1
|
Song K, Hwang SJ, Jeon Y, Yoon Y. The Biomedical Applications of Biomolecule Integrated Biosensors for Cell Monitoring. Int J Mol Sci 2024; 25:6336. [PMID: 38928042 PMCID: PMC11204277 DOI: 10.3390/ijms25126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cell monitoring is essential for understanding the physiological conditions and cell abnormalities induced by various stimuli, such as stress factors, microbial invasion, and diseases. Currently, various techniques for detecting cell abnormalities and metabolites originating from specific cells are employed to obtain information on cells in terms of human health. Although the states of cells have traditionally been accessed using instrument-based analysis, this has been replaced by various sensor systems equipped with new materials and technologies. Various sensor systems have been developed for monitoring cells by recognizing biological markers such as proteins on cell surfaces, components on plasma membranes, secreted metabolites, and DNA sequences. Sensor systems are classified into subclasses, such as chemical sensors and biosensors, based on the components used to recognize the targets. In this review, we aim to outline the fundamental principles of sensor systems used for monitoring cells, encompassing both biosensors and chemical sensors. Specifically, we focus on biosensing systems in terms of the types of sensing and signal-transducing elements and introduce recent advancements and applications of biosensors. Finally, we address the present challenges in biosensor systems and the prospects that should be considered to enhance biosensor performance. Although this review covers the application of biosensors for monitoring cells, we believe that it can provide valuable insights for researchers and general readers interested in the advancements of biosensing and its further applications in biomedical fields.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (S.-J.H.)
| |
Collapse
|
2
|
Rahimizadeh K, Zahra QUA, Chen S, Le BT, Ullah I, Veedu RN. Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens. ENVIRONMENTAL RESEARCH 2023; 238:117123. [PMID: 37717803 DOI: 10.1016/j.envres.2023.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Given the importance of public health, it is crucial to develop quick, targeted, highly sensitive, and accurate technologies to monitor pathogenic microbes in response to the growing concerns of food and environmental safety. Although conventional approaches for microbiological detection are available, they are laborious, and often skill demanding. Therefore, such approaches are incompetent in the on-site or high-throughput assessment of pathogenic microbes. Numerous efforts have been made to develop biosensors that use nucleic acid aptamer as the biorecognition element, which would avoid the abovementioned limitations. Incorporating nanomaterials (NMs) into aptamer-based biosensors (aptasensors) improves their sensitivity and specificity, opening exciting possibilities for various applications, such as bioanalysis of food and environmental samples. Over the last decade, nanomaterial-conjugated aptasensors have seen a steadily rising demand. To this end, the main goal of this study is to demonstrate the novelty in the design of nanomaterial-conjugated aptasensors and how they can be used to detect different pathogenic microbes in water and food. The intent of this paper is to evaluate the cutting-edge techniques that have appeared in nano-aptasensors throughout the past few years, such as manufacturing procedures, analytical credibility, and sensing mechanisms. Additionally, the fundamental performance parameters of aptasensing techniques (such as detection limits, and sensing ranges response) were also used to evaluate their practical applicability. Finally, it is anticipated that this study will inspire innovative ideas and techniques for the construction and use of aptasensors for monitoring pathogenic microorganisms in food, drinks, recreational water, and wastewater.
Collapse
Affiliation(s)
- Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, PR China.
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
3
|
Yan Z, Shi Z, Wu Y, Lv J, Deng P, Liu G, An Z, Che Z, Lu Y, Shan J, Liu Q. Wireless, noninvasive therapeutic drug monitoring system for saliva measurement toward medication management of schizophrenia. Biosens Bioelectron 2023; 234:115363. [PMID: 37146537 DOI: 10.1016/j.bios.2023.115363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
As an efficient patient management tool of precision medicine, decentralized therapeutic drug monitoring (TDM) provides new vision for therapy adherence and health management of schizophrenia in a convenient manner. To dispense with psychologically burdensome blood sampling and to achieve real-time, noninvasive, and continual circulating tracking of drugs with narrow therapeutic window, we study the temporal metabolism of clozapine, an antipsychotic with severe side effect, in rat saliva by a wireless, integrated and patient-friendly smart lollipop sensing system. Highly sensitive and efficient sensing performance with acceptable anti-biofouling property was realized based on the synergistic effect of electrodeposited reduced graphene oxide and ionic liquids in pretreatment-free saliva with low detection limit and good accuracy cross-validated with conventional method. On this basis, continual salivary drug levels with distinctive pharmacokinetics were found in different routes of drug administration. Pilot experiment reveals a strong correlation between blood and saliva clozapine and a positive relationship between drug dosage and salivary drug level, indicating potential applications presented by noninvasive saliva analysis towards patient-centered and personalized pharmacotherapy and adherence management via proposed smart lollipop system.
Collapse
Affiliation(s)
- Zupeng Yan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jingjiang Lv
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Zijian An
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ziyuan Che
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China; Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, PR China.
