1
|
Min Y, Shen H, Huang S, Gu H, Lin X. Organocatalytic asymmetric synthesis of axially and centrally chiral heterotriarylmethanes by a Friedel-Crafts reaction. Org Biomol Chem 2025. [PMID: 40338176 DOI: 10.1039/d5ob00532a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
A highly enantioselective Friedel-Crafts reaction between C2-unsubstituted naphthyl-indoles and racemic 3-methylated-3H-pyrrolides catalyzed by chiral phosphoric acids has been developed. This reaction provides an efficient and facile route to a series of heterotricyclic triarylmethanes containing axially chiral naphthyl-indole and centrally chiral pyrrole moieties under mild conditions. Moreover, biological evaluation discovered one of these products with promising antitumor activity, and demonstrates its potential application in medicinal chemistry.
Collapse
Affiliation(s)
- Yang Min
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Hanxiao Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Shaoying Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Haorui Gu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Chouhan R, Das SK. Total Syntheses of Uvarindoles A and B, (±)-Pseudophrynaminol, and (±)-Pseudophrynamines 272A and 270 via Dearomative Indole Alkylation. J Org Chem 2025; 90:5062-5065. [PMID: 40160023 DOI: 10.1021/acs.joc.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Herein, we report the first total synthesis of alkaloid uvarindole B with an overall yield of 49% over five steps via double C3-alkylation of 5-bromoindole, Plancher rearrangement, and Negishi coupling as the key steps. We also disclose short total syntheses of uvarindole A, pseudophrynaminol, and pseudophrynamines 272A and 270 via dearomative indole alkylation.
Collapse
Affiliation(s)
- Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
3
|
Teli YA, Kant K, Chanu SA, Aljaar N, Malakar CC. Generation of C(sp 3)-C Ar bonds in the synthesis of triarylmethanes (TRAMs): comprehensive progress since 2009. Org Biomol Chem 2025; 23:3492-3519. [PMID: 40084579 DOI: 10.1039/d4ob02069c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Triarylmethanes are useful compounds in materials science and medicinal chemistry. These moieties are important constituents of dyes and pharmaceuticals. These scaffolds are synthesized either by Friedel-Crafts alkylation of aldehydes and arenes or by the functionalization of diarylmethanes. The development of effective catalytic systems and the discovery of highly regio- and stereoselective methods using Brønsted or Lewis acid catalysts represent particularly important achievements in this field. This review explores the detailed documentation of the various catalytic strategies witnessed since 2009 for the synthesis of triarylmethanes, which could arouse the interest of readers in organic synthesis.
Collapse
Affiliation(s)
- Yaqoob A Teli
- Department of Chemistry, National Institute of Technology Manipur, Imphal 795004, India.
| | - Kamal Kant
- Department of Chemistry, National Institute of Technology Manipur, Imphal 795004, India.
| | - S Aleena Chanu
- Department of Chemistry, National Institute of Technology Manipur, Imphal 795004, India.
| | - Nayyef Aljaar
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology Manipur, Imphal 795004, India.
| |
Collapse
|
4
|
Gogoi A, Chouhan R, Das SK. C3 versus C5 Regioselectivity in the Intramolecular Dehydrative Friedel-Crafts Alkylation of Indole C4-Tethered Carbinols. Org Lett 2025; 27:2461-2466. [PMID: 40033871 DOI: 10.1021/acs.orglett.5c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Described herein is a mild catalytic dehydrative Friedel-Crafts alkylation of 1,1-diarylalkanols─a challenging reaction with exceedingly rare previous success, presumably because of the unfavorable steric hindrance around the reactive centers and the competitive E1 reaction. Executing in an intramolecular fashion and benefiting from the high nucleophilicity of indole, we have successfully utilized this reaction in synthesizing 3,4-fused indoles. Interestingly, the Friedel-Crafts alkylation strategy could also be applied to access 4,5-fused indoles via modification of the tether connecting the alcohol and indole moieties.
Collapse
Affiliation(s)
- Abhijit Gogoi
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, Assam, India
| | - Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, Assam, India
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur-784028, Assam, India
| |
Collapse
|
5
|
Jiang C, Meng Y, Huang Y, Liu C, Yin Y, Zhao X, Cao S, Jiang Z. Chiral Primary Amine-Catalyzed Asymmetric Photochemical Reactions of Pyridotriazoles with Boronic Acids to Access Triarylmethanes. J Am Chem Soc 2025; 147:5320-5329. [PMID: 39881495 DOI: 10.1021/jacs.4c16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities. This method not only exhibits a broad substrate scope and outstanding functional group tolerance but also enables the precise synthesis of deuterated derivatives using inexpensive D2O as the deuterium source. Mechanistic studies reveal that an unusual 1,4-boron shift is a critical step in generating the boronated enamine intermediate, while also shedding light on the potential enantiocontrol mechanisms facilitated by the chiral catalyst.
Collapse
Affiliation(s)
- Chenyang Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Youlan Meng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yinwa Huang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Chan Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiaowei Zhao
- Pharmacy College, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- Pharmacy College, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
6
|
Dalai PG, Swain S, Panda N. DMSO-DCE Triggered Chemodivergent C-Methylenation of Electron-Rich Arenes: An Easy Access to Diarylmethanes. J Org Chem 2024; 89:2599-2604. [PMID: 38293774 DOI: 10.1021/acs.joc.3c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The chemodivergent property of dimethyl sulfoxide (DMSO) along with 1,2-dichloroethane (DCE) was exploited for the incorporation of a methylene group to form diarylmethanes through a dearomatization/rearomatization process. Methyl(methylene)sulfonium ions (CH2=S+-Me) were generated by simple heating of commonly used solvents such as DMSO and DCE. These ions were subsequently trapped by electron-rich arenes and heteroarenes, resulting in the synthesis of both symmetrical and unsymmetrical diarylmethanes. This protocol was further extended to access N-methylenamides by reacting 2-naphthol with amides or nitriles in the presence of DMSO and DCE.
