1
|
Romero N, Chavagnan T, Roisnel T, Welle A, Kirillov E, Carpentier JF. Dinuclear group IV metal complexes based on a bis(indenyl)-( E/ Z)-stilbene platform: a potential prototype of "photoswitchable" catalysts for olefin polymerization. Dalton Trans 2024; 53:9452-9466. [PMID: 38767126 DOI: 10.1039/d4dt00498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The preparation of dizirconium complexes based on a novel bis(indenyl)-(E/Z)-stilbene platform was explored. Negishi coupling between the in situ-generated diorganozincates obtained from the respective o/m/p-(E/Z)-dibromostilbenes and the bromo-functionalized zirconocene (η5-Cp*)(η5-2-methyl-4-bromoindenyl)ZrCl2, or, alternatively, the preparation of bis(indene)stilbene pro-ligands {o/m/p-(E/Z)-BisIndSB}H2 through Negishi coupling of the corresponding dibromostilbenes with 4-bromoindene and subsequent metallation/transmetallation with Cp*ZrCl3 or Zr(NMe2)4, allowed the preparation of a series of dinuclear complexes. These were analyzed by NMR spectroscopy and some of them by iASAP-mass spectrometry and by X-ray diffraction studies. Experimental results were compared with DFT modelling of the targeted dinuclear complexes evidencing that the (E)-complexes are more stable by 7-11 kcal mol-1 than their (Z)-analogues. Thermal, uncontrolled isomerization of (Z)- to (E)-stilbene platform was observed experimentally for some systems, in the course of their synthesis, either from the (Z)-dibromostilbene reagent or on the dinuclear complexes resulting from the Negishi coupling. Photoisomerization of the (E)- and (Z)-{BisIndSB}H2 proligands and of complexes {o-(E)-BisIndSB}(Zr(NMe2)3)2 and {m-(E)-BisIndSB}(ZrCl2Cp*)2 was investigated under a variety of conditions. It proved effective for the proligands but induced decomposition of the dizirconium complexes. Time-dependent DFT (TD-DFT) computations were performed to identify unambiguously the nature of the observed absorption bands and account for decomposition of the complexes. Preliminary ethylene/1-hexene homo- and copolymerization investigations did not evidence putative cooperativity phenomena within these dinuclear systems nor significantly differentiated behavior between the (Z)- and (E)-isomers of a given type of complex under the reaction conditions investigated.
Collapse
Affiliation(s)
- Nuria Romero
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Thierry Chavagnan
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Thierry Roisnel
- Univ Rennes, CNRS, Centre de diffractométrie, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Alexandre Welle
- TotalEnergies OneTech Belgium, Zone Industrielle C, B-7181 Feluy, Belgium
| | - Evgueni Kirillov
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Jean-François Carpentier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
2
|
Majee D, Ramanauskaite G, Presolski S. Electronic Influences on the Dynamic Range of Photoswitchable Dithienylethene-Thiourea Organocatalysts. J Org Chem 2023; 88:4372-4378. [PMID: 36939093 DOI: 10.1021/acs.joc.2c02987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Thiourea-based organocatalysts bearing a photoswitchable dithienylethene (DTE) core and a wide range of substituents were prepared and extensively tested for their ability to accelerate the Michael reaction between acetylacetone and trans-β-nitrostyrene. There is a strong correlation between the Hammett parameter of the modulating groups and catalytic activity following UV irradiation. Electron-withdrawing groups afford the largest reactivity difference between the catalysts in their ring-open form and their ring-closed isomer, with evidence for electronic coupling between the two halves in both oDTE and cDTE.
Collapse
Affiliation(s)
- Debashis Majee
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | | |
Collapse
|
3
|
Li B, Hu C, Pang X, Chen X. Valence-variable Catalysts for Redox-controlled Switchable Ring-opening Polymerization. Chem Asian J 2023; 18:e202201031. [PMID: 36321213 DOI: 10.1002/asia.202201031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Indexed: 11/25/2022]
Abstract
As a representative class of sustainable polymer materials, biodegradable polymers have attracted increasing interest in recent years. Despite significant advance of related polymerization techniques, realizing high sequence-control and easy-handling in ring-opening (co)polymerizations still remains a central challenge. To this end, a promising solution is the development of valence-variable metal-based catalysts for redox-induced switchable polymerization of cyclic esters, cyclic ethers, epoxides, and CO2 . Through a valence-determined electron effect, the switch between different catalytically active states as well as dormant state contributes to convenient formation of polymer products with desired microstructures and various practical performances. This redox-controlled switchable strategy for controlled synthesis of polymers is overviewed in this Review with a focus on potential applications and challenges for further studies.