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Cancer Center, Zhejiang University, Hangzhou, 310058, PR China.
| | - Qingjun Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
4
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Su J, Zhang L, Lai L, Zhu W, Hu C. A Hemin-Graphene Nanocomposite-Based Aptasensor for Ultrasensitive Colorimetric Quantification of Leukaemia Cells Using Magnetic Enrichment. BIOSENSORS 2022; 12:bios12121070. [PMID: 36551037 PMCID: PMC9776134 DOI: 10.3390/bios12121070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 05/31/2023]
Abstract
Diagnostic blood cell counting is of limited use in monitoring a minimal number of leukaemia cells, warranting further research to develop more sensitive and reliable techniques to identify leukaemia cells in circulation. In this work, a hemin-graphene nanocomposite-based aptasensor was developed for ultrasensitive colorimetric detection of leukaemia cells (CEM) using magnetic enrichment. Hemin-conjugated graphene oxide nanocomposites (HGNs) were prepared by hydrazine reduction using graphene oxide nanosheets and hemins. Hence, the prepared HGNs become able to absorb single-stranded DNA and acquire peroxidase-like activity. The aptamer sgc8c, which recognizes a specific target on leukaemia cells, was absorbed onto HGNs to capture the target CEM cancer cells. The captured target cells that associated with the HGNs were then concentrated and separated by magnetic beads (MBs) coated with sgc8c aptamers, forming a HGN-cell-MB sandwich structure. These sandwich structures can be quantified via an oxidation reaction catalysed by HGNs. By utilizing dual signal amplification effects generated by magnetic enrichment and the improved peroxidase activity of HGNs, the biosensor allowed for highly sensitive detection of 10 to 105 CEM cells with an ultra-low limit of detection (LOD) of 10 cells under optimal conditions. It is expected that the proposed aptasensor can be further employed in monitoring the minimal residual disease during the treatment of leukaemia.
Collapse
Affiliation(s)
- Jing Su
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liqiang Zhang
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Luogen Lai
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Chong Hu
- School of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
6
|
Wearable Sensors Based on Graphene Nanoplatelets Reinforced Polydimethylsiloxane for Human Motion Monitoring: Analysis of Crack Propagation and Cycling Load Monitoring. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The use of graphene and other carbon nanoparticles is now of interest for developing chemical (gas and compounds detectors) and physical sensors. In this work, a graphene nanoplatelet (GNP)-PDMS sensor is proposed. More specifically, its strain-sensing capabilities under consecutive cycles as well as the crack propagation mechanisms are widely analyzed. First, an analysis of the electrical properties shows that the increase of the GNP content leads, as expected, to an increase of the electrical conductivity, ranging from values around 10−3 to 1 S/m for 5 and 11 wt.% samples. The analysis of crack propagation monitoring capabilities shows an exceptional sensitivity of the proposed flexible sensors, with a highly exponential behavior of the electrical resistance due to the prevalent breakage of the electrical pathways as crack propagation occurs. Furthermore, the analysis of the electrical response under cyclic load proves a very high robustness, with a similar response when comparing different cycles and an electrical sensitivity that increases when decreasing the GNP content (from 15–25 to 25–50 at 7 and 11 wt.% GNP content, respectively), a fact that is explained by the prevalence of tunneling mechanisms at low contents. Finally, a proof-of-concept of human motion monitoring by the detection of neck, wrist and facial movements is successfully achieved, indicating the high applicability of the proposed sensors.
Collapse
|
7
|
Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is significant demand for portable sensors that can deliver selective and sensitive measurement of ethanol on-site. Such sensors have application across many industries, including clinical and forensic work as well as agricultural and environmental analysis. Here, we report a new graphene–indium oxide electrochemical sensor for the determination of ethanol in aqueous samples. Graphene layers were functionalised by anchoring In2O3 to its surface and the developed composite was used as a selective electrochemical sensor for sensing ethanol through cyclic voltammetry. The detection limit of the sensor was 0.068 mol/L and it showed a linear response to increasing ethanol in the environment up to 1.2 mol/L. The most significant parameters involved and their interactions in the response of the sensor and optimization procedures were studied using a four-factor central composite design (CCD) combined with response surface modelling (RSM). The sensor was applied in the detection of ethanol in authentic samples.
Collapse
|
8
|
Hashemi SA, Bahrani S, Mousavi SM, Omidifar N, Arjmand M, Lankarani KB, Ramakrishna S. Simultaneous electrochemical detection of Cd and Pb in aquatic samples via coupled graphene with brominated white polyaniline flakes. Eur Polym J 2022; 162:110926. [DOI: 10.1016/j.eurpolymj.2021.110926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Katowah DF, Saleh SM, Alqarni SA, Ali R, Mohammed GI, Hussein MA. Network structure-based decorated CPA@CuO hybrid nanocomposite for methyl orange environmental remediation. Sci Rep 2021; 11:5056. [PMID: 33658573 PMCID: PMC7930040 DOI: 10.1038/s41598-021-84540-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
A unique network core-shell hybrid design-based cross-linked polyaniline (CPA), which was coated with CuO nanoparticles (NPs) and decorated with nitrogen-doped SWCNT/GO/cellulose N-SWCNTS-GO-CE, has been fabricated using the oxidative polymerization technique. This hybrid nanocomposite shows excellent photocatalytic degradation and an acceptable adsorption capability for Methyl Orange (MO) dye in aqueous solutions with a very slight effect for the N-SWCNTS-GO-CE CuO component. The prepared nanocomposites were used for the removal of a carcinogenic and noxious dye, Methyl Orange, from aqueous samples under various adsorption conditions. Approximately 100% degradation of 10 mg/L of Methylene orange dye was observed within 100 min at pH 6.0 using 50 mg/L CPA/N-SWCNTS-GO-CE/CuO nanocomposite under UV radiation. Additionally, significant factors were investigated on the degradation process including the contact time, MO initial concentration (Ci), solution pH, and dosage of the CuO nanocomposite. All investigated experiments were performed under UV radiation, which provided significant data for the MO degradation process. Furthermore, the recovery of the nanocomposite was studied based on the photocatalytic process efficiency. The obtained data provide the high opportunity of reusing CPA/N-SWCNTS-GO-CE/CuO nanocomposite for numerous photocatalytic processes. The CPA/N-SWCNTS-GO-CE/CuO nanocomposite was prepared via chemical oxidative copolymerization of polyaniline (PANI) with p-phenylenediamine (PPDA) and triphenylamine (TPA) in the presence of N-SWCNTS-GO-CE and CuO NPs. The morphology, structure and thermal properties of the CPA/N-SWCNTS-GO-CE/CuO nanocomposite were investigated using various techniques, including FTIR, XRD, RAMAN, SEM, MAP, EDX, TEM, TGA and DTG. Therefore, CPA/N-SWCNTS-GO-CE/CuO nanocomposite can be effectively used as a convenient and reusable adsorbent to remove hazardous dye from wastewater.
