1
|
Liu Y, Zhao C, Liu J, Du Y. Design, synthesis, and biological evaluation of novel KRN7000 analogues using 5α-gem-difluorocarba-β-l-arabinopyranose. Carbohydr Res 2025; 552:109457. [PMID: 40081114 DOI: 10.1016/j.carres.2025.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Two novel KRN7000 analogues, where d-galactopyranosyl residue was replaced by 5α-gem-difluorocarba-β-l-arabinopyranose, were designed based on docking computation and energy decomposition analyses. The target compounds were synthesized employing the key steps of Ferrier's carbocyclic ring closure and gem-difluoride formation with d-galactose as starting material. The in vivo bioassay revealed that the designed glycolipids could stimulate iNKT cells to produce cytokines IFN-γ and IL-4. The introduced hydroxyl groups on glycolipid acyl chain provided extra CD1d substrate affinities, and thus favored to boost Th1-type cytokine secretion. When the ring oxygen was replaced by CF2 group on sugar unit, its TCR affinities were enhanced in contrast with KRN7000. The in vivo cytokine profiles induced by synthetic glycolipids were initially dominated by the binding ability of CD1/glycolipid, and then adjusted by affinity toward TCR in CD1/α-GalCer/TCR triplex structure. The current results could be helpful in designing of more efficient α-GalCer analogs.
Collapse
Affiliation(s)
- Yuanfang Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, China
| |
Collapse
|
2
|
Hao T, Mi T, Chu Q, Ma W, Cheng X, Zang Y, Li J, Li T. Stereospecific Synthesis and Biological Evaluation of KRN7000 Analogues with Thio-modifications at the Acyl Moiety. ACS Med Chem Lett 2024; 15:1102-1108. [PMID: 39015265 PMCID: PMC11247626 DOI: 10.1021/acsmedchemlett.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
α-Galactosylceramide (KRN7000 or α-GalCer) analogues terminated with phenyl (Ph) groups at the acyl moiety possess more potency than KRN7000 to activate invariant natural killer T (iNKT) cells for inducing a T helper 1 (Th1)-biased immune response. However, biological activities of phenyl glycolipids with thio-modifications at the acyl moiety remain unknown, and facile approaches for highly stereoselective synthesis of KRN7000 and its analogues are rather scarce. Herein, we exploited 4,6-di-O-tert-butylsilylene (DTBS)-directed stereospecific galactosylation to efficiently synthesize various α-GalCer analogues bearing thioamide, terminal thiophenyl and dual modifications at the acyl moiety. Biological evaluations suggest that a new analogue S34 featuring a terminal Ph-S-Ph-F group exhibits a more superior Th1-biased immune response in mice. Molecular docking analysis revealed that the introduction of a sulfur atom influences vital hydrogen bonding interactions between glycolipids and the cluster of differentiation 1d (CDld), thus adjusting the stability of the glycolipid-CDld complex.
Collapse
Affiliation(s)
- Tianhui Hao
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Mi
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qinyu Chu
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Wenjing Ma
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Yi Zang
- Lingang
Laboratory, Shanghai 200031, China
| | - Jia Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy
of Sciences, Hangzhou 310024, China
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Miyazaki R, Suzuki M, Nakajima N, Hamada M, Koyama Y. Synthesis and self-assembly behaviors of α-galactosyl ceramide (1,2)-polysaccharide analogue. Int J Biol Macromol 2024; 263:130276. [PMID: 38373566 DOI: 10.1016/j.ijbiomac.2024.130276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
α-Galactosyl ceramide (GalCer) as a glycolipid has been long used as a standard reference for positive control in natural killer T cell studies. The (1,2)-disaccharide analogue of GalCer attracts a special attention in the study of lysosomal glycolipid processing. This paper describes the synthesis and self-assembly behaviors of GalCer 1,2-polysaccharide analogue (PolyGalCer), having considered the 1,2-disaccharide analogue as a structural motif. The synthesis of PolyGalCer is performed via one-pot glycosidation technique of 1,2-linked oligogalactan exploiting chain polymerization of galactose-based cyclic sulfite as a monomer initiated with ceramide-based alcoholic aglycon. Through the concentration dependence of PolyGalCer solutions in water or in MeOH on the turbidity, it is found that PolyGalCer forms associates in both media. From the intersection points, the critical aggregation concentration (CAC) values of PolyGalCer in water and MeOH were estimated. To know the self-assembly and the thermal transition behaviors, we performed dynamic light scattering (DLS) analysis of the associates comprising PolyGalCer in water. The transmission electron microscopy observations of the aqueous sample solution indicate that the solution of PolyGalCer includes large spherical associates. The results clarify that the 1,2-galactan moiety of PolyGalCer skeleton contributes on the kinetic inhibition of large associate formation and the metamorphosis of associates.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Misaki Suzuki
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
4
|
Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy. Cancer Cell Int 2023; 23:86. [PMID: 37158883 PMCID: PMC10165596 DOI: 10.1186/s12935-023-02923-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Today, cancer treatment is one of the fundamental problems facing clinicians and researchers worldwide. Efforts to find an excellent way to treat this illness continue, and new therapeutic strategies are developed quickly. Adoptive cell therapy (ACT) is a practical approach that has been emerged to improve clinical outcomes in cancer patients. In the ACT, one of the best ways to arm the immune cells against tumors is by employing chimeric antigen receptors (CARs) via genetic engineering. CAR equips cells to target specific antigens on tumor cells and selectively eradicate them. Researchers have achieved promising preclinical and clinical outcomes with different cells by using CARs. One of the potent immune cells that seems to be a good candidate for CAR-immune cell therapy is the Natural Killer-T (NKT) cell. NKT cells have multiple features that make them potent cells against tumors and would be a powerful replacement for T cells and natural killer (NK) cells. NKT cells are cytotoxic immune cells with various capabilities and no notable side effects on normal cells. The current study aimed to comprehensively provide the latest advances in CAR-NKT cell therapy for cancers.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, Department of immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of immunology, School of Medicine, Shahid beheshti University of Medical Sciences, Tehran, Iran.
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Pawar M, Vemireddy S, Sambyal S, Sampath Kumar HM. Synthesis and Immunological Activity of Novel Oligo(ethylene glycol) Analogues of α-Galactosylceramide. ACS OMEGA 2022; 7:21891-21900. [PMID: 35785299 PMCID: PMC9245117 DOI: 10.1021/acsomega.2c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
CD1d-arbitrated activation of i-NKT cells by α-galactosylceramide results in the effective secretion of Th1 and Th2 cytokines, with adjuvanticity skewed toward Th2 immunity. However, the polarization of immune response could be achieved by suitable modification of the glycolipid structure. In the current study, novel glycolipids with an amphiphilic oligo ethylene glycol lipid moiety bearing the benzyloxy group at the terminus on the acyl arm of sphingosine, exhibited CD1d ligand binding as quantified by IL-2 cytokine production. When immunized with quadrivalent split influenza virus in BALB/c mice, the novel ceramide analogues with a longer oligo (ethylene glycol) chain length induced significant levels of antibody (IgG) with Th1-polarized immune response.