Collapse
Affiliation(s)
- Pallaba Ganjan Dalai
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swayamprava Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
7
|
Wang J, Yu R, Nian C, Liao M, Han Z, Sun J, Huang H. Metal-Free C(sp 3)-H Bond Arylation of 3-Methylindole Derivatives via 3-Indole Imine Methides. Org Lett 2023; 25:8478-8483. [PMID: 37966338 DOI: 10.1021/acs.orglett.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Direct arylation of the benzylic C(sp3)-H bond is one of the most straightforward strategies for the construction of multi-aryl methanes, owing to the extraordinary step and atom economy. In this paper, we developed the first metal-free arylation of the C(sp3)-H bond in 3-methylindoles, thereby providing rapid access to a range of diaryl- and triarylmethanes with two indole rings. Mechanistically, 3-indole imine methide serves as the key intermediate. Water plays a crucial role in this process, likely serving as a proton shuttle to facilitate the key 1,3-proton transfer step in this reaction and, thus, enhance the reaction efficiency.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
8
|
Haketa Y, Yamasumi K, Maeda H. π-Electronic ion pairs: building blocks for supramolecular nanoarchitectonics viaiπ- iπ interactions. Chem Soc Rev 2023; 52:7170-7196. [PMID: 37795542 DOI: 10.1039/d3cs00581j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The pairing of charged π-electronic systems and their ordered arrangement have been achieved by iπ-iπ interactions that are derived from synergetically worked electrostatic and dispersion forces. Charged π-electronic systems that provide ion pairs as building blocks for assemblies have been prepared by diverse strategies for introducing charge in the core π-electronic systems. One method to prepare charged π-electronic systems is the use of covalent bonding that makes π-electronic ions and valence-mismatched metal complexes as well as protonated and deprotonated states. Noncovalent ion complexation is another method used to create π-electronic ions, particularly for anion binding, producing negatively charged π-electronic systems. Charged π-electronic systems afford various ion pairs, consisting of both cationic and anionic π-systems, depending on their combinations. Geometries and electronic states of the constituents in π-electronic ion pairs affect the photophysical properties and assembling modes. Recent progress in π-electronic ion pairs has revealed intriguing characteristics, including the transformation into radical pairs through electron transfer and the magnetic properties influenced by the countercations. Furthermore, the assembly states exhibit diversity as observed in crystals and soft materials including liquid-crystal mesophases. While the chemistry of ion pairs (salts) is well-established, the field of π-electronic ion pairs is relatively new; however, it holds great promise for future applications in novel materials and devices.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| |
Collapse
|
9
|
Xiao H, Shi QX, Su M, Sun XL, Bao H, Wan WM. One-Pot Synthesis of Stimuli-Responsive Fluorescent Polymers through Polymerization-Induced Emission. ACS Macro Lett 2023; 12:40-47. [PMID: 36546477 DOI: 10.1021/acsmacrolett.2c00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive opposite emission (A)/absorption (B) polymer material (A∪B = Ω and A∩B = Ø) represents a novel polymer material that is difficult to prepare. Here, we demonstrate a one-pot strategy for the molecular design of stimuli-responsive opposite emission/absorption polymer material with intriguing properties of opposite emission/absorption and aggregation-induced emission (AIE) type nontraditional intrinsic luminescence (NTIL) in the visible region, through reversible addition-fragmentation chain transfer polymerization-induced emission (PIE) of the N,N-dimethyl-triphenylmethanol moiety. Investigations reveal that NTIL is due to the through-space conjugation effect caused by polymer chain entanglement, when increasing the repeating unit number. The corresponding stimuli-responsive opposite emission/absorption properties are derived from the carbocation-quinoid mechanism, which enables the fluorescence encryption capability. This work therefore demonstrates the proof of concept of a novel opposite emission/absorption polymer material that might cause inspiration in different fields.
Collapse
Affiliation(s)
- Hang Xiao
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
10
|
Roy D, Thakare RP, Chopra S, Panda G. Aromatic or Hetero-aromatic Directly Attached Tri and Tetrasubstituted Methanes: New Chemical Entities as Anti-Infectives. Curr Med Chem 2023; 30:974-998. [PMID: 36017850 DOI: 10.2174/0929867329666220823111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022]
Abstract
Tri and Tetra-substituted Methanes (TRSMs) are a significant structural motif in many approved drugs and prodrugs. There is increasing use of TRSM units in medicinal chemistry, and many derivatives are specifically designed to make drug-target interactions through new chemical space around TRSM moiety. In this perspective, we describe synthetic challenges for accessing a range of functionalized selective TRSMs and their molecular mechanism of action, especially as anti-infectives. Natural anti-infectives like (+)-Bionectin A, B, (+)-Gliocladine C, Balanocarpol having TRSMs selectively and effectively bind to target proteins in comparison to planar motif having more sp2 carbons perhaps due to conformation which reduces the penalty for conformational entropy with the enhancement of three-dimensionality. Properties of repurposed TRSMs like Almitrine, Ifenprodil, Baricitinib and Remdesivir with their recent progress in COVID-19 therapeutics with their mode of action are also delineated. This perspective is expected to deliver a user guide and reference source for scientists, researchers and academicians in pursuing newly designed TRSMs as therapeutics.
Collapse
Affiliation(s)
- Deblina Roy
- Medicinal & Process Chemistry Division, Gautam Panda, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India
| | - Ritesh P Thakare
- Division of Microbiology, Sidharth Chopra, CSIRCentral Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India
| | - Sidharth Chopra
- Division of Microbiology, Sidharth Chopra, CSIRCentral Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, Gautam Panda, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Hosseini R, Ranjbar‐Karimi R, Mohammadiannejad K. Practical Synthesis of Novel Symmetrical and Unsymmetrical
Tetrakis
(aryl/heteroaryl) Adducts Containing Polyconjugated Linkages. ChemistrySelect 2022. [DOI: 10.1002/slct.202203760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Raziyeh Hosseini
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Reza Ranjbar‐Karimi
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Kazem Mohammadiannejad
- NMR Laboratory Faculty of Science Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| |
Collapse
|
12
|
Maurya YK, Chmielewski PJ, Cybińska J, Prajapati B, Lis T, Kang S, Lee S, Kim D, Stępień M. Naphthalimide-Fused Dipyrrins: Tunable Halochromic Switches and Photothermal NIR-II Dyes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105886. [PMID: 35174648 PMCID: PMC9259717 DOI: 10.1002/advs.202105886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
A family of tunable halochromic switches is developed using a naphthalimide-fused dipyrrin as the core π-conjugated motif. Electronic properties of these dipyrrins are tuned by substitution of their alpha and meso positions with aryl groups of variable donor-acceptor strength. The first protonation results in a conformational change that enhances electronic coupling between the dipyrrin chromophore and the meso substituent, leading to halochromic effects that occasionally exceed 200 nm and switch the absorption between the near-infrared (NIR)-I and NIR-II ranges. A NIR-II photothermal effect, switchable by acid-base chemistry is demonstrated for selected dipyrrins. Further protonation is possible for derivatives bearing additional amino groups, leading to up to four halochromic switching step. The most electron-rich dipyrrins are also susceptible to chemical oxidation, yielding NIR-absorbing radical cations and closed-shell dications.