Collapse
Affiliation(s)
- Dina F Katowah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, P.O. Box 16722, Makkah, 21955, Saudi Arabia
| | - Sayed M Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, 43721, Suez, Egypt
| | - Sara A Alqarni
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
- Department of Chemistry, Faculty of Science, Suez University, 43518, Suez, Egypt
| | - Gharam I Mohammed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, P.O. Box 16722, Makkah, 21955, Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Polymer Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
10
|
Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00513-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Pham THY, Mai TT, Nguyen HA, Chu TTH, Vu TTH, Le QH. Voltammetric Determination of Amoxicillin Using a Reduced Graphite Oxide Nanosheet Electrode. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:8823452. [PMID: 34007510 PMCID: PMC8099507 DOI: 10.1155/2021/8823452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/14/2020] [Accepted: 04/15/2021] [Indexed: 05/05/2023]
Abstract
A reduced graphite oxide nanosheet electrode (RGOnS) was prepared as a sensor for amoxicillin (AMX) detection, an antibiotic commonly used in the livestock farm, by the square-wave adsorptive stripping voltammetry technique. Graphite oxide with nanosheet shape was produced from a graphite electrode by a chronoamperometry process at 5 V and then an electrochemical reduction process was carried out to form RGOnS with restored long-range conjugated networks and better conductivity. The electrodes were characterized by SEM, EDX, and FTIR spectroscopy. The RGOnS electrode prepared at an optimal reduction potential of -1 V for 120 s exhibits a larger electrochemical active surface area, and the obtained oxidation signal of AMX is approximately ten times higher than that of the pristine graphite electrode. The analytical conditions such as the pH of electrolyte and accumulation time were optimized. The calibration curve built under the optimal conditions provided a good linear relationship in the range of AMX concentration from 0.5-80 µM with the correlation coefficient of 0.9992. The limit of detection was calculated as 0.193 µM. Satisfactory results are obtained from the detection of the AMX in different samples using the prepared electrode.
Collapse
Affiliation(s)
- Thi Hai Yen Pham
- Institute of Chemistry, Vietnam Academy of Science Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thi Trang Mai
- VNU University of Science Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Hoang Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thi Thu Hien Chu
- Department of Chemistry, National University of Civil Engineering (NUCE), 55, Giai Phong, Hai Ba Trung, Hanoi 100000, Vietnam
| | - Thi Thu Ha Vu
- Institute of Chemistry, Vietnam Academy of Science Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Quoc Hung Le
- Institute of Chemistry, Vietnam Academy of Science Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
12
|
Sainz R, Del Pozo M, Vilas-Varela M, Castro-Esteban J, Pérez Corral M, Vázquez L, Blanco E, Peña D, Martín-Gago JA, Ellis GJ, Petit-Domínguez MD, Quintana C, Casero E. Chemically synthesized chevron-like graphene nanoribbons for electrochemical sensors development: determination of epinephrine. Sci Rep 2020; 10:14614. [PMID: 32884078 PMCID: PMC7471882 DOI: 10.1038/s41598-020-71554-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/18/2020] [Indexed: 11/09/2022] Open
Abstract
We employ chevron-like graphene nanoribbons (GNRs) synthesized by a solution-based chemical route to develop a novel electrochemical sensor for determination of the neurotransmitter epinephrine (EPI). The sensor surface, a glassy carbon electrode modified with GNRs, is characterized by atomic force microscopy, scanning electron microscopy and Raman spectroscopy, which show that the electrode surface modification comprises of bi-dimensional multilayer-stacked GNRs that retain their molecular structure. The charge transfer process occurring at the electrode interface is evaluated by electrochemical impedance spectroscopy. The sensor is applied to the determination of EPI, employing as an analytical signal the reduction peak corresponding to the epinephrinechrome–leucoepinephrinechrome transition (E = − 0.25 V) instead of the oxidation peak usually employed in the literature (E = + 0.6 V) in order to minimize interferences. The results obtained demonstrate that chevron-like nanoribbons synthesized by solution methods exhibit reliable electrocatalytic activity for EPI determination. Using differential pulse voltammetry, we obtain a linear concentration range from 6.4 × 10–6 to 1.0 × 10–4 M and a detection limit of 2.1 × 10–6 M. The applicability of the sensor was evaluated by determining EPI in pharmaceutical samples with satisfactory results.
Collapse
Affiliation(s)
- Raquel Sainz
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - María Del Pozo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Pérez Corral
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - Luis Vázquez
- ESISNA group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz Nº3, 28049, Madrid, Spain
| | - Elías Blanco
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José A Martín-Gago
- ESISNA group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), c/ Sor Juana Inés de la Cruz Nº3, 28049, Madrid, Spain
| | - Gary J Ellis
- Departamento de Física de Polímeros, Elastómeros y Aplicaciones Energéticas, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - María Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/ Francisco Tomás y Valiente, Nº7, 28049, Madrid, Spain.