Collapse
Affiliation(s)
- Mithun
S. Pawar
- Vaccine
Immunology Laboratory, OSPC Division, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Sravanthi Vemireddy
- Vaccine
Immunology Laboratory, OSPC Division, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
| | - Shainy Sambyal
- Vaccine
Immunology Laboratory, OSPC Division, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Halmuthur M. Sampath Kumar
- Vaccine
Immunology Laboratory, OSPC Division, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
6
|
Zheng Q, Xue C, Gu X, Shan D, Chu Q, Wang J, Zhu H, Chen Z. Multi-Omics Characterizes the Effects and Mechanisms of CD1d in Nonalcoholic Fatty Liver Disease Development. Front Cell Dev Biol 2022; 10:830702. [PMID: 35465315 PMCID: PMC9024148 DOI: 10.3389/fcell.2022.830702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a class of metabolic-associated liver diseases. Aberrant lipid consumption plays an important role in NAFLD pathogenesis. It has been shown CD1d can bind to multiple different lysophospholipids and associated with NAFLD progression. However, the mechanism of CD1d regulation in NAFLD is not completely understood. In this study, we established a NAFLD mouse model by feeding C57/BL6J mice a high-fat diet (HFD) for 24 weeks. Subsequently, we performed integrated transcriptomics and metabolomics analyses to thoroughly probe the role of CD1d in NAFLD progression. In the present study, we demonstrate that CD1d expression was significantly decreased in our murine model of NAFLD. Additionally, we show CD1d knockdown (CD1d KO) in HFD-fed wild-type (WT) mice induced NAFLD, which resulted in weight gain, exaggerated liver injury, and hepatic steatosis. We uncover the crucial roles of CD1d deficiency results in accumulated lipid accumulation. We further explored the CD1d deficiency in NAFLD regarding the transcriptional landscapes, microbiota environment, metabolomics change, and transcriptomics differences. In conclusion, our data demonstrate CD1d plays an important role in NAFLD pathogenesis and may represent a potential therapeutic target for the further therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhi Chen
- *Correspondence: Zhi Chen, ; Haihong Zhu,
| |
Collapse
|
7
|
Miyazaki R, Nargis M, Ihsan AB, Nakajima N, Hamada M, Koyama Y. Effects of Glycon and Temperature on Self-Assembly Behaviors of α-Galactosyl Ceramide in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7936-7944. [PMID: 34161093 DOI: 10.1021/acs.langmuir.1c00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
α-Galactosyl ceramide (GalCer) is an anticancer glycolipid consisting of d-galactose and phytosphingosine-based ceramide. Although the amphiphilic structure of GalCer is expected to form self-associates in water, the self-assembly behaviors of GalCer and its derivatives have not been systematically investigated at this moment in spite of its great importance. The evaluation of morphologies and properties of the associates should open new insights into glycolipid chemistry such as the application of GalCer derivatives to a nanocarrier and the elucidation of the detailed pharmacological mechanism of GalCer. Herein, we show the synthesis of the aglycon fragment (Aglycon) of GalCer and the self-assembly behaviors of both GalCer and Aglycon in water. The critical aggregation concentrations of Aglycon and GalCer were determined using UV-vis spectral measurements at various concentrations. The transmission electron microscopy observations of the aqueous sample solutions indicated that the solution of GalCer includes vesicles, while that of Aglycon comprises giant micelles in the absence of vesicles. The vesicle formation in the solution of GalCer was also confirmed by Triton X-100-triggered dye-release experiments. To reveal the effects of glycon on the self-assembly behaviors in detail, we performed the measurements of dynamic light scattering, temperature-dependence of turbidity, differential scanning calorimetry, and wide-angle X-ray diffraction. The results clarify that the glycon moiety of GalCer has a significant role in the formation inhibition of second associates and the plasticization of the hydrophobe. This work will shed light on the other natural glycosides to evaluate the self-assembly behaviors for supramolecular and pharmacological applications in the near future.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Mahmuda Nargis
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Abu Bin Ihsan
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
8
|
Efforts toward rational design of Th2-bias immune stimulator through modification on D-Gal-C-4 of α-GalCer derivative. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Ma W, Bi J, Zhao C, Zhang Z, Liu T, Zhang G. Synthesis and biological activities of amino acids functionalized α-GalCer analogues. Bioorg Med Chem 2020; 28:115141. [PMID: 31786009 DOI: 10.1016/j.bmc.2019.115141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
Invariant natural killer T-cells (iNKT-cells) are promising targets for manipulating the immune system, which can rapidly release a large amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipid antigens presented by CD1d. In this paper, we wish to report a novel series of α-GalCer analogues which were synthesized by incorporation of l-amino acid methyl esters in the C-6' position of glycolipid. The evaluation of these synthetic analogues for their capacities to stimulate iNKT-cells into producing Th1 and Th2 cytokines both in vitro and in vivo indicated that they were potent CD1d ligands and could stimulate murine spleen cells into a higher release of the Th1 cytokine IFN-γ in vitro. In vivo, Gly-α-GalCer (1) and Lys-α-GalCer (3) showed more Th1-biased responses than α-GalCer, especially analogue 3 showed the highest selectivity for IFN-γ production (IFN-γ/IL-4 = 5.32) compared with α-GalCer (IFN-γ/IL-4 = 2.5) in vivo. These novel α-GalCer analogues might be used as efficient X-ray crystallographic probes to reveal the relationship between glycolipids and CD1d proteins in α-GalCer/CD1d complexes and pave the way for developing new potent immunostimulating agents.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Chuanfang Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tongxin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
10
|
Cheng JMH, Chee SH, Dölen Y, Verdoes M, Timmer MSM, Stocker BL. An efficient synthesis of a 6″-BODIPY-α-Galactosylceramide probe for monitoring α-Galactosylceramide uptake by cells. Carbohydr Res 2019; 486:107840. [PMID: 31689579 DOI: 10.1016/j.carres.2019.107840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
Herein, an efficient synthesis of BODIPY-α-Galactosylceramide 3, which can be used to study the cellular uptake of the potent immunostimulatory parent compound α-Galactosylceramide, is reported. Key in our synthetic strategy is the six-step synthesis of the core BODIPY scaffold (64% yield overall) and its quantitative conversion to an N-hydroxysuccinimidyl ester to facilitate conjugation and purification of the target glycolipid. For the preparation of the core of the glycolipid, the solubility of the lipid acceptor proved to be critical. The ability of BODIPY-αGalCer 3 to activate invariant natural killer cells was then demonstrated in vitro.