Collapse
Affiliation(s)
- Yogesh Kumar Maurya
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | | | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
- PORT – Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 147Wrocław54‐066Poland
| | - Bibek Prajapati
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π‐Electronic SystemsYonsei UniversitySeoul03722Korea
| | - Seokwon Lee
- PORT – Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 147Wrocław54‐066Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π‐Electronic SystemsYonsei UniversitySeoul03722Korea
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot‐Curie 14Wrocław50‐383Poland
| |
Collapse
|
13
|
Han Z, Zang Y, Liu C, Guo W, Huang H, Sun J. Enantioselective synthesis of triarylmethanes via organocatalytic transfer hydrogenation of para-quinone methides. Chem Commun (Camb) 2022; 58:7128-7131. [PMID: 35667384 DOI: 10.1039/d2cc01996e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new organocatalytic asymmetric method for the synthesis of enantioenriched triarylmethanes is developed. Different from the conventional approaches featuring asymmetric arylation, the present study employs asymmetric reduction via C-H bond formation as the key step. This approach does not require the presence of a heteroaryl ring or the presynthesis of unstable para-quinone methides. Instead, the stable racemic triarylmethanols were used as substrates for the in situ generation of the intermediates with a suitable chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yu Zang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Chang Liu
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China 710119, P. R. China.
| | - Wengang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. .,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China 710119, P. R. China. .,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| |
Collapse
|
14
|
Chang MY, Lin CY, Chen SM. Gram-Scale Synthesis of Substituted Triarylmethanes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1863-3443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this paper, a high-yield, open-vessel route for the facile-operational, gram-scale synthesis of functionalized triarylmethanes (TRAMs) is described via silica coated magnetic nanoparticles of modified polyphosphoric acid (NiFe2O4@SiO2-PPA)-mediated intermolecular Friedel-Crafts reaction of substituted arylaldehydes with 2 equivalents of oxygenated arenes under environmentally friendly reaction conditions. Among the overall reaction process, only water was generated as the byproduct. Various reaction conditions are investigated for efficient transformation.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Yi Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Mei Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Synthesis and properties of novel 4-(diarylmethyl)pyridines based on pyridoxal 5′-phosphate. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Singh S, Mahato R, Sharma P, Yadav N, Vodnala N, Kumar Hazra C. Development of Transition-Metal-Free Lewis Acid-Initiated Double Arylation of Aldehyde: A Facile Approach Towards the Total Synthesis of Anti-Breast-Cancer Agent. Chemistry 2022; 28:e202104545. [PMID: 35060647 DOI: 10.1002/chem.202104545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 12/21/2022]
Abstract
This work describes a mild and robust double hydroarylation strategy for the synthesis of symmetrical /unsymmetrical diaryl- and triarylmethanes in excellent yields using Lambert salt (0.2-1.0 mol%). Despite the anticipated challenges associated with controlling selective product formation, unsymmetrical diaryl- and triarylmethanes products are obtained unprecedentedly. A highly efficient gram scale reaction has also been reported (TON for symmetrical product=475 and for unsymmetrical product=390). The synthetic utility of the methodology is demonstrated by the preparation of several unexplored diaryl- and triarylmethane-based biologically relevant molecules, such as arundine, vibrindole A, turbomycin B, and certain anti-inflammatory agents. A total synthesis of an anti-breast-cancer agent is also demonstrated. Control experiments, Hammett analysis, HRMS and GC-MS studies reveal the reaction intermediates and reaction mechanism.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pragya Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nagaraju Vodnala
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
17
|
Singh S, Verma A, Saha S. Achieving AIE from ACQ in positional isomeric triarylmethanes. NEW J CHEM 2022. [DOI: 10.1039/d2nj00148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report demonstrate that the usual ‘aggregation caused quenching’ (ACQ) can be overcome by a change in the substitution position in naphthalene derivatives, leading to the much desired ‘aggregation induced emission’ (AIE).
Collapse
Affiliation(s)
- Soumya Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Abhineet Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Satyen Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
18
|
Czapik A, Kwit M. Diversity of N-triphenylacetyl-L-tyrosine solvates with halogenated solvents. Acta Crystallogr C Struct Chem 2021; 77:745-756. [PMID: 34864716 DOI: 10.1107/s2053229621011098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/22/2021] [Indexed: 05/31/2023] Open
Abstract
The structure of N-triphenylacetyl-L-tyrosine (C29H25NO4, L-TrCOTyr) is characterized by the presence of both donors and acceptors of classical hydrogen bonds. At the same time, the molecule contains a sterically demanding and hydrophobic trityl group capable of participating in π-electron interactions. Due to its large volume, the trityl group may favour the formation of structural voids in the crystals, which can be filled with guest molecules. In this article, we present the crystal structures of a series of N-triphenylacetyl-L-tyrosine solvates with chloroform, namely, L-TrCOTyr·CHCl3 (I) and L-TrCOTyr·1.5CHCl3 (III), and dichloromethane, namely, L-TrCOTyr·CH2Cl2 (II) and L-TrCOTyr·0.1CH2Cl2 (IV). To complement the topic, we also decided to use the racemic amide N-triphenylacetyl-DL-tyrosine (rac-TrCOTyr) and recrystallized it from a mixture of chloroform and dichloromethane. As a result, rac-TrCOTyr·1.5CHCl3 (V) was obtained. In the crystal structures, the amide molecules interact with each other via O-H...O hydrogen bonds. Noticeably, the amide N-H group does not participate in the formation of intermolecular hydrogen bonds. Channels are formed between the TrCOTyr molecules and these are filled with solvent molecules. Additionally, in the crystals of III and V, there are structural voids that are occupied by chloroform molecules. Structure analysis has shown that solvates I and II are isostructural. Upon loss of solvent, the solvates transform into the solvent-free form of TrCOTyr, as confirmed by thermogravimetric analysis, differential scanning calorimetry and powder X-ray diffraction.