Collapse
Affiliation(s)
- Bokun Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China.,University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China.,University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China.,University of Science and Technology of China, 230026, Hefei, P. R. China
| |
Collapse
|
4
|
Xia X, Gao T, Li F, Suzuki R, Isono T, Satoh T. Sequential Polymerization from Complex Monomer Mixtures: Access to Multiblock Copolymers with Adjustable Sequence, Topology, and Gradient Strength. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaochao Xia
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
5
|
Cai W, Zheng S, Pang W, Si G, Tan C. Photoresponsive thiourea and urea catalysts for ring‐opening polymerization of L‐lactide. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen Cai
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Shengquan Zheng
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Wenmin Pang
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Guifu Si
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Anhui University Hefei China
| |
Collapse
|
6
|
Shawver NM, Doerr AM, Long BK. A perspective on
redox‐switchable ring‐opening
polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Alicia M. Doerr
- Department of Chemistry University of Tennessee Knoxville Tennessee USA
| | - Brian K. Long
- Department of Chemistry University of Tennessee Knoxville Tennessee USA
| |
Collapse
|
7
|
Controllable Preparation of Branched Polyolefins with Various Microstructural Units via Chain-walking Ethylene and Pentene Polymerizations. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Yu Y, Zheng X, Duan C, Craig SL, Widenhoefer RA. Force-Modulated Selectivity of the Rhodium-Catalyzed Hydroformylation of 1-Alkenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yichen Yu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xujun Zheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chenghao Duan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ross A. Widenhoefer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Wang Y, Qin Y, Dong JY. Trouble-free combination of ω-alkenylmethyldichlorosilane copolymerization-hydrolysis chemistry and metallocene catalyst system for highly effective and efficient direct synthesis of long-chain-branched polypropylene. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
11
|
Bruckmoser J, Rieger B. Simple and Rapid Access toward AB, BAB and ABAB Block Copolyesters from One-Pot Monomer Mixtures Using an Indium Catalyst. ACS Macro Lett 2022; 11:1067-1072. [PMID: 35977351 DOI: 10.1021/acsmacrolett.2c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of well-defined block copolymers from one-pot monomer mixtures is particularly challenging when monomers are from the same class and show similar reactivity. Herein, an indium-based catalyst that shows comparable rates in the ring-opening homopolymerization of β-butyrolactone (β-BL) and ε-decalactone (ε-DL), demonstrates monomer-selective behavior in one-pot copolymerizations of β-BL and ε-DL. This provides simple and rapid access to well-defined di-, tri-, or tetra-block copolyesters from monomer mixtures. The sequence-controlled nature of these polymers was confirmed by kinetic analysis, 13C{1H} NMR spectroscopy, DSC, and TGA measurements.