Collapse
Affiliation(s)
- Janice M H Cheng
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Stephanie H Chee
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Yusuf Dölen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525, GA, Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525, GA, Nijmegen, the Netherlands
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand.
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| |
Collapse
|
11
|
Pecher AC, Kettemann F, Asteriti E, Schmid H, Duerr-Stoerzer S, Keppeler H, Henes JC, Klein R, Hinterleitner C, Secker KA, Schneidawind C, Kanz L, Schneidawind D. Invariant natural killer T cells are functionally impaired in patients with systemic sclerosis. Arthritis Res Ther 2019; 21:212. [PMID: 31615552 PMCID: PMC6792213 DOI: 10.1186/s13075-019-1991-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Systemic sclerosis (SSc) is a potentially fatal autoimmune disease that leads to extensive fibrosis of the skin and internal organs. Invariant natural killer T (iNKT) cells are potent immunoregulatory T lymphocytes being able to orchestrate dysregulated immune responses. The purpose of this study was to evaluate numbers and function of iNKT cells in patients with SSc and to analyze their correlation with disease parameters. Methods Human iNKT cells from 88 patients with SSc and 33 healthy controls were analyzed by flow cytometry. Their proliferative capacity and cytokine production were investigated following activation with CD1d ligand α-galactosylceramide (α-GalCer). Results We observed an absolute and relative decrease of iNKT cells in patients with SSc compared with healthy controls. Interestingly, the subtype of SSc, disease severity, or treatment with immunosuppressive drugs did not affect iNKT cell numbers. However, T helper (Th) cell immune polarization was biased towards a Th17 immunophenotype in SSc patients. Moreover, iNKT cells from patients with SSc showed a significantly decreased expansion capacity upon stimulation with α-GalCer. Conclusion iNKT cells are deficient and functionally impaired in patients with SSc. Therefore, adoptive transfer strategies using culture-expanded iNKT cells could be a novel approach to treat SSc patients.
Collapse
Affiliation(s)
- Ann-Christin Pecher
- Centre for Interdisciplinary Clinical Immunology, Rheumatology and Autoinflammatory Diseases, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Felix Kettemann
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Elisa Asteriti
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Hannes Schmid
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Silke Duerr-Stoerzer
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Joerg Christoph Henes
- Centre for Interdisciplinary Clinical Immunology, Rheumatology and Autoinflammatory Diseases, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Clemens Hinterleitner
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Kathy-Ann Secker
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Corina Schneidawind
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany.
| | - Lothar Kanz
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Immunology, Rheumatology, Pulmonology, University Hospital Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Germany
| |
Collapse
|
12
|
Hu L, Zhao C, Ma J, Jing Y, Du Y. Design, synthesis, and evaluation of α-galactopyranosylceramide mimics promoting Th2 cytokines production. Bioorg Med Chem Lett 2019; 29:1357-1362. [DOI: 10.1016/j.bmcl.2019.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 01/30/2023]
|
13
|
He P, Zhao C, Lu J, Zhang Y, Fang M, Du Y. Synthesis of 5-Thio-α-GalCer Analogues with Fluorinated Acyl Chain on Lipid Residue and Their Biological Evaluation. ACS Med Chem Lett 2019; 10:221-225. [PMID: 30783507 DOI: 10.1021/acsmedchemlett.8b00640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a subclass of T cells that initiates the secretion of T helper 1 and 2 cytokines after recognizing CD1d protein presented glycolipid antigens. In this Letter, we designed and synthesized a novel series of CD1d ligand α-galactosylceramides (α-GalCers) in which the acyl chain backbone of the lipid was incorporated with fluorine atoms. The in vivo evaluation of immunostimulatory activities revealed that the synthesized α-5-thio-galactopyranosyl-N-perfluorooctanoyl phytosphingosine exhibited a remarkable potency toward selectively enhancing TH1 cytokine production with the IFN γ/IL-4 ratio of 9/1, while its perfluorotetradecanoyl counterpart showed TH2 profile with an IFN γ/IL-4 ratio of 0.59/1. The analogues synthesized here would be used as probes to study lipid-protein interactions in α-GalCer/CD1d complexes.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Chuanfang Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
14
|
Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era. Adv Cancer Res 2018; 140:327-366. [PMID: 30060815 DOI: 10.1016/bs.acr.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids are bioactive lipids that participate in a wide variety of biological mechanisms, including cell death and proliferation. The myriad of pro-death and pro-survival cellular pathways involving sphingolipids provide a plethora of opportunities for dysregulation in cancers. In recent years, modulation of these sphingolipid metabolic pathways has been in the forefront of drug discovery for cancer therapeutics. About two decades ago, researchers first showed that standard of care treatments, e.g., chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival. To this end, many inhibitors of sphingolipid metabolism have been developed to further define not only our understanding of these pathways but also to potentially serve as therapeutic interventions. Therefore, understanding how to better use these new drugs that target sphingolipid metabolism, either alone or in combination with current cancer treatments, holds great potential for cancer control. While sphingolipids in cancer have been reviewed previously (Hannun & Obeid, 2018; Lee & Kolesnick, 2017; Morad & Cabot, 2013; Newton, Lima, Maceyka, & Spiegel, 2015; Ogretmen, 2018; Ryland, Fox, Liu, Loughran, & Kester, 2011) in this chapter, we present a comprehensive review on how standard of care therapeutics affects sphingolipid metabolism, the current landscape of sphingolipid inhibitors, and the clinical utility of sphingolipid-based cancer therapeutics.