Collapse
Affiliation(s)
- Agnieszka Czapik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznan 61-614, Poland
| | - Marcin Kwit
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznan 61-614, Poland
| |
Collapse
|
19
|
Kato Y, Inoue T, Furuyama Y, Ohgane K, Sadaie M, Kuramochi K. Deoxygenation of tertiary and secondary alcohols with sodium borohydride, trimethylsilyl chloride, and potassium iodide in acetonitrile. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Zhao YT, Su YX, Li XY, Yang LL, Huang MY, Zhu SF. Dirhodium-Catalyzed Enantioselective B-H Bond Insertion of gem-Diaryl Carbenes: Efficient Access to gem-Diarylmethine Boranes. Angew Chem Int Ed Engl 2021; 60:24214-24219. [PMID: 34476881 DOI: 10.1002/anie.202109447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Indexed: 01/29/2023]
Abstract
The scarcity of reliable methods for synthesizing chiral gem-diarylmethine borons limits their applications. Herein, we report a method for highly enantioselective dirhodium-catalyzed B-H bond insertion reactions with diaryl diazomethanes as carbene precursors. These reactions afforded chiral gem-diarylmethine borane compounds in high yield (up to 99 % yield), high activity (turnover numbers up to 14 300), high enantioselectivity (up to 99 % ee) and showed unprecedented broad functional group tolerance. The borane compounds synthesized by this method could be efficiently transformed into diaryl methanol, diaryl methyl amine, and triaryl methane derivatives with good stereospecificity. Mechanistic studies suggested that the borane adduct coordinated to the rhodium catalyst and thus interfered with decomposition of the diazomethane, and that insertion of a rhodium carbene (generated from the diaryl diazomethane) into the B-H bond was most likely the rate-determining step.
Collapse
Affiliation(s)
- Yu-Tao Zhao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Yu Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liang-Liang Yang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Yang M, Han H, Jiang H, Ye S, Fan X, Wu J. Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1,6-addition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Zhao Y, Su Y, Li X, Yang L, Huang M, Zhu S. Dirhodium‐Catalyzed Enantioselective B−H Bond Insertion of
gem
‐Diaryl Carbenes: Efficient Access to
gem
‐Diarylmethine Boranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Tao Zhao
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu‐Xuan Su
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Yu Li
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Liang‐Liang Yang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ming‐Yao Huang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shou‐Fei Zhu
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
23
|
Hosseini R, Ranjbar‐Karimi R, Mohammadiannejad K. Copper‐Catalyzed Arylation of Olefins Using a Novel N,N‐Bidentate TRAM‐Based Ligand: Application in Synthesis of Functionalized Triarylmethanes[]**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raziyeh Hosseini
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Reza Ranjbar‐Karimi
- Department of Chemistry Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| | - Kazem Mohammadiannejad
- NMR Laboratory Faculty of Science Vali-e-Asr University of Rafsanjan Rafsanjan 77176, Islamic Republic of Iran Iran
| |
Collapse
|
24
|
Verma M, Thakur A, Sharma R, Bharti R. Recent Advancement in the One-Pot Synthesis of the Tri-Substituted Methanes (TRSMs) and Their Biological Applications. Curr Org Synth 2021; 19:86-114. [PMID: 34515005 DOI: 10.2174/1570179418666210910105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
The history of tri-substituted methanes (TRSMs) in chemical industries is much older. Tri-substituted methanes were previously used as dyes in the chemical industries. Still, there is a significant surge in researchers' interest in them due to their wide range of bioactivities. Tri-substituted methane derivatives show a wide range of biological activities like anti-tumor, antimicrobial, antibiofilm, antioxidant, anti-inflammatory, anti-arthritic activities. Due to the wide range of medicinal applications shown by tri-substituted methanes, most of the methodologies reported in the literature for the synthesis of TRSMs are focused on the one-pot method. This review explored the recently reported one-pot processes for synthesizing tri-substituted methanes and their various medicinal applications. Based on the substitution attached to the -CH carbon, this review categorizes them into two major classes: (I) symmetrical and (II) unsymmetrical trisubstituted methanes. In addition, this review gives an insight into the growing opportunities for the construction of trisubstituted scaffolds via one-pot methodologies. To the best of our knowledge, no one has yet reported a review on the one-pot synthesis of TRSMs. Therefore, here we present a brief literature review of the synthesis of both symmetrical and unsymmetrical TRSMs covering various one-pot methodologies along with their medicinal applications.
Collapse
Affiliation(s)
- Monika Verma
- Department of chemistry, University Institute of sciences, Chandigarh University, Ludhiana Highway, Mohali, Punjab . India
| | - Ajay Thakur
- Department of chemistry, University Institute of sciences, Chandigarh University, Ludhiana Highway, Mohali, Punjab . India
| | - Renu Sharma
- Department of chemistry, University Institute of sciences, Chandigarh University, Ludhiana Highway, Mohali, Punjab . India
| | - Ruchi Bharti
- Department of chemistry, University Institute of sciences, Chandigarh University, Ludhiana Highway, Mohali, Punjab . India
| |
Collapse
|
25
|
Adamovich V, Benavent L, Boudreault PLT, Esteruelas MA, López AM, Oñate E, Tsai JY. Pseudo-Tris(heteroleptic) Red Phosphorescent Iridium(III) Complexes Bearing a Dianionic C, N, C', N'-Tetradentate Ligand. Inorg Chem 2021; 60:11347-11363. [PMID: 34291933 PMCID: PMC9179949 DOI: 10.1021/acs.inorgchem.1c01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
1-Phenyl-3-(1-phenyl-1-(pyridin-2-yl)ethyl)isoquinoline
(H2MeL) has been prepared by Pd(N-XantPhos)-catalyzed
“deprotonative cross-coupling processes”
to synthesize new phosphorescent red iridium(III) emitters (601–732
nm), including the carbonyl derivative Ir(κ4-cis-C,C′-cis-N,N′-MeL)Cl(CO)
and the acetylacetonate compound Ir(κ4-cis-C,C′-cis-N,N′-MeL)(acac). The tetradentate
6e-donor ligand (6tt′) of these complexes is formed by two
different bidentate units, namely, an orthometalated 2-phenylisoquinoline
and an orthometalated 2-benzylpyridine. The link between the bidentate
units reduces the number of possible stereoisomers of the structures
[6tt′ + 3b] (3b = bidentate 3e-donor ligand), with respect
to a [3b + 3b′ + 3b″] emitter containing three free
bidentate units, and it permits a noticeable stereocontrol. Thus,
the isomers fac-Ir(κ4-cis-C,C′-cis-N,N′-MeL){κ2-C,N-(C6H4-py)}, mer-Ir(κ4-cis-C,C′-cis-N,N′-MeL){κ2-C,N-(C6H3R-py)}, and mer-Ir(κ4-trans-C,C′-cis-N,N′-MeL){κ2-C,N-(C6HR-py)} (R =
H, Me) have also been selectively obtained. The new emitters display
short lifetimes (0.7–4.6 μs) and quantum yields in a
doped poly(methyl methacrylate) film at 5 wt % and 2-methyltetrahydrofuran
at room temperature between 0.08 and 0.58. The acetylacetonate complex
Ir(κ4-cis-C,C′-cis-N,N′-MeL)(acac) has been used as a dopant for a red
PhOLED device with an electroluminescence λmax of
672 nm and an external quantum efficiency of 3.4% at 10 mA/cm2. The proligand 1-phenyl-3-(1-phenyl-1-(pyridine-2-yl)ethyl)isoquinoline
is used to generate a new family of neutral phosphorescent red iridium(III)
emitters containing a tetradentate ligand, formed by two different
bidentate units, and a third bidentate ligand with a good stereocontrol
of the resulting [6tt′ + 3b] products. One of the new emitters
has been used in the fabrication of an OLED device.