| |
Collapse
|
13
|
Assis AM, da Silva KS, Araújo MK, Sales DC, Ferreira MC, de Araújo ACV, de Azevedo WM, Falcão EH. Thermal synthesis of rGO and rGO-Co3O4 and their application as adsorbents for anionic dye removal. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Katowah DF, Mohammed GI, Al‐Eryani DA, Osman OI, Sobahi TR, Hussein MA. Fabrication of conductive cross‐linked polyaniline/
G‐MWCNTS core‐shell
nanocomposite: A selective sensor for trace determination of chlorophenol in water samples. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Dyab A. Al‐Eryani
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied Science Thamar University Dhamar Yemen
| | - Osman I. Osman
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Chemistry Department, Faculty of Science University of Khartoum Khartoum Sudan
| | - Tariq R. Sobahi
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah Saudi Arabia
- Polymer chemistry Lab., Chemistry Department, Faculty of Science Assiut University Assiut Egypt
| |
Collapse
|
15
|
Green synthesis of peptide functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity. Sci Rep 2020; 10:9441. [PMID: 32523022 PMCID: PMC7287048 DOI: 10.1038/s41598-020-66230-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Bioengineered nanoconjugates have enormous potential as a multifunctional platform for biomedical applications. Conjugation between biotic and abiotic materials enables formulation of nanoconjugates with enhanced physico-chemical properties, increased stability and ability to overcome the inherent shortcomings of individual materials. In this study, we report the preparation and biophysical characterization of an antibacterial system formulated by functionalizing reduced graphene oxide (rGO) with an antimicrobial peptide via covalent as well as non-covalent interaction mechanisms. Environmentally benign synthesis approach was adopted for the formation of rGO, using L-ascorbic acid as a reducing agent. Covalently conjugated peptide-graphitic conjugate displayed improved antibacterial efficacy against Escherichia coli with considerably low cytotoxic activity towards erythrocytes in comparison to self-assembled conjugate and rGO alone. The studies described herein are highly significant in the field of biomaterials and aims to open new avenues of research focusing on a plethora of applications as a prospective non-toxic substitute to conventional antibacterial approaches.
Collapse
|
16
|
Kimuam K, Rodthongkum N, Ngamrojanavanich N, Chailapakul O, Ruecha N. Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Katowah DF, Alqarni S, Mohammed GI, Al Sheheri SZ, Alam MM, Ismail SH, Asiri AM, Hussein MA, Rahman MM. Selective Hg
2+
sensor performance based various carbon‐nanofillers into
CuO‐PMMA
nanocomposites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Sara Alqarni
- Department of Chemistry, College of ScienceUniversity of Jeddah Jeddah Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Soad Z. Al Sheheri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer ScienceShahjalal University of Science and Technology Sylhet Bangladesh
| | | | - Abdullah M. Asiri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Polymer chemistry Lab., Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
18
|
Kröner A, Hirsch T. Current Trends in the Optical Characterization of Two-Dimensional Carbon Nanomaterials. Front Chem 2020; 7:927. [PMID: 32047734 PMCID: PMC6997542 DOI: 10.3389/fchem.2019.00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Graphene and graphene-related materials have received great attention because of their outstanding properties like Young's modulus, chemical inertness, high electrical and thermal conductivity, or large mobility. To utilize two-dimensional (2D) materials in any practical application, an excellent characterization of the nanomaterials is needed as such dimensions, even small variations in size, or composition, are accompanied by drastic changes in the material properties. Simultaneously, it is sophisticated to perform characterizations at such small dimensions. This review highlights the wide range of different characterization methods for the 2D materials, mainly attributing carbon-based materials as they are by far the ones most often used today. The strengths as well as the limitations of the individual methods, ranging from light microscopy, scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, scanning tunneling microscopy (conductive), atomic force microscopy, scanning electrochemical microscopy, Raman spectroscopy, UV-vis, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, electron energy loss spectroscopy, X-ray diffraction, inductively coupled plasma atomic emission spectroscopy to dynamic light scattering, are discussed. By using these methods, the flake size and shape, the number of layers, the conductivity, the morphology, the number and type of defects, the chemical composition, and the colloidal properties of the 2D materials can be investigated.
Collapse
Affiliation(s)
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Plekhanova YV, Reshetilov AN. Microbial Biosensors for the Determination of Pesticides. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819120098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Yang Y, Jiang M, Cao K, Wu M, Zhao C, Li H, Hong C. An electrochemical immunosensor for CEA detection based on Au-Ag/rGO@PDA nanocomposites as integrated double signal amplification strategy. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Electrochemical biosensor for amplified detection of Pb2+ based on perfect match of reduced graphene oxide–gold nanoparticles and single-stranded DNAzyme. Anal Bioanal Chem 2019; 411:7499-7509. [DOI: 10.1007/s00216-019-02146-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
|
22
|
Alimohammadi S, Kiani MA, Imani M, Rafii-Tabar H, Sasanpour P. Electrochemical Determination of Dexamethasone by Graphene Modified Electrode: Experimental and Theoretical Investigations. Sci Rep 2019; 9:11775. [PMID: 31409812 PMCID: PMC6692413 DOI: 10.1038/s41598-019-47420-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/17/2019] [Indexed: 11/09/2022] Open
Abstract
We report on a combined experimental and theoretical study concerning the electrochemical behavior of the dexamethasone (DEX) on a graphene modified glassy carbon electrode (GCE). A good agreement between experiments and density functional theory (DFT)-based calculations is observed for the DEX reduction. The electrochemical behavior of the DEX was investigated on the surface of a glassy carbon electrode (GCE) modified with different type of graphenes, including graphene quantum dot (GQD), graphene oxide (GO), electrochemically synthesized graphene (EG), graphene synthesized by the Hummer method (HG) and graphene nanoplate (GNP) using voltammetric techniques (CV, DPV and SWV). The results exhibited a significant increase in the reduction of the peak current of the DEX in the GNP modified GCE (GNP/GCE) in comparison to other modified electrodes and bare GCE. The unique morphology, size and electro catalytic properties of the GNP cause a sensitive response of the DEX in a novel sensor. Under the optimized experimental condition, the GNP/ GCE showed two linear dynamic ranges of 0.1-50 μM and 50-5000 μM with a low detection limit of 15 nM for determination of the DEX. The novel sensor is successfully applied to the sensitive determination of the DEX in human plasma samples with satisfactory recoveries. Energy of the LUMO and HUMO orbitals and energy calculations for the DEX molecule interacting with graphene were performed using the density functional B3LYP/6-31G. The theoretical results allied to significant charge transfer took place due to the interaction of the DEX with the applied graphene.