Collapse
Affiliation(s)
- Jonas Bruckmoser
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
12
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
13
|
Zhang H, Zhang Z, Cai Z, Li M, Liu Z. Influence of Silica-Supported Alkylaluminum on Heterogeneous Zwitterionic Anilinonaphthoquinone Nickel and Palladium-Catalyzed Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhaoyu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mingyuan Li
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou 515063, P. R. China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
14
|
Lei T, Ma Z, Liu H, Wang X, Li P, Wang F, Wu W, Zhang S, Xu G, Wang F. Preparation of highly branched polyolefins by controlled chain‐walking olefin polymerization. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Lei
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Zhanshan Ma
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Hongju Liu
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Xiaoyue Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Pei Li
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Feifei Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid surfaces Xiamen University Xiamen China
| | - Shaojie Zhang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Guoyong Xu
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| | - Fuzhou Wang
- Institutes of Physical Science and Information Technology, School of Computer Science and Technology Anhui University Hefei China
| |
Collapse
|
15
|
Fang L, Wang Y, Liu H, Zhang X, Kakuchi T, Wang X, Shen X. Intra-Ligand H···F Interactions: Non-negligible Forces for Enhancing Thermostability of Cobalt Complexes in 1,3-Butadiene Polymerization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Fang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Heng Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qing-dao University of Science & Technology, Qingdao 266061, China
| | - Xuequan Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qing-dao University of Science & Technology, Qingdao 266061, China
| | - Toyoji Kakuchi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Hokkaido, Japan
| | - Xiaohua Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qing-dao University of Science & Technology, Qingdao 266061, China
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| |
Collapse
|
16
|
Huang Y, Hu C, Pang X, Zhou Y, Duan R, Sun Z, Chen X. Electrochemically Controlled Switchable Copolymerization of Lactide, Carbon Dioxide, and Epoxides. Angew Chem Int Ed Engl 2022; 61:e202202660. [DOI: 10.1002/anie.202202660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
17
|
de Vries F, Otten E. Reversible On/Off Switching of Lactide Cyclopolymerization with a Redox-Active Formazanate Ligand. ACS Catal 2022; 12:4125-4130. [PMID: 35391903 PMCID: PMC8981207 DOI: 10.1021/acscatal.1c05689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Indexed: 12/17/2022]
Abstract
![]()
Redox-switching of
a formazanate zinc catalyst in ring-opening
polymerization (ROP) of lactide is described. Using a redox-active
ligand bound to an inert metal ion (Zn2+) allows modulation
of the catalytic activity by reversible reduction/oxidation chemistry
at a purely organic fragment. A combination of kinetic and spectroscopic
studies, together with mass spectrometry of the catalysis mixture,
provides insight in the nature of the active species and the initiation
of lactide ring-opening polymerization. The mechanistic data highlight
the key role of the redox-active ligand and provide a rationale for
the formation of cyclic polymer.
Collapse
Affiliation(s)
- Folkert de Vries
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
18
|
Huang Y, Hu C, Pang X, Zhou Y, Duan R, Sun Z, Chen X. Electrochemically Controlled Switchable Copolymerization of Lactide, Carbon Dioxide, and Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
19
|
Tan C, Zou C, Chen C. Material Properties of Functional Polyethylenes from Transition-Metal-Catalyzed Ethylene–Polar Monomer Copolymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
|
21
|
Xu J, Wang X, Hadjichristidis N. Diblock dialternating terpolymers by one-step/one-pot highly selective organocatalytic multimonomer polymerization. Nat Commun 2021; 12:7124. [PMID: 34880211 PMCID: PMC8655074 DOI: 10.1038/s41467-021-27377-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
The synthesis of well-defined block copolymers from a mixture of monomers without additional actions ("one-pot/one-step") is an ideal and industrially valuable method. In addition, the presence of controlled alternating sequences in one or both blocks increases the structural diversity of polymeric materials, but, at the same time, the synthetic difficulty. Here we show that the "one-pot/one-step" ring-opening terpolymerization of a mixture of three monomers (N-sulfonyl aziridines; cyclic anhydrides and epoxides), with tert-butylimino-tris(dimethylamino)phosphorene (t-BuP1) as a catalyst, results in perfect diblock dialternating terpolymers having a sharp junction between the two blocks, with highly-controllable molecular weights and narrow molecular weight distributions (Ð < 1.08). The organocatalyst switches between two distinct polymerization cycles without any external stimulus, showing high monomer selectivity and kinetic control. The proposed mechanism is based on NMR, in-situ FTIR, SEC, MALDI-ToF, reactivity ratios, and kinetics studies.
