID: PMC5610101 DOI: 10.1016/j.tig.2017.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
The circadian clock directs many aspects of metabolism, to separate in time opposing metabolic pathways and optimize metabolic efficiency. The master circadian clock of the suprachiasmatic nucleus synchronizes to light, while environmental cues such as temperature and feeding, out of phase with the light schedule, may synchronize peripheral clocks. This misalignment of central and peripheral clocks may be involved in the development of disease and the acceleration of aging, possibly in a gender-specific manner. Here we discuss the interplay between the circadian clock and metabolism, the importance of the microbiome, and how they relate to aging.
Collapse
Affiliation(s)
- Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Smilow - 10th Floor, Room 122, Building 421, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Smilow - 10th Floor, Room 122, Building 421, Philadelphia, PA 19104, USA.
| |
Collapse
|