Collapse
Affiliation(s)
- Jeremy Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Pedro Costa-Pinheiro
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Logan Patterson
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Park YJ, Park J, Huh JY, Hwang I, Choe SS, Kim JB. Regulatory Roles of Invariant Natural Killer T Cells in Adipose Tissue Inflammation: Defenders Against Obesity-Induced Metabolic Complications. Front Immunol 2018; 9:1311. [PMID: 29951059 PMCID: PMC6008523 DOI: 10.3389/fimmu.2018.01311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a metabolic organ that plays a central role in controlling systemic energy homeostasis. Compelling evidence indicates that immune system is closely linked to healthy physiologic functions and pathologic dysfunction of adipose tissue. In obesity, the accumulation of pro-inflammatory responses in adipose tissue subsequently leads to dysfunction of adipose tissue as well as whole body energy homeostasis. Simultaneously, adipose tissue also activates anti-inflammatory responses in an effort to reduce the unfavorable effects of pro-inflammation. Notably, the interplay between adipocytes and resident invariant natural killer T (iNKT) cells is a major component of defensive mechanisms of adipose tissue. iNKT cells are leukocytes that recognize lipids loaded on CD1d as antigens, whereas most other immune cells are activated by peptide antigens. In adipose tissue, adipocytes directly interact with iNKT cells by presenting lipid antigens and stimulate iNKT cell activation to alleviate pro-inflammation. In this review, we provide an overview of the molecular and cellular determinants of obesity-induced adipose tissue inflammation. Specifically, we focus on the roles of iNKT cell-adipocyte interaction in maintaining adipose tissue homeostasis as well as the consequent modulation in systemic energy metabolism. We also briefly discuss future research directions regarding the interplay between adipocytes and adipose iNKT cells in adipose tissue inflammation.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Jeu Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Injae Hwang
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Zhang L, Carthy CM, Zhu X. Synthesis of a glucosylated α-S-galactosylceramide as potential immunostimulant. Carbohydr Res 2017; 448:43-47. [DOI: 10.1016/j.carres.2017.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
|
17
|
Galactosylsphingamides: new α-GalCer analogues to probe the F'-pocket of CD1d. Sci Rep 2017; 7:4276. [PMID: 28655912 PMCID: PMC5487351 DOI: 10.1038/s41598-017-04461-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/16/2017] [Indexed: 01/08/2023] Open
Abstract
Invariant Natural Killer T-cells (iNKT-cells) are an attractive target for immune response modulation, as upon CD1d-mediated stimulation with KRN7000, a synthetic α-galactosylceramide, they produce a vast amount of cytokines. Here we present a synthesis that allows swift modification of the phytosphingosine side chain by amidation of an advanced methyl ester precursor. The resulting KRN7000 derivatives, termed α-galactosylsphingamides, were evaluated for their capacity to stimulate iNKT-cells. While introduction of the amide-motif in the phytosphingosine chain is tolerated for CD1d binding and TCR recognition, the studied α-galactosylsphingamides showed compromised antigenic properties.
Collapse
|
18
|
Guillaume J, Seki T, Decruy T, Venken K, Elewaut D, Tsuji M, Van Calenbergh S. Synthesis of C6′′-modified α-C-GalCer analogues as mouse and human iNKT cell agonists. Org Biomol Chem 2017; 15:2217-2225. [DOI: 10.1039/c7ob00081b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-GalCer analogues that combine known Th1 polarizing C6′′-modifications with a C-glycosidic linkage were synthesized and evaluated as iNKT cell antigens.
Collapse
Affiliation(s)
- Joren Guillaume
- Laboratory for Medicinal Chemistry (FFW)
- Faculty of Pharmaceutical Sciences
- UGent
- B-9000 Ghent
- Belgium
| | - Toshiyuki Seki
- Aaron Diamond AIDS Research Center
- Affiliate of The Rockefeller University
- New York
- USA
| | - Tine Decruy
- Department of Internal Medicine
- Faculty of Medicine and Health Sciences
- Ghent University
- B-9000 Ghent
- Belgium
| | - Koen Venken
- Department of Internal Medicine
- Faculty of Medicine and Health Sciences
- Ghent University
- B-9000 Ghent
- Belgium
| | - Dirk Elewaut
- Department of Internal Medicine
- Faculty of Medicine and Health Sciences
- Ghent University
- B-9000 Ghent
- Belgium
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center
- Affiliate of The Rockefeller University
- New York
- USA
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW)
- Faculty of Pharmaceutical Sciences
- UGent
- B-9000 Ghent
- Belgium
| |
Collapse
|
19
|
Saito K, Ueta M, Maekawa K, Sotozono C, Kinoshita S, Saito Y. Plasma Lipid Profiling of Patients with Chronic Ocular Complications Caused by Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis. PLoS One 2016; 11:e0167402. [PMID: 27898730 PMCID: PMC5127552 DOI: 10.1371/journal.pone.0167402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Stevens-Johnson syndrome (SJS) and its severe variant, toxic epidermal necrolysis (TEN), are drug-induced acute inflammatory vesiculobullous reactions of the skin and mucous membranes, including the ocular surface. Even after recovery from skin symptoms, some SJS/TEN patients continue to suffer with severe ocular complications (SOCs). Therefore, this study aims to understand the pathophysiology of chronic SOCs. Because plasma lipid profiling has emerged as a useful tool to understand pathophysiological alterations in the body, we performed plasma lipid profiling of 17 patients who suffered from SJS/TEN-associated chronic SOCs. A lipidomics approach yielded 386 lipid molecules and demonstrated that plasma levels of inflammatory oxylipins increased in patients with SJS/TEN-associated chronic SOCs. In addition, oxidized phosphatidylcholines and ether-type diacylglycerols increased in the patients with chronic SOCs, while phosphoglycerolipids decreased. When we compared these lipidomic profiles with those of patients with atopic dermatitis, we found that patients with chronic SOCs, specifically, had decreased levels of ether-type phosphatidylcholines (ePCs) containing arachidonic acid (AA), such as PC(18:0e/20:4) and PC(20:0e/20:4). To confirm our finding, we recruited additional patients, who suffered from SOC associated with SJS/TEN (up to 51 patients), and validated the decreased plasma levels of AA-containing ePCs. Our study provides insight into the alterations of plasma lipidomic profiles in chronic SOCs and into the pathophysiology of SJS/TEN-associated chronic SOCs.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Mayumi Ueta
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
- * E-mail: (MU); (YS)
| | - Keiko Maekawa
- Division of Medical Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, Japan
- * E-mail: (MU); (YS)
| |
Collapse
|
20
|
Gaspar-Elsas MI, Queto T, Masid-de-Brito D, Vieira BM, de Luca B, Cunha FQ, Xavier-Elsas P. α-Galactosylceramide suppresses murine eosinophil production through interferon-γ-dependent induction of NO synthase and CD95. Br J Pharmacol 2015; 172:3313-3325. [PMID: 25752588 PMCID: PMC4500368 DOI: 10.1111/bph.13126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 01/26/2015] [Accepted: 02/25/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE α-Galactosylceramide (α-GalCer), a pleiotropic immunomodulator with therapeutic potential in neoplastic, autoimmune and allergic diseases, activates invariant natural killer T-cells throughCD1-restricted receptors for α-GalCer on antigen-presenting cells, inducing cytokine secretion. However the haemopoietic effects of α-GalCer remain little explored. EXPERIMENTAL APPROACH α-GalCer-induced modulation of eosinophil production in IL-5-stimulated bone marrow cultures was examined in wild-type (BALB/c, C57BL/6) mice and their mutants lacking CD1, inducible NOS (iNOS), CD95 and IFN-γ, along with the effects of lymphocytes; IFN-γ; caspase and iNOS inhibitors; non-steroidal anti-inflammatory drugs (NSAIDs) and LTD4 ; and dexamethasone. KEY RESULTS α-GalCer (10(-6) -10(-8) M) suppressed IL-5-stimulated eosinopoiesis by inducing apoptosis. α-GalCer pretreatment in vivo (100 μg·kg(-1) , i.v.) suppressed colony formation by GM-CSF-stimulated bone marrow progenitors in semi-solid cultures. α-GalCer and dexamethasone synergistically promoted eosinophil maturation. Suppression of eosinophil production by α-GalCer was prevented by aminoguanidine and was undetectable in bone marrow lacking iNOS, CD95, CD28; or CD1d. Separation on Percoll gradients and depletion of CD3+ cells made bone marrow precursors unresponsive to α-GalCer. Responsiveness was restored with splenic lymphocytes. Experiments with (i) IFN-γ-deficient bone marrow, alone or co-cultured with spleen T-cells from wild-type, but not from CD1d-deficient, donors; (ii) IFN-γ neutralization; and (iii) recombinant IFN-γ, showed that these effects of α-GalCer were mediated by IFN-γ. Effects of α-GalCer on eosinophil production were blocked by LTD4 and NSAIDs. CONCLUSIONS AND IMPLICATIONS α-GalCer activation of IFN-γ-secreting, CD1d-restricted lymphocytes induced iNOS-CD95-dependent apoptosis in developing eosinophils. This pathway is initiated by endogenous regulatory lymphocytes, antagonised by LTD4 , NSAIDs and aminoguanidine, and modified by dexamethasone.