Collapse
Affiliation(s)
- Somayeh Alimohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Kiani
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, 14335-186, Iran.
| | - Mohammad Imani
- Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Yao J, Wang H, Chen M, Yang M. Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Mikrochim Acta 2019; 186:395. [PMID: 31154528 DOI: 10.1007/s00604-019-3458-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
This review (with 239 refs.) summarizes the progress that has been made in applications of graphene-based nanomaterials (such as plain graphene, graphene oxides, doped graphene oxides, graphene quantums dots) in biosensing, imaging, drug delivery and diagnosis. Following an introduction into the field, a first large section covers the toxicity of graphene and its derivatives (with subsections on bacterial toxicity and tissue toxicity). The use of graphene-based nanomaterials in sensors is reviewed next, with subsections on electrochemical, FET-based, fluorescent, chemiluminescent and colorimetric sensors and probes. The large field of imaging is treated next, with subchapters on optical, PET-based, and magnetic resonance based methods. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical Abstract Schematic presentation of the potential applications of graphene-based materials in life science and biomedicine, emphatically reflected in some vital areas such as DNA analysis, biological monitoring, drug delivery, in vitro labelling, in vivo imaging, tumor target, etc.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China. .,State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Heng Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Min Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Mei Yang
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China.
| |
Collapse
|
24
|
Srivastava AK, Upadhyay SS, Rawool CR, Punde NS, Rajpurohit AS. Voltammetric Techniques for the Analysis of Drugs using Nanomaterials based Chemically Modified Electrodes. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180510152154] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Electroanalytical techniques play a very important role in the areas of medicinal,
clinical as well as pharmaceutical research. Amongst these techniques, the voltammetric methods
for the determination of drugs using nanomaterials based chemically modified electrodes (CMEs)
have received enormous attention in recent years. This is due to the sensitivity and selectivity they
provide on qualitative as well as quantitative aspects of the electroactive analyte under study. The aim
of the present review was to discuss the work on nanomaterials based CMEs for the analysis of drugs
covering the period from 2000 to present employing various voltammetric techniques for different
classes of the drugs.
Methods:
The present review deals with the determination of different classes of drugs including analgesics,
anthelmentic, anti-TB, cardiovascular, antipsychotics and anti-allergic, antibiotic and gastrointestinal
drugs. Also, a special section is devoted for enantioanalysis of certain chiral drugs using
voltammetry. The detailed information of the voltammetric determination for the drugs from each
class employing various techniques such as differential pulse voltammetry, cyclic voltammetry, linear
sweep voltammetry, square wave voltammetry, stripping voltammetry, etc. are presented in tabular
form below the description of each class in the review.
Results:
Various nanomaterials including carbon nanotubes, graphene, carbon nanofibers, quantum
dots, metal/metal oxide nanoparticles, polymer based nanocomposites have been used by researchers
for the development of CMEs over a period of time. The large surface area to volume ratio, high conductivity,
electrocatalytic activity and biocompatibility make them ideal modifiers where they produce
synergistic effect which helps in trace level determination of pharmaceutical, biomedical and medicinal
compounds. In addition, macrocyclic compounds as chiral selectors have been used for the determination
of enantiomeric drugs where one of the isomers captured in the cavities of chiral selector
shows stronger binding interaction for one of the enantiomorphs.
Conclusion:
arious kinds of functional nanocomposites have led to the manipulation of peak potential
due to drug - nanoparticles interaction at the modified electrode surface. This has facilitated the
simultaneous determination of drugs with almost similar peak potentials. Also, it leads to the enhancement
in voltammetric response of the analytes. It is expected that such modified electrodes can
be easily miniaturized and used as portable, wearable and user friendly devices. This will pave a way
for in-vivo onsite real monitoring of single as well as multi component pharmaceutical compounds.
Collapse
Affiliation(s)
- Ashwini K. Srivastava
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Sharad S. Upadhyay
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Chaitali R. Rawool
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Ninad S. Punde
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| | - Anuja S. Rajpurohit
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400 098, India
| |
Collapse
|
25
|
DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications. J Mol Model 2019; 25:91. [PMID: 30852668 DOI: 10.1007/s00894-019-3973-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
We have performed a Density Functional study of the CO adsorption in B-doped, N-doped and BN-co-doped graphene considering a coronene based model in order to estimate the applications of this systems as CO-sensor. Different monosubstituted, disubstituted and trisubstituted alternatives of combining these two heteroatoms in a substitutional chemical doping and the influence of the relative positions of the heteroatoms are analyzed. In this study, the stability selectivity for CO adsorption and the change in the electric properties for the presence of this molecule, have been evaluated through the calculation of binding energy, CO-adsorption's energy and the gap HOMO-LUMO change due to CO adsorption. The results indicated that, even though all the configurations were stables and was confirmed a CO physical adsorption in all of them, the relative positions of Nitrogen and Boron gave different stabilities and different responses to the CO adsorption. Since monosubstituted Boron-coronene was the second in stability respect to pristine coronene, showed the highest CO adsorption energy and was also the second highest ∆(∆HOMO-LUMO) value, this structure could be potentially a good CO-sensor.