Collapse
Affiliation(s)
- Vadim Adamovich
- Universal Display Corporation, Ewing, New Jersey 08618, United States
| | - Llorenç Benavent
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | | | - Miguel A Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Ana M López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Jui-Yi Tsai
- Universal Display Corporation, Ewing, New Jersey 08618, United States
| |
Collapse
|
26
|
Dhar ED, Yadav AK, Basumatary G, Bez G. Anti-pinworm activity of novel coumarin-based trisubstituted methanes in Syphacia obvelata-infected mice. Parasitol Int 2021; 85:102425. [PMID: 34325083 DOI: 10.1016/j.parint.2021.102425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022]
Abstract
The control of pinworms mainly relies on use of anthelmintic drugs. At present, there exists only few medications against pinworms, and their repeated use pose a serious risk of resistance development. Therefore, new anti-pinworm drugs are required to overcome the risk of resistance. This study reports the anti-pinworm activity of three novel coumarin-based trisubstituted methanes (TRSMs), i.e., 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(4-fluoro-phenyl)methyl)-1,3-dimethyl-pyrimidine-2,4(1H,3H)-dione (1), 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(4-chlor-ophenyl)methyl)-1,3-dimethyl-pyrimidine-2,4(1H,3H)-dione (2) and 6-Amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(4-bromophenyl)methyl)-1,3-dimethyl-pyrimidine-2,4(1H,3H)-dione (3) in Syphacia obvelata-infected mice. The oral acute toxicity of compounds was examined using the OECD guidelines. The findings of this study reveal that TRSM analogues 1 and 2, at a single 80 mg/kg dose given for 5 days, can reduce about 90% of pinworm worm burden in mice, compared to 98% worm reduction shown by 20 mg/kg dose of albendazole, the reference drug, on the 12 day of infection. In particular, the fluoro-and bromo-substituents in the phenyl ring of synthesized derivatives greatly influence the efficacy of candidates. The oral acute toxicity of TRSMs was observed to be greater than 2000 mg/kg body weight for mice. Taken together, our study suggests that studied novel coumarin-based trisubstituted methanes could serve as suitable candidates for the development of new anti-pinworm drugs.
Collapse
Affiliation(s)
- Errini Decruse Dhar
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Arun K Yadav
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Grace Basumatary
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
27
|
Song P, Hu L, Yu T, Jiao J, He Y, Xu L, Li P. Development of a Tunable Chiral Pyridine Ligand Unit for Enantioselective Iridium-Catalyzed C–H Borylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peidong Song
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Linlin Hu
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jiao Jiao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yangqing He
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Prusinowska N, Czapik A, Kwit M. Chiral Triphenylacetic Acid Esters: Residual Stereoisomerism and Solid-State Variability of Molecular Architectures. J Org Chem 2021; 86:6433-6448. [PMID: 33908243 PMCID: PMC8279475 DOI: 10.1021/acs.joc.1c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/29/2022]
Abstract
We have proven the usability and versatility of chiral triphenylacetic acid esters, compounds of high structural diversity, as chirality-sensing stereodynamic probes and as molecular tectons in crystal engineering. The low energy barrier to stereoisomer interconversion has been exploited to sense the chirality of an alkyl substituent in the esters. The structural information are cascaded from the permanently chiral alcohol (inducer) to the stereodynamic chromophoric probe through cooperative interactions. The ECD spectra of triphenylacetic acid esters are highly sensitive to very small structural differences in the inducer core. The tendencies to maximize the C-H···O hydrogen bonds, van der Waals interactions, and London dispersion forces determine the way of packing molecules in the crystal lattice. The phenyl embraces of trityl groups allowed, to some extent, the control of molecular organization in the crystal. However, the spectrum of possible molecular arrangements is very broad and depends on the type of substituent, the optical purity of the sample, and the presence of a second trityl group in the proximity. Racemates crystallize as the solid solution of enantiomers, where the trityl group acts as a protecting group for the stereogenic center. Therefore, the absolute configuration of the inducer is irrelevant to the packing mode of molecules in the crystal.