Collapse
Affiliation(s)
- Maria Ignez Gaspar-Elsas
- Department of Pediatrics, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZRio de Janeiro, Brazil
| | - Túlio Queto
- Department of Pediatrics, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZRio de Janeiro, Brazil
| | - Daniela Masid-de-Brito
- Department of Immunology, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Bruno Marques Vieira
- Department of Pediatrics, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZRio de Janeiro, Brazil
- Department of Immunology, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Bianca de Luca
- Department of Pediatrics, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZRio de Janeiro, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Faculdade de Medicina da USP (FMRP-USP)Ribeirão Preto, Brazil
| | - Pedro Xavier-Elsas
- Department of Pharmacology, Faculdade de Medicina da USP (FMRP-USP)Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Cui Y, Li Z, Cheng Z, Xia C, Zhang Y. 4,5-Cis Unsaturated α-GalCer Analogues Distinctly Lead to CD1d-Mediated Th1-Biased NKT Cell Responses. Chem Res Toxicol 2015; 28:1209-15. [PMID: 25955524 DOI: 10.1021/acs.chemrestox.5b00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanli Cui
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhiyuan Li
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Zhaodong Cheng
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengfeng Xia
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yongmin Zhang
- Institut
Parisien de Chimie Moleculaire, UMR CNRS 8232, Universite Pierre et Marie Curie-Paris 6, 75005 Paris, France
- Institute
for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological
Development Zone, Wuhan 430056, P. R. China
| |
Collapse
|
22
|
Bi J, Wang J, Zhou K, Wang Y, Fang M, Du Y. Synthesis and Biological Activities of 5-Thio-α-GalCers. ACS Med Chem Lett 2015; 6:476-80. [PMID: 25941558 DOI: 10.1021/acsmedchemlett.5b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 01/22/2023] Open
Abstract
NKT cells, a unique subset of T cells that recognizes glycolipid antigens presented by CD1d molecules, are believed to produce key cytokines of both Th1 and Th2 T cells and are thus involved in the control of several types of immune response. As an active glycolipid antigen having α-galactosyl ceramide core structure, KRN7000 showed promising immunostimulation activity and was selected as an anticancer drug candidate for further clinical application. In this report, three new KRN7000 structural analogues were designed and synthesized, in which the ring oxygen of the galactopyranose residue is replaced by a sulfur atom along with the variation on the lipid chain. Their abilities for stimulating mouse NKT cells to produce IFN-γ and IL-4 were evaluated both in vivo and in vitro.
Collapse
Affiliation(s)
- Jingjing Bi
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Jing Wang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Zhou
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuancheng Wang
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Fang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuguo Du
- State
Key Laboratory of Environmental Chemistry and Eco-toxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
23
|
Laurent X, Renault N, Farce A, Chavatte P, Hénon E. Relationships between Th1 or Th2 iNKT cell activity and structures of CD1d-antigen complexes: meta-analysis of CD1d-glycolipids dynamics simulations. PLoS Comput Biol 2014; 10:e1003902. [PMID: 25376021 PMCID: PMC4222593 DOI: 10.1371/journal.pcbi.1003902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/22/2014] [Indexed: 01/17/2023] Open
Abstract
A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1.
Collapse
Affiliation(s)
- Xavier Laurent
- Intestinal Biotech Development, Faculté de Médecine, Lille, France
- Laboratoire de Chimie Thérapeutique EA4481, Université Lille 2, Lille, France
| | - Nicolas Renault
- Laboratoire de Chimie Thérapeutique EA4481, Université Lille 2, Lille, France
| | - Amaury Farce
- Laboratoire de Chimie Thérapeutique EA4481, Université Lille 2, Lille, France
| | - Philippe Chavatte
- Laboratoire de Chimie Thérapeutique EA4481, Université Lille 2, Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol EA4481, Université Lille 2, Lille, France
| | - Eric Hénon
- Institut de Chimie Moléculaire de Reims UMR CNRS 7312, University of Reims Champagne-Ardenne, Reims, France
- * E-mail:
| |
Collapse
|
24
|
Lim C, Kim JH, Baek DJ, Lee JY, Cho M, Lee YS, Kang CY, Chung DH, Cho WJ, Kim S. Design and Evaluation of ω-Hydroxy Fatty Acids Containing α-GalCer Analogues for CD1d-Mediated NKT Cell Activation. ACS Med Chem Lett 2014; 5:331-5. [PMID: 24900836 DOI: 10.1021/ml400517b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/04/2014] [Indexed: 02/02/2023] Open
Abstract
CD1d molecules recognize glycolipid antigens with straight chain fatty acid moieties. Although most of the residues in the CD1d binding groove are hydrophobic, some of the amino acids can form hydrogen bonds. Consequently, we have designed ω-hydroxy fatty acid-containing glycolipid derivatives of the prototypical CD1d ligand α-GalCer. The potency of the ω-hydroxy analogues of the proper length is comparable to that of α-GalCer. We propose, based on the biological results and molecular modeling studies, that a hydrogen bonding interaction is involved between the ω-hydroxy group and a polar amino acid residue in the hydrophobic binding groove.