Collapse
|
26
|
Applications of three-dimensional graphenes for preconcentration, extraction, and sorption of chemical species: a review. Mikrochim Acta 2019; 186:232. [PMID: 30852695 DOI: 10.1007/s00604-019-3324-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/23/2022]
Abstract
This review (with 115 refs) summarizes applications of 3-dimensional graphene (3DGs) and its derivatives in the fields of preconcentration, extraction, and sorption. Following an introduction into the field (including a definition of the materials treated here), the properties and synthetic strategies for 3DGs are described. The next section covers applications of 3DG-based adsorbents in solid phase extraction of organic species including drugs, phthalate esters, chlorophenols, aflatoxins, insecticides, and pesticides. Another section treats applications of 3DGs in solid phase microextraction of species such as polycyclic aromatic hydrocarbons, alcohols, and pesticides. We also describe how the efficiency of assays may be improved by using these materials as a sorbent. A final section covers conclusions and perspectives. Graphical abstract Graphical abstract contains poor quality and small text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.Tiff file of graphical abstract was attached. Schematic presentation of synthesis of three-dimensional graphene (3DG) from two-dimensional graphene (2DG) with self-assembly, template-assisted and direct deposition methods. Application of 3DG-based nanoadsorbents in direct immersion-solid phase microextraction (DI-SPME), headspace-SPME (HS-SPME), magnetic-solid phase extraction (Magnetic-SPE), dispersive-SPE, and magnetic sheet-SPE.
Collapse
|
27
|
Baig N, Rana A, Kawde AN. Modified Electrodes for Selective Voltammetric Detection of Biomolecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nadeem Baig
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Azeem Rana
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| |
Collapse
|
28
|
Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosens Bioelectron 2018; 112:108-113. [DOI: 10.1016/j.bios.2018.04.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
|
29
|
Yiğit A, Alpar N, Yardım Y, Çelebi M, Şentürk Z. A Graphene-based Electrochemical Sensor for the Individual, Selective and Simultaneous Determination of Total Chlorogenic Acids, Vanillin and Caffeine in Food and Beverage Samples. ELECTROANAL 2018. [DOI: 10.1002/elan.201800229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aydın Yiğit
- Van Yüzüncü Yıl University, Faculty of Pharmacy; Department of Analytical Chemistry; 65080 Van Turkey
| | - Nurcan Alpar
- Van Yüzüncü Yıl University, Faculty of Pharmacy; Department of Analytical Chemistry; 65080 Van Turkey
| | - Yavuz Yardım
- Van Yüzüncü Yıl University, Faculty of Pharmacy; Department of Analytical Chemistry; 65080 Van Turkey
| | - Metin Çelebi
- Van Yüzüncü Yıl University, Faculty of Science; Department of Inorganic Chemistry; 65080 Van Turkey
| | - Zühre Şentürk
- Van Yüzüncü Yıl University, Faculty of Science; Department of Analytical Chemistry; 65080 Van Turkey
| |
Collapse
|
30
|
Electrochemical determination of nepafenac topically applied nonsteroidal anti-inflammatory drug using graphene nanoplatelets-carbon nanofibers modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Jin X, Fang G, Pan M, Yang Y, Bai X, Wang S. A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol. Biosens Bioelectron 2018; 102:357-364. [DOI: 10.1016/j.bios.2017.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
|
32
|
El-Wekil MM, Mahmoud AM, Alkahtani SA, Marzouk AA, Ali R. A facile synthesis of 3D NiFe 2O 4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: Application to human pharmacokinetic study. Biosens Bioelectron 2018; 109:164-170. [PMID: 29554476 DOI: 10.1016/j.bios.2018.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/24/2018] [Accepted: 03/08/2018] [Indexed: 01/17/2023]
Abstract
Novel and sensitive electrochemical sensor was fabricated for the assay of anti-HCV ledipasvir (LEDV) in different matrices. The designed sensor was based on 3D spinel ferromagnetic NiFe2O4 nanospheres and reduced graphene oxide (RGO) supported by morpholinium acid sulphate (MHS), as an ionic liquid (RGO/NSNiFe2O4/MHS). This sensor design was assigned to synergistically tailor the unique properties of nanostructured ferrites, RGO, and ionic liquid to maximize the sensor response. Electrode modification prevented aggregation of NiFe2O4, increasing electroactive surface area and allowed remarkable electro-catalytic oxidation of LEDV with an enhanced oxidation response. Differential pulse voltammetry was used for detection LEDV in complex matrices whereas; cyclic voltammetry and other techniques were employed to characterize the developed sensor properties. All experimental factors regarding sensor fabrication and chemical sensing properties were carefully studied and optimized. Under the optimum conditions, the designated sensor displayed a wide linear range (0.4-350 ng mL-1) with LOD of 0.133 ng mL-1. Additionally, the proposed sensor demonstrated good selectivity, stability and reproducibility, enabling the quantitative detection of LEDV in Harvoni® tablets, human plasma and in a pharmacokinetic study. Our findings suggest that the developed sensor is a potential prototype material for fabrication of high-performance electrochemical sensors.