Collapse
Affiliation(s)
- Jiaxi Xu
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Wang
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
22
|
Song C, Chen J, Fu Z, Yan L, Gao F, Cao Q, Li H, Yan X, Chen S, Zhang S, Li X. Syndiospecific Polymerization of o-Methoxystyrene and Its Silyloxy or Fluorine-Substituted Derivatives by HNC-Ligated Scandium Catalysts: Synthesis of Ultrahigh-Molecular-Weight Functionalized Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chuang Song
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jupeng Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhijie Fu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Li Yan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Feng Gao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Qingbin Cao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - He Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiangqian Yan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Shilu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
23
|
|
24
|
Brousses R, Maurel V, Mouesca JM, César V, Lugan N, Valyaev DA. Half-sandwich manganese complexes Cp(CO) 2Mn(NHC) as redox-active organometallic fragments. Dalton Trans 2021; 50:14264-14272. [PMID: 34553709 DOI: 10.1039/d1dt02182f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidation of the half-sandwich MnI complexes Cp(CO)2Mn(NHC) bearing dialkyl-, arylalkyl- and diarylsubstituted N-heterocyclic carbene ligands (NHC = IMe, IMeMes, IMes) affords the corresponding stable MnII radical cations [Cp(CO)2Mn(NHC)](BF4) isolated in 92-95% yield. Systematic X-ray diffraction studies of the series of MnI and MnII NHC complexes revealed the expected characteristic structural changes upon oxidation, namely the elongation of the Mn-CO and Mn-NHC bonds as well as the diminution of the OC-Mn-CO angle. ESR spectra of [Cp(CO)2Mn(IMes)](BF4) in frozen solution (CH2Cl2/toluene 1 : 1, 70 K) allowed the identification of two conformers for this complex and their structural assignment using DFT calculations. The stability of these NHC complexes in both metal oxidation states, moderate oxidation potentials and the ease of detection of MnII species by a variety of spectroscopic techniques (UV-Vis, IR, paramagnetic 1H NMR, and ESR) make these compounds promising objects for applications as redox-active organometallic fragments.
Collapse
Affiliation(s)
- Rémy Brousses
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Vincent Maurel
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France.
| | - Jean-Marie Mouesca
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES, F-38000 Grenoble, France.
| | - Vincent César
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | | |
Collapse
|
25
|
Peng D, Chen C. Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Peng
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Changle Chen
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| |
Collapse
|
26
|
Yu Y, Wang C, Wang L, Sun CL, Boulatov R, Widenhoefer RA, Craig SL. Force-modulated reductive elimination from platinum(ii) diaryl complexes. Chem Sci 2021; 12:11130-11137. [PMID: 34522310 PMCID: PMC8386663 DOI: 10.1039/d1sc03182a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Coupled mechanical forces are known to drive a range of covalent chemical reactions, but the effect of mechanical force applied to a spectator ligand on transition metal reactivity is relatively unexplored. Here we quantify the rate of C(sp2)-C(sp2) reductive elimination from platinum(ii) diaryl complexes containing macrocyclic bis(phosphine) ligands as a function of mechanical force applied to these ligands. DFT computations reveal complex dependence of mechanochemical kinetics on the structure of the force-transducing ligand. We validated experimentally the computational finding for the most sensitive of the ligand designs, based on MeOBiphep, by coupling it to a macrocyclic force probe ligand. Consistent with the computations, compressive forces decreased the rate of reductive elimination whereas extension forces increased the rate relative to the strain-free MeOBiphep complex with a 3.4-fold change in rate over a ∼290 pN range of restoring forces. The calculated natural bite angle of the free macrocyclic ligand changes with force, but 31P NMR analysis and calculations strongly suggest no significant force-induced perturbation of ground state geometry within the first coordination sphere of the (P-P)PtAr2 complexes. Rather, the force/rate behavior observed across this range of forces is attributed to the coupling of force to the elongation of the O⋯O distance in the transition state for reductive elimination. The results suggest opportunities to experimentally map geometry changes associated with reactions in transition metal complexes and potential strategies for force-modulated catalysis.
Collapse
Affiliation(s)
- Yichen Yu
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Chenxu Wang
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Liqi Wang
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Cai-Li Sun
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Ross A Widenhoefer
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Stephen L Craig
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
27
|
Liao D, Behzadi S, Hong C, Zou C, Qasim M, Chen M. Influence of thiopheneyl‐based twisted backbone on the properties of α‐diimine nickel catalysts in ethylene polymerization. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daohong Liao
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Shabnam Behzadi
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Changwen Hong
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Zou
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Muhammad Qasim
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Min Chen
- Institutes of Physical Science and Information Technology Anhui University Hefei China
| |
Collapse
|
28
|
Yu F, Li P, Xu M, Xu G, Na Y, Zhang S, Wang F, Tan C. Iminopyridyl ligands bearing polyethylene glycol unit for nickel catalyzed ethylene polymerization. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Peng D, Chen C. Photoresponsive Palladium and Nickel Catalysts for Ethylene Polymerization and Copolymerization. Angew Chem Int Ed Engl 2021; 60:22195-22200. [PMID: 34312948 DOI: 10.1002/anie.202107883] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Indexed: 11/11/2022]
Abstract
In this contribution, we install an azobenzene functionality in olefin polymerization catalysts and use light to modulate their properties via photoinduced trans-cis isomerization of the azobenzene moiety. The initially targeted azobenzene-functionalized α-diimine palladium and nickel catalysts are not photoresponsive. To address this issue, an imine-amine system bearing interrupted conjugation with the metal center, and a sandwich-type α-diimine system bearing an azobenzene unit at a position covalently far from the metal center were prepared and studied. We demonstrate that light can be used to tune their properties in ethylene polymerization and copolymerization with polar comonomers, enabling light-induced control of the polymerization processes, polymer microstructures and polymer properties. More interestingly, the light-mediated property changes were attributed to ligand electronic effects in one system and ligand steric effects in the other.