Collapse
Affiliation(s)
- Chaemin Lim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Jae Hyun Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Dong Jae Baek
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Joo-Youn Lee
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Minjae Cho
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Yoon-Sook Lee
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Chang-Yuil Kang
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Doo Hyun Chung
- College of Medicine, Seoul National University, 28 Yongon, Chongno-gu, Seoul 110-799, Korea
| | - Won-Jae Cho
- College of Pharmacy, Chonnam National University, Yongbong, Buk-gu, Kwangju 500-757, Korea
| | - Sanghee Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|
25
|
Laurent X, Bertin B, Renault N, Farce A, Speca S, Milhomme O, Millet R, Desreumaux P, Hénon E, Chavatte P. Switching Invariant Natural Killer T (iNKT) Cell Response from Anticancerous to Anti-Inflammatory Effect: Molecular Bases. J Med Chem 2014; 57:5489-508. [DOI: 10.1021/jm4010863] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xavier Laurent
- Faculté
de Médecine, Intestinal Biotech Development, Amphis J et K, Boulevard du Professeur Jules Leclerc, 59045 Lille Cedex, France
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Benjamin Bertin
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Nicolas Renault
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Amaury Farce
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Silvia Speca
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Ophélie Milhomme
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Régis Millet
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| | - Pierre Desreumaux
- Faculté
de
Médecine, Université Lille-Nord de France, Amphis J
et K, INSERM U995, Boulevard du Professeur
Jules Leclerc, 59045 Lille Cedex, France
| | - Eric Hénon
- Université
de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles,
BSMA-ICMR, UMR CNRS 6229, Moulin de
la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Philippe Chavatte
- Laboratoire
de Chimie Thérapeutique, EA 4481, Faculté des Sciences
Pharmaceutiques et Biologiques, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
- Institut
de Chimie Pharmaceutique Albert Lespagnol, EA 4481, Université Lille-Nord de France, 3 Rue du Professeur Laguesse, BP 83, 59006 Lille Cedex, France
| |
Collapse
|
26
|
De Spiegeleer A, Wynendaele E, Vandekerckhove M, Stalmans S, Boucart M, Van Den Noortgate N, Venken K, Van Calenbergh S, Aspeslagh S, Elewaut D. An in silico approach for modelling T-helper polarizing iNKT cell agonists. PLoS One 2014; 9:e87000. [PMID: 24498010 PMCID: PMC3909045 DOI: 10.1371/journal.pone.0087000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different test-systems. We linked the chemical space to the immunological space using a system biology computational approach resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of iNKT cell activation by α-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists.
Collapse
Affiliation(s)
- Anton De Spiegeleer
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Matthias Vandekerckhove
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Maxime Boucart
- Drug Quality and Registration (DruQuaR) Group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nele Van Den Noortgate
- Geriatrics Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory of Medicinal Chemistry, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
27
|
Anderson BL, Teyton L, Bendelac A, Savage PB. Stimulation of natural killer T cells by glycolipids. Molecules 2013; 18:15662-88. [PMID: 24352021 PMCID: PMC4018217 DOI: 10.3390/molecules181215662] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 01/31/2023] Open
Abstract
Natural killer T (NKT) cells are a subset of T cells that recognize glycolipid antigens presented by the CD1d protein. The initial discovery of immunostimulatory glycolipids from a marine sponge and the T cells that respond to the compounds has led to extensive research by chemists and immunologists to understand how glycolipids are recognized, possible responses by NKT cells, and the structural features of glycolipids necessary for stimulatory activity. The presence of this cell type in humans and most mammals suggests that it plays critical roles in antigen recognition and the interface between innate and adaptive immunity. Both endogenous and exogenous natural antigens for NKT cells have been identified, and it is likely that glycolipid antigens remain to be discovered. Multiple series of structurally varied glycolipids have been synthesized and tested for stimulatory activity. The structural features of glycolipids necessary for NKT cell stimulation are moderately well understood, and designed compounds have proven to be much more potent antigens than their natural counterparts. Nevertheless, control over NKT cell responses by designed glycolipids has not been optimized, and further research will be required to fully reveal the therapeutic potential of this cell type.
Collapse
Affiliation(s)
| | | | | | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
28
|
|
29
|
RCAI-61 and related 6′-modified analogs of KRN7000: Their synthesis and bioactivity for mouse lymphocytes to produce interferon-γ in vivo. Bioorg Med Chem 2013; 21:3066-79. [DOI: 10.1016/j.bmc.2013.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/23/2022]
|
30
|
Tashiro T, Shigeura T, Shiozaki M, Watarai H, Taniguchi M, Mori K. RCAI-133, an N-methylated analogue of KRN7000, activates mouse natural killer T cells to produce Th2-biased cytokines. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00073g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Pauwels N, Aspeslagh S, Elewaut D, Calenbergh SV. Synthesis of 6″-triazole-substituted α-GalCer analogues as potent iNKT cell stimulating ligands. Bioorg Med Chem 2012; 20:7149-54. [DOI: 10.1016/j.bmc.2012.09.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
|
32
|
Tashiro T, Shigeura T, Watarai H, Taniguchi M, Mori K. RCAI-84, 91, and 105-108, ureido and thioureido analogs of KRN7000: Their synthesis and bioactivity for mouse lymphocytes to produce Th1-biased cytokines. Bioorg Med Chem 2012; 20:4540-8. [DOI: 10.1016/j.bmc.2012.05.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
33
|
Hsieh MH, Hung JT, Liw YW, Lu YJ, Wong CH, Yu AL, Liang PH. Synthesis and evaluation of acyl-chain- and galactose-6''-modified analogues of α-GalCer for NKT cell activation. Chembiochem 2012; 13:1689-97. [PMID: 22730199 DOI: 10.1002/cbic.201200004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/25/2022]
Abstract
α-GalCer is an immunostimulating glycolipid that binds to CD1d molecules and activates invariant natural killer T (iNKT) cells. Here we report a scaled-up synthesis of α-GalCer analogues with modifications in the acyl side chain and/or at the galactose 6''-position, together with their evaluation in vitro and in vivo. Analogues containing 11-phenylundecanoyl acyl side chains with aromatic substitutions (14, 16-21) and Gal-6''-phenylacetamide-substituted α-GalCer analogues bearing p-nitro- (32), p-tert-butyl (34), or o-, m-, or p-methyl groups (40-42) displayed higher IFN-γ/IL-4 secretion ratios than α-GalCer in vitro. In mice, compound 16, with an 11-(3,4-difluorophenyl)undecanoyl acyl chain, induced significant proliferation of NK and DC cells, which should be beneficial in killing tumors and priming the immune response. These new glycolipids might prove useful as adjuvants or anticancer agents.