Collapse
Affiliation(s)
- Natalia Prusinowska
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| | - Agnieszka Czapik
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
| | - Marcin Kwit
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61 614 Poznań, Poland
- Centre
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61 614 Poznań, Poland
| |
Collapse
|
29
|
Wei B, Ren Q, Bein T, Knochel P. Transition-Metal-Free Synthesis of Polyfunctional Triarylmethanes and 1,1-Diarylalkanes by Sequential Cross-Coupling of Benzal Diacetates with Organozinc Reagents. Angew Chem Int Ed Engl 2021; 60:10409-10414. [PMID: 33625773 PMCID: PMC8252654 DOI: 10.1002/anie.202101682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/02/2022]
Abstract
A variety of functionalized triarylmethane and 1,1-diarylalkane derivatives were prepared via a transition-metal-free, one-pot and two-step procedure, involving the reaction of various benzal diacetates with organozinc reagents. A sequential cross-coupling is enabled by changing the solvent from THF to toluene, and a two-step SN 1-type mechanism was proposed and evidenced by experimental studies. The synthetic utility of the method is further demonstrated by the synthesis of several biologically relevant molecules, such as an anti-tuberculosis agent, an anti-breast cancer agent, a precursor of a sphingosine-1-phosphate (S1P) receptor modulator, and a FLAP inhibitor.
Collapse
Affiliation(s)
- Baosheng Wei
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Qianyi Ren
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Thomas Bein
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
30
|
Huang WJ, Ma YY, Liu LX, Wu B, Jiang GF, Zhou YG. Chiral Phosphoric Acid-Catalyzed C6 Functionalization of 2,3-Disubstituted Indoles for Synthesis of Heterotriarylmethanes. Org Lett 2021; 23:2393-2398. [PMID: 33734717 DOI: 10.1021/acs.orglett.0c04002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct regio- and enantioselective C6 functionalization of 2,3-disubstituted indoles with azadienes has been developed using chiral phosphoric acid as catalyst, providing a convenient approach to synthesize the optically active heterotriarylmethanes with excellent yields, broad substrate scope, and up to 98% ee. Mechanistic studies revealed that N-alkylation of 2,3-disubstituted indoles with azadienes would be reversible, and enantioselective C6 functionalization could be enabled.
Collapse
Affiliation(s)
- Wen-Jun Huang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Ya-Ya Ma
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Guo-Fang Jiang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| |
Collapse
|
31
|
Wei B, Ren Q, Bein T, Knochel P. Übergangsmetallfreie Synthese polyfunktioneller Triarylmethane und 1,1‐Diarylalkane durch sequentielle Kreuzkupplungen von Benzaldiacetaten mit Organozinkreagenzien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Baosheng Wei
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Qianyi Ren
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Thomas Bein
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
32
|
Lu ZY, Hu JT, Lan WQ, Mo XQ, Zhou S, Tang YF, Yuan WC, Zhang XM, Liao LH. Enantioselective synthesis of hetero-triarylmethanes by chiral phosphoric acid-catalyzed 1,4-addition of 3-substituted indoles with azadienes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Stasiak B, Czapik A, Kwit M. Dynamic Induction of Optical Activity in Triarylmethanols and Their Carbocations. J Org Chem 2021; 86:643-656. [PMID: 33348985 PMCID: PMC7872417 DOI: 10.1021/acs.joc.0c02289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A series of artificial triarylmethanols
has been synthesized and
studied toward the possibility of exhibiting an induced optical activity.
The observed chiroptical response of these compounds resulted from
the chiral conformation of a triarylmethyl core. The chirality induction
from a permanent chirality element to the liable triarylmethyl core
proceeds as a cooperative and cascade process. The OH···O(R)
and/or (H)O···HorthoC hydrogen
bond formation along with the C–H···π
interactions seem to be the most important factors that control efficiency
of the chirality induction. The position of chiral and methoxy electron-donating
groups within a trityl skeleton affects the amplitude of observed
Cotton effects and stability of the trityl carbocations. In the neutral
environment, the most intense Cotton effects are observed for ortho-substituted derivatives, which undergo a rapid decomposition
associated with the complete decay of ECD signals upon acidification.
From all of the in situ generated stable carbocations, only two exhibit
intense Cotton effects in the low energy region at around 450 nm.
The formation of carbocations is reversible; after alkalization, the
ions return to the original neutral forms. Unlike most triarylmethyl
derivatives known so far, in the crystal, the triarylmethanol, para-substituted with the chiral moiety, shows a propensity
for a solid-state sorting phenomenon.
Collapse
Affiliation(s)
- Bartosz Stasiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61 614 Poznań, Poland
| | - Agnieszka Czapik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61 614 Poznań, Poland
| | - Marcin Kwit
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61 614 Poznań, Poland.,Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61 614 Poznań, Poland
| |
Collapse
|
34
|
Gulati U, Gandhi R, Laha JK. Benzylic Methylene Functionalizations of Diarylmethanes. Chem Asian J 2020; 15:3135-3161. [PMID: 32794651 PMCID: PMC7436909 DOI: 10.1002/asia.202000730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Diarylmethanes are cardinal scaffolds by virtue of their unique structural feature including the presence of a benzylic CH2 group that can be easily functionalized to generate a variety of fascinating molecules holding immense importance in pharmaceutical, agrochemical, and material sciences. While the originally developed protocols for benzylic C-H functionalization in diarylmethanes employing base-mediated and metal-catalyzed strategies are still actively used, they are joined by a new array of metal-free conditions, offering milder and benign conditions. With the recent surge of interest towards the synthesis of functionalized diarylmethanes, numerous choices are now available for a synthetic organic chemist to transform the benzylic C-H bond to C-C or C-X bond offering the synthesis of any molecule of choice. This review highlights benzylic methylene (CH2 ) functionalizations of diaryl/heteroarylmethanes utilizing various base-mediated, transition-metal-catalyzed, and transition-metal free approaches for the synthesis of structurally diverse important organic molecules, often with a high chemo-, regio- and enantio-selectivity. This review also attempts to provide analysis of the scope and limitations, mechanistic understanding, and sustainability of the transformations.
Collapse
Affiliation(s)
- Upma Gulati
- Department of Pharmaceutical Technology (Process Chemistry)National Institute of Pharmaceutical Education and ResearchS.A.S.Nagar160062PunjabIndia
| | - Radhika Gandhi
- Department of Pharmaceutical Technology (Process Chemistry)National Institute of Pharmaceutical Education and ResearchS.A.S.Nagar160062PunjabIndia
| | - Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry)National Institute of Pharmaceutical Education and ResearchS.A.S.Nagar160062PunjabIndia
| |
Collapse
|
35
|
Kurouchi H. Diprotonative stabilization of ring-opened carbocationic intermediates: conversion of tetrahydroisoquinoline to triarylmethanes. Chem Commun (Camb) 2020; 56:8313-8316. [PMID: 32573605 DOI: 10.1039/d0cc01969k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Superacid-promoted conversion of tetrahydroisoquinolines to triarylmethanes via tandem reactions of C-N bond scission, Friedel-Crafts alkylation, C-O bond scission, and electrophilic aromatic amidation was developed. Dication formation was important for stabilizing the ring-opened carbocationic intermediate, which is a new role for diprotonation in reaction mechanisms.