Collapse
Affiliation(s)
- Dan Peng
- University of Science and Technology of China, Department of Polymer Science and Engineering, CHINA
| | - Changle Chen
- University of Science and Technology of China, Department of Polymer Science & Engineering, Jinzhai Rd 96, 230026, Hefei, CHINA
| |
Collapse
|
30
|
Zhu G, Wang L, Kuang J, Xu G, Zhang Y, Wang Q. High Double Bond Content of Polyisoprene Synthesis via Cationic Polymerization Synergistically Catalyzed by Tf 2NH-Ionic Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangqian Zhu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bio-energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bio-energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jia Kuang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bio-energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bio-energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Zhang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bio-energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bio-energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Ortega DE. Theoretical Insight into the Effect of Fluorine-Functionalized Metal-Organic Framework Supported Palladium Single-Site Catalyst in the Ethylene Dimerization Reaction. Chemistry 2021; 27:10413-10421. [PMID: 33999443 DOI: 10.1002/chem.202101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/08/2022]
Abstract
Ethylene dimerization reaction is one of the most common mechanisms for the production of 1-butene. Recently, metal-organic frameworks (MOFs) have received extensive attention in this area since they combine all the advantages of homogeneous and heterogeneous catalysts in a single compound. Here a computational mechanistic study of MOF-supported palladium single-site catalyst for ethylene dimerization reaction is reported. Catalytic systems with both biphenyl-type backbone as organic ligand and its fluorine-functionalization have been investigated to reveal the origin of ligand effects on the catalytic activity and selectivity. The calculations revealed that the nonfluorinated palladium MOF catalyst undergoes dimerization over isomerization reaction. Then the influence of the fluorine-functionalized organic ligand was compared in the dimerization catalytic cycle, which was strongly favored in terms of activity and selectivity. Catalyst-substrate interactions were analyzed by energy decomposition analysis revealing the critical role of ligand backbone functionalization on the activity. This theoretical analysis identified three chemically meaningful dominant effects on these catalysts; steric, electrostatic and charge transfer effects. The steric effects promote nonfluorinated MOF catalyst, whereas the electrostatic effects are the dominant factor that promotes its fluorinated counterpart. This theoretical study provides feedback with future experimental studies about the role of fluorine ligand functionalization in palladium MOF catalysts for ethylene dimerization reaction.
Collapse
Affiliation(s)
- Daniela E Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, 8370854, Chile
| |
Collapse
|
32
|
Zhu N, Behzadi S, Si G, Tan C. Sidearm effect in (thio)urea/alkoxide‐mediated ring‐opening polymerization of cyclic esters. POLYM INT 2021. [DOI: 10.1002/pi.6169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ningning Zhu
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Shabnam Behzadi
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Guifu Si
- Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| | - Chen Tan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology, Anhui University Hefei China
| |
Collapse
|
33
|
Huang Y, Hu C, Zhou Y, Duan R, Sun Z, Wan P, Xiao C, Pang X, Chen X. Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Pengqi Wan
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
34
|
Huang Y, Hu C, Zhou Y, Duan R, Sun Z, Wan P, Xiao C, Pang X, Chen X. Monomer Controlled Switchable Copolymerization: A Feasible Route for the Functionalization of Poly(lactide). Angew Chem Int Ed Engl 2021; 60:9274-9278. [PMID: 33580552 DOI: 10.1002/anie.202017088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 11/06/2022]
Abstract
Switchable polymerization is an attractive strategy to enable the sequential selectivity of multi-block polyesters. Besides, these well-defined multi-block polyesters could enable further modification for wider applications. Herein, based on the reversible insertion of CO2 by Salen-MnIII , a new monomer controlled self-switchable polymerization route was developed. Chemoselective ring opening copolymerization of O-carboxyanhydrides (OCAs) and lactide (LA) was explored without cocatalyst. The sequential conversion of OCAs and LA into the polymer chain could form multi-block polyesters. Based on this strategy, a series of multi-block polyesters with different pendant groups were synthesized. Furthermore, by modifying the propargyl-containing copolymers with quaternary ammonium groups, we have realized antibacterial functionalization of PLA. These results imply the potential application of this strategy for the fabrication of functional polymers for biomedical applications.