Collapse
Affiliation(s)
- Ming-Han Hsieh
- School of Pharmacy, College of Medicine, National Taiwan University, 1, Jen-Ai Road, Section 1, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Structure-activity relationship studies of novel glycosphingolipids that stimulate natural killer T-cells. Biosci Biotechnol Biochem 2012; 76:1055-67. [PMID: 22790924 DOI: 10.1271/bbb.120072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
KRN7000, an anticancer drug candidate developed by Kirin Brewery Co. in 1995, is an α-galactosyl ceramide. It is a ligand making a complex with CD1d protein, and it stimulates invariant natural killer T (NKT) cells, which are one of the lineages of immunocytes. NKT cells activated by recognition of the CD1d/KRN7000 complex with its invariant T-cell receptor (TCR) can induce both protective and regulatory immune responses. To determine the recognition and activation mechanisms of NKT cells and to develop drug candidates more effective than KRN7000, a large number of analogs of KRN7000 have been synthesized. Some of them show potent bioactivities and have the potential of being utilized as therapeutic agents. In this review, structure-activity relationship studies of novel glycolipids which stimulate NKT cells efficiently are summarized.
Collapse
|
35
|
Dangerfield EM, Cheng JMH, Knight DA, Weinkove R, Dunbar PR, Hermans IF, Timmer MSM, Stocker BL. Species-specific activity of glycolipid ligands for invariant NKT cells. Chembiochem 2012; 13:1349-56. [PMID: 22639457 DOI: 10.1002/cbic.201200095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 11/07/2022]
Abstract
The immunomodulatory glycolipid α-galactosylceramide (α-GalCer) binds to CD1d and exhibits potent activity as a ligand for invariant CD1d-restricted natural killer-like T cells (iNKT cells). Structural analogues of α-GalCer have been synthesised to determine which components are required for CD1d presentation and iNKT cell activation, however, to date the importance of the phytosphingosine 4-hydroxyl for iNKT cell activation has been disputed. To clarify this, we synthesised two 4-deoxy α-GalCer analogues (sphinganine and sphingosine) and investigated their ability to activate murine and human iNKT cells. Analysis revealed that the analogues possessed comparable activity to α-GalCer in stimulating murine iNKT cells, but were severely compromised in their ability to stimulate human iNKT cells. Here we determined that species-specific glycolipid activity was due to a lack of recognition of the analogues by the T-cell receptors on human iNKT cells rather than insufficient presentation of the analogues on human CD1d molecules. From these results we suggest that glycolipids developed for potent iNKT cell activity in humans should contain a phytosphingosine base.
Collapse
Affiliation(s)
- Emma M Dangerfield
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington 6242, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hunault J, Diswall M, Frison JC, Blot V, Rocher J, Marionneau-Lambot S, Oullier T, Douillard JY, Guillarme S, Saluzzo C, Dujardin G, Jacquemin D, Graton J, Le Questel JY, Evain M, Lebreton J, Dubreuil D, Le Pendu J, Pipelier M. 3-fluoro- and 3,3-difluoro-3,4-dideoxy-KRN7000 analogues as new potent immunostimulator agents: total synthesis and biological evaluation in human invariant natural killer T cells and mice. J Med Chem 2012; 55:1227-41. [PMID: 22243602 DOI: 10.1021/jm201368m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose here the synthesis and biological evaluation of 3,4-dideoxy-GalCer derivatives. The absence of the 3- and 4-hydroxyls on the sphingoid base is combined with the introduction of mono or difluoro substituent at C3 (analogues 8 and 9, respectively) to evaluate their effect on the stability of the ternary CD1d/GalCer/TCR complex which strongly modulate the immune responses. Biological evaluations were performed in vitro on human cells and in vivo in mice and results discussed with support of modeling studies. The fluoro 3,4-dideoxy-GalCer analogues appears as partial agonists compared to KRN7000 for iNKT cell activation, inducing T(H)1 or T(H)2 biases that strongly depend of the mode of antigen presentation, including human vs mouse differences. We evidenced that if a sole fluorine atom is not able to balance the loss of the 3-OH, the presence of a difluorine group at C3 of the sphingosine can significantly restore human iNKT activation.
Collapse
Affiliation(s)
- Julie Hunault
- Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pauwels N, Aspeslagh S, Vanhoenacker G, Sandra K, Yu ED, Zajonc DM, Elewaut D, Linclau B, Van Calenbergh S. Divergent synthetic approach to 6''-modified α-GalCer analogues. Org Biomol Chem 2011; 9:8413-21. [PMID: 22042483 DOI: 10.1039/c1ob06235b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic approach is presented for the synthesis of galacturonic acid and D-fucosyl modified KRN7000. The approach allows for late-stage functionalisation of both the sugar 6''-OH and the sphingosine amino groups, which enables convenient synthesis of promising 6''-modified KRN7000 analogues.
Collapse
Affiliation(s)
- Nora Pauwels
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, UGent, Harelbekestraat 72, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Avidity of CD1d-ligand-receptor ternary complex contributes to T-helper 1 (Th1) polarization and anticancer efficacy. Proc Natl Acad Sci U S A 2011; 108:17275-80. [PMID: 21987790 DOI: 10.1073/pnas.1114255108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T cell (NKT) cells (iNKT cells) produce both T-helper 1 (Th1) and T-helper 2 cytokines in response to α-Galactosylceramide (α-GalCer) stimulation and are thought to be the important effectors in the regulation of both innate and adaptive immunity involved in autoimmune disorders, microbial infections, and cancers. However, the anticancer effects of α-GalCer were limited in early clinical trial. In this study, several analogs of α-GalCer, containing phenyl groups in the lipid tails were found to stimulate murine and human iNKT cells to secrete Th1-skewed cytokines and exhibit greater anticancer efficacy in mice than α-GalCer. We explored the possibility of different Vβ usages of murine Vα14 iNKT or human Vα24 iNKT cells, accounting for differential cytokine responses. However, T-cell receptor Vβ analysis revealed no significant differences in Vβ usages by α-GalCer and these phenyl glycolipid analogs. On the other hand, these phenyl glycolipids showed greater binding avidity and stability for iNKT T-cell receptor when complexed with CD1d. These findings suggest that CD1d-phenyl glycolipid complexes may interact with the same population of iNKT cells but with higher avidity and stability to drive Th1 polarization. Thus, this study provides a key to the rational design of Th1 biased CD1d reactive glycolipids in the future.