Collapse
Affiliation(s)
- Hiroaki Kurouchi
- Research Foundation ITSUU Laboratory, C1232 Kanagawa Science Park R & D Building, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
36
|
Tang Z, Peng L, Yuan Y, Li T, Qiu R, Kambe N. Synthesis of Triarylmethanes by Decarbonylation of 3,3-Diaryl Benzofuranones. J Org Chem 2020; 85:5300-5311. [PMID: 32192341 DOI: 10.1021/acs.joc.9b03433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple protocol for the synthesis of triarylmethane derivatives with three different (hetero)aryl groups by decarbonylation of 3,3-diaryl benzofuranones, which can easily be prepared via arylation of benzofuranones, was developed. The reaction proceeds on heating in dimethylformamide (DMF) in the presence of CH3ONa and water to generate the products in good to excellent yields. This reaction can be easily scaled up to give a triarylmethane in a gram scale. Further chemical manipulation of the products enabled useful transformations of the phenol ring, including reduction, arylation, cyclization, etc.
Collapse
Affiliation(s)
- Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lingteng Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yu Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tianjing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
37
|
Noland WE, Kumar HV, Sharma A, Wei B, Girmachew S. Fe-Catalyzed Domino Intramolecular Nucleophilic Substitution of 4-Hydroxychromen-2-one and Pyran-2-one/Ring Opening of Activated Arene: An Easy Access to 2,3-Disubstituted Furo[3,2,-c]coumarins and Furo[3,2,-c]pyran-4-ones via Nonsymmetric Triarylmethanes. Org Lett 2020; 22:1801-1806. [DOI: 10.1021/acs.orglett.0c00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wayland E. Noland
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Honnaiah Vijay Kumar
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Arjun Sharma
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Binyuan Wei
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Selamawit Girmachew
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Synthesis of Chiral Triarylmethanes Bearing All‐Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross‐Coupling of 2,2‐Diarylacetonitriles and (Hetero)arenes. Angew Chem Int Ed Engl 2020; 59:3053-3057. [DOI: 10.1002/anie.201912739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/31/2019] [Indexed: 02/06/2023]
|
39
|
Pan X, Wang Z, Kan L, Mao Y, Zhu Y, Liu L. Cross-dehydrogenative coupling enables enantioselective access to CF 3-substituted all-carbon quaternary stereocenters. Chem Sci 2020; 11:2414-2419. [PMID: 34084405 PMCID: PMC8157275 DOI: 10.1039/c9sc05894j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
A cross-dehydrogenative coupling strategy for enantioselective access to acyclic CF3-substituted all-carbon quaternary stereocenters has been established. By using catalytic DDQ with MnO2 as an inexpensive terminal oxidant, asymmetric cross coupling of racemic δ-CF3-substituted phenols with indoles proceeded smoothly, providing CF3-bearing all-carbon quaternary stereocenters with excellent chemo- and enantioselectivities. The generality of the strategy is further demonstrated by efficient construction of all-carbon quaternary stereocenters bearing other polyfluoroalkyl and perfluoroalkyl groups such as CF2Cl, C2F5, and C3F7.
Collapse
Affiliation(s)
- Xiaoguang Pan
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Zehua Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Linglong Kan
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Ying Mao
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Yasheng Zhu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| |
Collapse
|
40
|
Wang Z, Zhu Y, Pan X, Wang G, Liu L. Synthesis of Chiral Triarylmethanes Bearing All‐Carbon Quaternary Stereocenters: Catalytic Asymmetric Oxidative Cross‐Coupling of 2,2‐Diarylacetonitriles and (Hetero)arenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zehua Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yasheng Zhu
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Xiaoguang Pan
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Gang Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| |
Collapse
|
41
|
Wang CJ, Yang QQ, Wang MX, Shang YH, Tong XY, Deng YH, Shao Z. Catalytic asymmetric 1,4-type Friedel–Crafts (hetero)arylations of 1-azadienes: the highly enantioselective syntheses of chiral hetero-triarylmethanes. Org Chem Front 2020. [DOI: 10.1039/c9qo01391a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Strategies for achieving the direct catalytic asymmetric syntheses of benzofuran-containing hetero-triarylmethanes using a 1,4-type Friedel–Crafts (hetero)arylation reaction were developed.
Collapse
Affiliation(s)
- Cheng-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Qi-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Mei-Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Yun-Han Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Xin-Yu Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
42
|
Roy D, Verma A, Banerjee A, Saha S, Panda G. Metal free highly efficient C–N bond formation through 1,6-addition: synthesis and photophysical studies of diaryl methyl amino acid esters (DMAAEs). NEW J CHEM 2020. [DOI: 10.1039/d0nj01587c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal free, proficient strategy for the one-pot synthesis of diverse diaryl methyl amino acid esters (DMAAEs) has been established from the easily accessible chiral amino acid esters and para-quinone methides (QMs) in very good to excellent yields.
Collapse
Affiliation(s)
- Deblina Roy
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| | - Abhineet Verma
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Arpita Banerjee
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| | - Satyen Saha
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Gautam Panda
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
43
|
Courant T, Lombard M, Boyarskaya DV, Neuville L, Masson G. Tritylium assisted iodine catalysis for the synthesis of unsymmetrical triarylmethanes. Org Biomol Chem 2020; 18:6502-6508. [PMID: 32789393 DOI: 10.1039/d0ob01502d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The combined Lewis acid catalytic system, generated from molecular iodine and tritylium tetrafluoroborate effectively catalyzed the Friedel-Crafts (FC) arylation of diarylmethyl sulfides providing an efficient access to various unsymmetrical triarylmethanes. The addition of tritylium and iodine created a more active catalytic system to promote the cleavage of sulfidic C-S bonds.
Collapse
Affiliation(s)
- Thibaut Courant
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Dina V Boyarskaya
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
44
|
Gu YC, Huang J, Wu RS, Yang Q, Yu YQ, Xu DZ. Metal-free iodine-promoted direct synthesis of unsymmetrical triarylmethanes. NEW J CHEM 2020. [DOI: 10.1039/d0nj00032a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Completely unsymmetrical triarylmethanes were prepared in a one-pot reaction via o-QM intermediates generated in situ.