Collapse
Affiliation(s)
- Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Ramadan Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| |
Collapse
|
33
|
Tseng SC, Wu TY, Chou JC, Liao YH, Lai CH, Yan SJ, Tseng TW. Investigation of Sensitivities and Drift Effects of the Arrayed Flexible Chloride Sensor Based on RuO₂/GO at Different Temperatures. SENSORS 2018; 18:s18020632. [PMID: 29461506 PMCID: PMC5855318 DOI: 10.3390/s18020632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022]
Abstract
We investigate the temperature effect on sensing characteristics and drift effect of an arrayed flexible ruthenium dioxide (RuO2)/graphene oxide (GO) chloride sensor at different solution temperatures between 10 °C and 50 °C. The average sensor sensitivities according to our experimental results were 28.2 ± 1.4 mV/pCl (10 °C), 42.5 ± 2.0 mV/pCl (20 °C), 47.1 ± 1.8 mV/pCl (30 °C), 54.1 ± 2.01 mV/pCl (40 °C) and 46.6 ± 2.1 mV/pCl (50 °C). We found the drift effects of an arrayed flexible RuO2/GO chloride sensor in a 1 M NaCl solution to be between 8.2 mV/h and 2.5 mV/h with solution temperatures from 10 °C to 50 °C.
Collapse
Affiliation(s)
- Shi-Chang Tseng
- Graduate School of Mechanical Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Tong-Yu Wu
- Graduate School of Mechanical Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Jung-Chuan Chou
- Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
- Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Yi-Hung Liao
- Department of Information and Electronic Commerce Management, TransWorld University, Douliu 64002, Taiwan.
| | - Chih-Hsien Lai
- Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
- Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Siao-Jie Yan
- Graduate School of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| | - Ting-Wei Tseng
- Department of Electronic Engineering, National Yunlin University of Science and Technology, Douliu 64002, Taiwan.
| |
Collapse
|
34
|
Salah A, Hassan M, Liu J, Li M, Bo X, Ndamanisha JC, Guo L. Pt nanoparticles supported on nitrogen-doped porous graphene for sensitive detection of Tadalafil. J Colloid Interface Sci 2018; 512:379-388. [DOI: 10.1016/j.jcis.2017.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
|
35
|
Majidi MR, Ghaderi S. Hydrogen bubble dynamic template fabrication of nanoporous Cu film supported by graphene nanaosheets: A highly sensitive sensor for detection of nitrite. Talanta 2017; 175:21-29. [DOI: 10.1016/j.talanta.2017.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022]
|
36
|
Soundappan T, Haddad K, Kavadiya S, Raliya R, Biswas P. Crumpled graphene oxide decorated SnO2 nanocolumns for the electrochemical detection of free chlorine. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0603-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Justino CI, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TA. Graphene based sensors and biosensors. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.003] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Zhang J, Wang Y, Zheng W. Development of a Novel Electrochemical Sensor for Determination of Matrine in Sophora flavescens. Molecules 2017; 22:E575. [PMID: 28368325 PMCID: PMC6154538 DOI: 10.3390/molecules22040575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/28/2023] Open
Abstract
A simple and sensitive electrochemical sensor fabricated with graphene nanosheets (GNs) and a hydroxyapatite (HA) nanocomposite-modified glassy carbon electrode (GCE) was developed for the determination of matrine (MT). The as-prepared electrode (GNs/HA/GCE) was verified to outperform bare a GCE and GNs-modified electrode with increased oxidation peak currents and the decreased over-potential in the redox process of MT, indicating the great enhancement of electrocatalytic activity toward the oxidation of MT by the composite of GNs and HA. Under the optimized conditions, the oxidation peak currents were related linearly with the concentration of MT, ranging from 2 μM to 3 mM, and the detection limit (S/N = 3) was 1.2 μM. In addition, the proposed electrochemical sensor can be successfully applied in the quantitative determination of MT in Sophora flavescens extract.
Collapse
Affiliation(s)
- Junping Zhang
- Department of Oncology, Henan Academy institute of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China.
| | - Yanchun Wang
- Department of Traditional Chinese Medicine, Henan Province People's Hospital, Zhengzhou 450002, Henan, China.
| | - Wei Zheng
- Department of Oncology, Henan Academy institute of Traditional Chinese Medicine, Zhengzhou 450000, Henan, China.
| |
Collapse
|
39
|
|
40
|
Bo X, Zhou M, Guo L. Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 2017; 89:167-186. [DOI: 10.1016/j.bios.2016.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
|
41
|
Song WJ. Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification. Talanta 2017; 170:74-80. [PMID: 28501216 DOI: 10.1016/j.talanta.2017.02.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 01/14/2023]
Abstract
A new fluorescent sensing platform based on ultrathin metal-organic framework (MOF) nanosheets (MnDMS) was prepared from the flexible ligand 2,2-dimethylsuccinate and Mn ions. The MnDMS nanoparticles can be obtained by simply ultrasonication of the MnDMS crystal, and then can be exfoliated into nanosheets by Li-intercalation method. The MnDMS nanosheets can be easily assembled with biological probes, leading to efficient fluorescence quenching of the fluorophore tagged ssDNA and microRNA (miRNA). By using a hybridization chain reaction (HCR) strategy, the fluorescence signal can be obviously amplified. A good linearity was obtained from 1 pM to 200 pM of target ssDNA, with a detection limit of 0.2 pM. The HCR/MnDMS system provides an effective way to monitor miRNA in living cells. Therefore, the MnDMS nanosheets can be used as a new kind of platform in biomedical sensing applications.