Collapse
|
39
|
Nowak M, Schmidt-Wolf IGH. Natural killer T cells subsets in cancer, functional defects in prostate cancer and implications for immunotherapy. Cancers (Basel) 2011; 3:3661-75. [PMID: 24212972 PMCID: PMC3759215 DOI: 10.3390/cancers3033661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022] Open
Abstract
Natural killer T cells are T lymphocytes with unique activation and effector properties. The majority of NKT cells, termed type-I or iNKT cells, recognize lipid antigens presented on MHC-like CD1d molecules. Type-I NKT cells have the capacity to rapidly secrete various cytokines upon activation, thereby regulate immune responses exerts dominant anti-tumor and anti-microbial effector functions. Specific activation of type-I NKT cells in mouse models boosts immunity and prevents metastasis, which has led to a number of phase I-II clinical trials. Since the discovery of NKT cells other subsets with different specificities and effector functions have been described. This article briefly reviews the physiological functions of NKT cell subsets, their implications in cancer and the attempts that have been made to employ NKT cells for immune therapy of cancer.
Collapse
Affiliation(s)
- Michael Nowak
- Department of Internal Medicine III, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn 53127, Germany.
| | | |
Collapse
|
40
|
|
41
|
Use of the NEO strategy (Nucleophilic addition/Epoxide Opening) for the synthesis of a new C-galactoside ester analogue of KRN 7000. Bioorg Med Chem Lett 2011; 21:2510-4. [DOI: 10.1016/j.bmcl.2011.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 11/23/2022]
|
42
|
Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 2011; 33:545-67. [DOI: 10.3109/08923973.2010.513391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Lee YS, Lee KA, Lee JY, Kang MH, Song YC, Baek DJ, Kim S, Kang CY. An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine 2011; 29:417-25. [DOI: 10.1016/j.vaccine.2010.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/20/2010] [Accepted: 11/02/2010] [Indexed: 01/18/2023]
|
44
|
Tashiro T, Ishii Y, Shigeura T, Nakagawa R, Watarai H, Taniguchi M, Mori K. RCAI-39, 41, 53, 100, 127 and 128, the analogues of KRN7000, activate mouse natural killer T cells to produce Th2-biased cytokines by their administration as liposomal particles. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00067e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Banchet-Cadeddu A, Hénon E, Dauchez M, Renault JH, Monneaux F, Haudrechy A. The stimulating adventure of KRN 7000. Org Biomol Chem 2011; 9:3080-104. [DOI: 10.1039/c0ob00975j] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Schombs M, Park FE, Du W, Kulkarni SS, Gervay-Hague J. One-pot syntheses of immunostimulatory glycolipids. J Org Chem 2010; 75:4891-8. [PMID: 20387787 DOI: 10.1021/jo100366v] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycolipids containing alpha-linked galactosyl and glucosyl moieties have been shown to possess unique immunostimulatory activity creating a need for access to diverse and anomerically pure sources of these compounds for immunological studies. To meet this demand, glycosyl iodides were enlisted in the synthesis of these biologically relevant glycoconjugates. In the first-generation protocol, per-O-benzyl galactosyl iodide was efficiently coupled with activated sphingosine acceptors, but fully functionalized ceramides were found to be unreactive. To overcome this obstacle, per-O-trimethylsilyl glycosyl iodides were investigated and shown to undergo highly efficient coupling with ceramide and glycerol ester acceptors. Contrary to what has been observed with other donors, we detected little difference between the reactivity of glucosyl and galactosyl iodides. The trimethylsilyl protecting groups play a dual role in activating the donor toward nucleophilic attack while at the same time providing transient protection: the silyl groups are readily removed upon methanolysis. All reactions proceeded with complete acceptor regioselectivity, eliminating the need for additional protecting group manipulations, and the desired alpha-anomers were formed exclusively. This three-step, one-pot synthetic platform provides rapid access to an important class of immunostimulatory molecules including the first reported synthesis of the glucosyl analogue of the bacterial antigen BbGL-II.
Collapse
Affiliation(s)
- Matthew Schombs
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
47
|
Trappeniers M, Chofor R, Aspeslagh S, Li Y, Linclau B, Zajonc DM, Elewaut D, Van Calenbergh S. Synthesis and evaluation of amino-modified alpha-GalCer analogues. Org Lett 2010; 12:2928-31. [PMID: 20518554 DOI: 10.1021/ol100934z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-GalCer analogues featuring a phytoceramide 3- and 4-amino group have been synthesized. A Mitsunobu reaction involving phthalimide was employed for the introduction of the amino groups at the 3- and 4-positions of suitable phytosphingosine-derived precursors. The influence of these modifications on the interaction with the T-cell receptor of NKT cells was investigated, as well as the capacity of the amino-modified analogues to induce a cytokine response after in vivo administration.
Collapse
Affiliation(s)
- Matthias Trappeniers
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Stuart JK, Bisch SP, Leon-Ponte M, Hayatsu J, Mazzuca DM, Vareki SM, Haeryfar SM. Negative modulation of invariant natural killer T cell responses to glycolipid antigens by p38 MAP kinase. Int Immunopharmacol 2010; 10:1068-76. [DOI: 10.1016/j.intimp.2010.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/19/2010] [Accepted: 06/07/2010] [Indexed: 12/21/2022]
|
49
|
Murphy N, Zhu X, Schmidt RR. α-Galactosylceramides and analogues – important immunomodulators for use as vaccine adjuvants. CARBOHYDRATE CHEMISTRY 2010. [DOI: 10.1039/9781849730891-00064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Niamh Murphy
- UCD School of Chemistry and Chemical Biology, University College Dublin Belfield, Dublin 4 Ireland
| | - Xiangming Zhu
- UCD School of Chemistry and Chemical Biology, University College Dublin Belfield, Dublin 4 Ireland
| | - Richard R. Schmidt
- Fachbereich Chemie, Universität Konstanz Fach M 725 D-78457 Konstanz Germany
| |
Collapse
|
50
|
Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci U S A 2010; 107:13010-5. [PMID: 20616071 DOI: 10.1073/pnas.1006662107] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycolipid alpha-galactosylceramide (alpha-GalCer) has been shown to bind CD1d molecules to activate invariant natural killer T (iNKT) cells, and subsequently induce activation of various immune-competent cells, including dendritic cells, thereby providing a significant adjuvant effect for various vaccines. However, in phase I clinical trials, alpha-GalCer was shown to display only marginal biological activity. In our search for a glycolipid that can exert more potent stimulatory activity against iNKT cells and dendritic cells and produce an adjuvant effect superior to alpha-GalCer, we performed step-wise screening assays on a focused library of 25 alpha-GalCer analogues. Assays included quantification of the magnitude of stimulatory activity against human iNKT cells in vitro, binding affinity to human and murine CD1d molecules, and binding affinity to the invariant t cell receptor of human iNKT cells. Through this rigorous and iterative screening process, we have identified a lead candidate glycolipid, 7DW8-5, that exhibits a superior adjuvant effect than alpha-GalCer on HIV and malaria vaccines in mice.
Collapse
|