Collapse
Affiliation(s)
- Ying-Chun Gu
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling
- School of Science
- Tianjin Chengjian University
- Tianjin
- China
| | - Jie Huang
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Run-Shi Wu
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Qi Yang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling
- School of Science
- Tianjin Chengjian University
- Tianjin
- China
| | - Ya-Qin Yu
- Key Laboratory for Water Environment and Resources
- Tianjin Normal University
- Tianjin
- China
| | - Da-Zhen Xu
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
45
|
Wu F, Zhang L, Zhu S. 1,4-Addition of o-naphthoquinone methides induced by silver-catalyzed cyclization of enynones: an approach to unsymmetrical triarylmethanes and benzo[ f]chromenes. Org Chem Front 2020. [DOI: 10.1039/d0qo00825g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 1,4-addition reaction of ortho-naphthoquinone methide (o-NQM) intermediates induced by silver-catalyzed ring formation with electron-rich aromatic compounds and α-methylene ketones has been developed.
Collapse
Affiliation(s)
- Feng Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Li Zhang
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
46
|
Qi Y, Zhang F, Wang L, Feng A, Zhu R, Sun S, Li W, Liu L. δ-Cyano substituted para-quinone methides enable access to unsymmetric tri- and tetraarylmethanes containing all-carbon quaternary stereocenters. Org Biomol Chem 2020; 18:3522-3526. [DOI: 10.1039/d0ob00551g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Placing an electron-withdrawing cyano group into the δ-position of para-quinone methides enables facile access to unsymmetrical tri- and tetraarylmethanes bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Yue Qi
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan 250355
- China
| | - Fang Zhang
- Department of pharmacy
- Jinan Central Hospital Affiliated to Shandong First Medical University
- Jinan 250013
- China
| | - Lin Wang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan 250355
- China
| | - Aili Feng
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Shutao Sun
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Wei Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Shandong University of Traditional Chinese Medicine
- Jinan 250355
- China
| | - Lei Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
47
|
Oakley JV, Stanley TJ, Jesse KA, Melanese AK, Alvarez AA, Prince AL, Cain SE, Wenzel AG, Iafe RG. Gold-Catalyzed Friedel-Crafts-Like Reaction of Benzylic Alcohols to Afford 1,1-Diarylalkanes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- James V. Oakley
- Department of Chemistry and Biochemistry; California State University San Marcos; 333 S. Twin Oaks Valley Rd 92096 San Marcos CA USA
| | - Tyler J. Stanley
- Department of Chemistry and Biochemistry; California State University San Marcos; 333 S. Twin Oaks Valley Rd 92096 San Marcos CA USA
| | - Kate A. Jesse
- Keck Science Department; Claremont McKenna, Pitzer, and Scripps Colleges; 925 N. Mills Ave 91711 Claremont CA USA
| | - Amanda K. Melanese
- Department of Chemistry and Biochemistry; California State University San Marcos; 333 S. Twin Oaks Valley Rd 92096 San Marcos CA USA
| | - Araceli A. Alvarez
- Department of Chemistry and Biochemistry; California State University San Marcos; 333 S. Twin Oaks Valley Rd 92096 San Marcos CA USA
| | - Aloha L. Prince
- Department of Chemistry and Biochemistry; California State University San Marcos; 333 S. Twin Oaks Valley Rd 92096 San Marcos CA USA
| | - Stephanie E. Cain
- Department of Chemistry and Biochemistry; California State University San Marcos; 333 S. Twin Oaks Valley Rd 92096 San Marcos CA USA
| | - Anna G. Wenzel
- Keck Science Department; Claremont McKenna, Pitzer, and Scripps Colleges; 925 N. Mills Ave 91711 Claremont CA USA
| | - Robert G. Iafe
- Department of Chemistry and Biochemistry; California State University San Marcos; 333 S. Twin Oaks Valley Rd 92096 San Marcos CA USA
| |
Collapse
|
48
|
Xie HP, Wu B, Wang XW, Zhou YG. Chiral Brønsted acid-catalyzed conjugate addition of indoles to azadienes: Enantioselective synthesis of hetero-triarylmethanes. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63396-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Zhang Z, Yadagiri D, Gevorgyan V. Light-induced metal-free transformations of unactivated pyridotriazoles. Chem Sci 2019; 10:8399-8404. [PMID: 31803418 PMCID: PMC6844233 DOI: 10.1039/c9sc02448d] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
A highly efficient and practical method for incorporation of the arylmethylpyridyl moiety into diverse molecules has been developed. This method features the transition metal-free light-induced room temperature transformation of pyridotriazoles into pyridyl carbenes, which are capable of smooth arylation, X-H insertion, and cyclopropanation reactions. The synthetic usefulness of the developed method was illustrated in a facile synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry , University of Illinois at Chicago , 845 W. Taylor St. , Chicago , Illinois 60607 , USA
- Department of Chemistry and Biochemistry , University of Texas at Dallas , 800 W Campbell RD , Richardson , Texas 75080 , USA .
| | - Dongari Yadagiri
- Department of Chemistry , University of Illinois at Chicago , 845 W. Taylor St. , Chicago , Illinois 60607 , USA
- Department of Chemistry and Biochemistry , University of Texas at Dallas , 800 W Campbell RD , Richardson , Texas 75080 , USA .
| | - Vladimir Gevorgyan
- Department of Chemistry , University of Illinois at Chicago , 845 W. Taylor St. , Chicago , Illinois 60607 , USA
- Department of Chemistry and Biochemistry , University of Texas at Dallas , 800 W Campbell RD , Richardson , Texas 75080 , USA .
| |
Collapse
|
50
|
Chintawar CC, Mane MV, Tathe AG, Biswas S, Patil NT. Gold-Catalyzed Cycloisomerization of Pyridine-Bridged 1,8-Diynes: An Expedient Access to Luminescent Cycl[3.2.2]azines. Org Lett 2019; 21:7109-7113. [DOI: 10.1021/acs.orglett.9b02677] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chetan C. Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Manoj V. Mane
- Physical Chemistry Division, CSIR − National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Akash G. Tathe
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Suprakash Biswas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|