Collapse
Affiliation(s)
- Wen-Jun Song
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| |
Collapse
|
42
|
Yardım Y, Vandeput M, Çelebi M, Şentürk Z, Kauffmann JM. A Reduced Graphene Oxide-based Electrochemical DNA Biosensor for the Detection of Interaction between Cisplatin and DNA based on Guanine and Adenine Oxidation Signals. ELECTROANAL 2017. [DOI: 10.1002/elan.201600804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yavuz Yardım
- Yuzuncu Yil University; Faculty of Pharmacy, Department of Analytical Chemistry; 65080 Van Turkey
| | - Marie Vandeput
- Free University of Brussels; ULB, Faculty of Pharmacy, Laboratory of Instrumental Analysis and Bioelectrochemistry, ULB 205/6, Campus Plaine; B-1050 Brussels Belgium
| | - Metin Çelebi
- Yuzuncu Yil University; Faculty of Science, Department of Inorganic Chemistry; 65080 Van Turkey
| | - Zuhre Şentürk
- Yuzuncu Yil University; Faculty of Science, Department of Analytical Chemistry; 65080 Van Turkey
| | - Jean-Michel Kauffmann
- Free University of Brussels; ULB, Faculty of Pharmacy, Laboratory of Instrumental Analysis and Bioelectrochemistry, ULB 205/6, Campus Plaine; B-1050 Brussels Belgium
| |
Collapse
|
43
|
Mehmeti E, Stanković DM, Chaiyo S, Zavasnik J, Žagar K, Kalcher K. Wiring of glucose oxidase with graphene nanoribbons: an electrochemical third generation glucose biosensor. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2115-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L. Recent Advances in Synthesis and Biomedical Applications of Two-Dimensional Transition Metal Dichalcogenide Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602660. [PMID: 27982538 DOI: 10.1002/smll.201602660] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/23/2016] [Indexed: 06/06/2023]
Abstract
During recent decades, a giant leap in the development of nanotechnology has been witnessed. Numerous nanomaterials with different dimensions and unprecedented features have been developed and provided unimaginably wide scope to solve the challenging problems in biomedicine, such as cancer diagnosis and therapy. Recently, two-dimensional (2D) transition metal dichalcogenide (TMDC) nanosheets (NSs), including MoS2 , WS2 , and etc., have emerged as novel inorganic graphene analogues and attracted tremendous attention due to their unique structures and distinctive properties, and opened up great opportunities for biomedical applications, including ultrasensitive biosensing, biological imaging, drug delivery, cancer therapy, and antibacterial treatment. A comprehensive overview of different synthetic methods of ultrathin 2D TMDC NSs and their state-of-the-art biomedical applications, especially those that have appeared in the past few years, is presented. At the end of this review, the future opportunities and challenges for 2D TMDC NSs in biomedicine are also discussed.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingyang Shan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Weizhen Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
45
|
Hasanzadeh M, Shadjou N. Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Mikrochim Acta 2017. [DOI: 10.1007/s00604-016-2066-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Patil PO, Bhandari PV, Deshmukh PK, Mahale SS, Patil AG, Bafna HR, Patel KV, Bari SB. Green fabrication of graphene-based silver nanocomposites using agro-waste for sensing of heavy metals. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-016-2844-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Zaaba N, Foo K, Hashim U, Tan S, Liu WW, Voon C. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.proeng.2017.04.118] [Citation(s) in RCA: 688] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2007-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Tran TMH, Ambrosi A, Pumera M. Phenols as probes of chemical composition of graphene oxide. Phys Chem Chem Phys 2016; 18:30515-30519. [PMID: 27782254 DOI: 10.1039/c6cp05569a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide (GO) can be conveniently used as a starting material for the preparation of selective and sensitive electrochemical sensing systems. The amount of oxygen groups present on the material can be precisely tuned by reduction methodologies which allow the selection of the optimal C/O ratio for specific analytes. An electrochemical reduction procedure is used in this work to alter the oxygen content of the GO starting material and investigate the effects on the electrochemical detection of phenolic compounds selected with different hydroxyl groups: phenol, catechol, hydroquinone and phloroglucinol. Cyclic voltammetry has been used to measure the alteration of the oxidation signal upon tuning the oxygen content of the graphene based electrode material.
Collapse
Affiliation(s)
- Thi Mai Huong Tran
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Adriano Ambrosi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
50
|
Guo Z, Li DD, Luo XK, Li YH, Zhao QN, Li MM, Zhao YT, Sun TS, Ma C. Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode. J Colloid Interface Sci 2016; 490:11-22. [PMID: 27870951 DOI: 10.1016/j.jcis.2016.11.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/10/2023]
Abstract
The reduced graphene oxide (RGO) and Chitosan (CS) hybrid matrix RGO-CS were coated onto the glassy carbon electrode (GCE) surface, then, poly-l-lysine films (PLL) were prepared by electropolymerization with cyclic voltammetry (CV) method to prepare RGO-CS/PLL modified glassy carbon electrode (RGO-CS/PLL/GCE) for the simultaneous electrochemical determination of heavy metal ions Cd(II), Pb(II) and Cu(II). Combining the advantageous features of RGO and CS, RGO and CS are used together because the positively charged CS can interact with the negatively changed RGO to prevent their aggregation. Furthermore, CS has many amino groups along its macromolecular chains and possessed strongly reactive with metal ions. Moreover, PLL modified electrodes have good stability, excellent permselectivity, more active sites and strong adherence to electrode surface, which enhanced electrocatalytic activity. The RGO-CS/PLL/GCE was characterized voltammetrically using redox couples (Fe(CN)63-/4-), complemented with electrochemical impedance spectroscopy (EIS). Differential pulse anodic stripping voltammetry (DPASV) has been used for the detection of Cd(II), Pb(II) and Cu(II). The detection limit of RGO-CS/PLL/GCE toward Cd(II), Pb(II) and Cu(II) is 0.01μgL-1, 0.02μgL-1 and 0.02μgL-1, respectively. The electrochemical parameters that exert influence on deposition and stripping of metal ions, such as supporting electrolytes, pH value, deposition potential, and deposition time, were carefully studied.
Collapse
Affiliation(s)
- Zhuo Guo
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Dong-di Li
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xian-Ke Luo
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ya-Hui Li
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen 518055, China
| | - Qi-Nai Zhao
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Meng-Meng Li
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yang-Ting Zhao
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Tian-Shuai Sun
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Chi Ma
- Department of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|