Collapse
Affiliation(s)
- Yuezhou Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Yanchuan Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Pengqi Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
35
|
Maity R, Birenheide BS, Breher F, Sarkar B. Cooperative Effects in Multimetallic Complexes Applied in Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001951] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ramananda Maity
- Department of Chemistry University of Calcutta 92, A. P. C. Road Kolkata 700009 India
| | - Bernhard S. Birenheide
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Frank Breher
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 D 70569 Stuttgart Germany
| |
Collapse
|
36
|
|
37
|
Zanchin G, Leone G. Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101342] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Xu X, Lu H, Luo G, Kang X, Luo Y. Theoretical insight into the opposite redox activity of iron complexes toward the ring opening polymerization of lactide and epoxide. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01306d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin of opposite reactivity in the ring-opening polymerization of lactide (LA) and cyclohexene oxide (CHO) catalyzed by redox-switchable bis(imino)pyridine iron complexes has been computationally elucidated.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Han Lu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Gen Luo
- Institutes of Physical Science and Information Technology
- Anhui University
- Hefei 230601
- China
| | - Xiaohui Kang
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
39
|
Sun Y, Chi M, Bashir MS, Wang Y, Qasim M. Influence of intramolecular π–π and H-bonding interactions on pyrazolylimine nickel-catalyzed ethylene polymerization and co-polymerization. NEW J CHEM 2021. [DOI: 10.1039/d1nj02437j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrazolylimine-based nickel catalysts bearing intramolecular π–π and H-bonding interactions show high activity, thermal stability, and Mn of polyethylene.
Collapse
Affiliation(s)
- Yao Sun
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Mingjun Chi
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Muhammad Sohail Bashir
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Yusong Wang
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Muhammad Qasim
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
40
|
|
41
|
Kaler S, McKeown P, Ward BD, Jones MD. Aluminium( iii) and zinc( ii) complexes of azobenzene-containing ligands for ring-opening polymerisation of ε-caprolactone and rac-lactide. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01303j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability to control the outcome of polymerisations using an external stimulus remains a formidable challenge.
Collapse
|
42
|
Deng S, Diaconescu PL. A switchable dimeric yttrium complex and its three catalytic states in ring opening polymerization. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01479f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A dimeric yttrium phenoxide complex can be oxidized in a stepwise fashion to access three oxidation states. The three states show different activity in the ring opening polymerization of cyclic esters and epoxides.
Collapse
Affiliation(s)
- Shijie Deng
- University of California
- Los Angeles
- Department of Chemistry and Biochemistry
- Los Angeles
- USA
| | - Paula L. Diaconescu
- University of California
- Los Angeles
- Department of Chemistry and Biochemistry
- Los Angeles
- USA
| |
Collapse
|
43
|
Dong J, Wang B. Homo- and copolymerization of norbornene using tridentate IzQO palladium catalysts with dimethylaminoethyl as a side arm. Polym Chem 2021. [DOI: 10.1039/d1py00699a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rigid IzQO–Pd catalysts were synthesized by Rh(iii)-catalyzed C–H/alkyne annulation and applied for the homo- and copolymerizations of norbornene with polar vinyl monomers.
Collapse
Affiliation(s)
- Jie Dong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| |
Collapse
|
44
|
Chatterjee B, Chang W, Werlé C. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2020. [DOI: 10.1002/cctc.202001431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Wei‐Chieh Chang
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
45
|
Zhong Y, Li M, Deng M, Gong M, Xie H, Luo Y. Redox-controlled syndio-specific polymerization of styrene catalyzed by ferrocenyl functionalized half-sandwich scandium complexes. Dalton Trans 2020; 50:346-354. [PMID: 33313616 DOI: 10.1039/d0dt03680c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Redox-controlled polymerization is one of the new and efficient strategies to precisely construct the microstructures of polymeric materials, and thus has received increasing attention in the chemical community. Salt metathesis of ScCl3 with 1 equiv. of Fc(1-C9H6)Li (where Fc = ferrocenyl group), followed by the addition of 2 equiv. of LiCH2C6H4NMe2-o in THF at room temperature gave the ferrocenyl functionalized half-sandwich scandium bis(o-dimethylaminobenzyl) complex [Fc(1-C9H6)]Sc(CH2C6H4NMe2-o)2 (1) in 89% isolated yield. This complex was characterized by elemental analysis, FT-IR spectroscopy, NMR spectroscopy and single-crystal X-ray diffraction. Treatment of 1 with 1 equiv. of [Ph3C][B(C6F5)4] in THF generated the THF-coordinated cationic half-sandwich scandium mono(o-dimethylaminobenzyl) complex {[Fc(1-C9H6)]Sc(CH2C6H4NMe2-o)}{[B(C6F5)4]} (2-THF2). Switching in situ between the oxidized and reduced forms of active THF-free species (originally generated from 1/[Ph3C][B(C6F5)4] in situ) resulted in the redox-controlled syndio-specific polymerization of styrene.
Collapse
Affiliation(s)
- Yi Zhong
- School of Materials Science and Chemical Engineering, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, P. R. China.
| | | | | | | | | | | |
Collapse
|
46
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
47
|
Chakraborty S, Das A, Ahmed J, Barman S, Mandal SK. Designing a Cr-catalyst bearing redox non-innocent phenalenyl-based ligand towards hydrosilylative CO 2 functionalization. Chem Commun (Camb) 2020; 56:13788-13791. [PMID: 33073795 DOI: 10.1039/d0cc05348a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of a Cr(iii)-complex bearing a redox non-innocent phenalenyl-based ligand and its use as a catalyst for SET mediated hydrosilylative reduction of carbon dioxide towards formylation of primary amides under mild conditions. A preliminary mechanistic picture for this transformation has been proposed by isolation and characterization of several reactive intermediates.
Collapse
Affiliation(s)
- Soumi Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Nadia, 741246, West Bengal, India.
| | | | | | | | | |
Collapse
|
48
|
Li P, Li X, Behzadi S, Xu M, Yu F, Xu G, Wang F. Living Chain-Walking (Co)Polymerization of Propylene and 1-Decene by Nickel α-Diimine Catalysts. Polymers (Basel) 2020; 12:E1988. [PMID: 32878280 PMCID: PMC7564000 DOI: 10.3390/polym12091988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Homo- and copolymers of propylene and 1-decene were synthesized by controlled chain-walking (co)polymerization using phenyl substituted α-diimine nickel complexes activated with modified methylaluminoxane (MMAO). This catalytic system was found to polymerize propylene in a living fashion to furnish high molecular weight ethylene-propylene (EP) copolymers. The copolymerizations proceeded to give high molecular weight P/1-decene copolymers with narrow molecular weight distribution (Mw/Mn ≈ 1.2), which indicated a living nature of copolymerization at room temperature. The random copolymerization results indicated the possibility of precise branched structure control, depending on the polymerization temperature and time.
Collapse
Affiliation(s)
- Pei Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Xiaotian Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Shabnam Behzadi
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Mengli Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Fan Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Guoyong Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| | - Fuzhou Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; (P.L.); (X.L.); (M.X.); (F.Y.)
| |
Collapse
|
49
|
Zhao M, Wang L, Mahmood Q, Jing C, Zhu G, Zhang X, Chen X, Wang Q. Highly active and thermo‐stable iminopyridyl vanadium oxychloride catalyzed isoprene polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengmeng Zhao
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| | - Liang Wang
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| | - Qaiser Mahmood
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| | - Chuyang Jing
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| | - Guangqian Zhu
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- Center of Materials Science and Optoelectronics Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Beijing China
| | - Xianhui Zhang
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- Center of Materials Science and Optoelectronics Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Beijing China
| | - Xiao Chen
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao China
- Center of Materials Science and Optoelectronics Key Laboratory of Biobased Materials Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
50
|
Tran TV, Karas LJ, Wu JI, Do LH. Elucidating Secondary Metal Cation Effects on Nickel Olefin Polymerization Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Thi V. Tran
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| | - Lucas J. Karas
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| | - Judy I. Wu
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| | - Loi H. Do
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas 77204, United States
| |
Collapse
|