1
|
Felician F, Antonopoulou MN, Truong NP, Kroeger AA, Coote ML, Jones GR, Anastasaki A. Unravelling the effect of side chain on RAFT depolymerization; identifying the rate determining step. Polym Chem 2025; 16:1822-1828. [PMID: 40160482 PMCID: PMC11938419 DOI: 10.1039/d5py00212e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) depolymerization represents an attractive and low-temperature chemical recycling methodology enabling the near-quantitative regeneration of pristine monomer. Yet, several mechanistic aspects of the process remain elusive. Herein, we shine a light on the RAFT depolymerization mechanism by elucidating the effect of pendant side chains on the depolymerization kinetics. A systematic increase of the number of carbons on the side chain, or the number of ethylene glycol units, revealed a significant rate acceleration. Notably, radical initiator addition during the depolymerization of poly(methyl methacrylate) and poly(hexyl methacrylate) resulted in rate equilibration, indicating that chain activation is the rate-determining step in RAFT depolymerization. Moreover, incorporation of a low DP of hexyl monomer as the second block of poly(methyl methacrylate) led to comparable rates with poly(hexyl methacrylate) homopolymer, confirming the rate determining step. Computational investigations further corroborate this finding, revealing that chain-end fragmentation is energetically more favorable in longer-side-chain methacrylates, which accounts for the experimentally observed rate acceleration. These insights not only deepen our understanding of depolymerization but also pave the way for developing more efficient and customizable depolymerization systems.
Collapse
Affiliation(s)
- Francesco Felician
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Maria-Nefeli Antonopoulou
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nghia P Truong
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Asja A Kroeger
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park South Australia 5042 Australia
| | - Glen R Jones
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Athina Anastasaki
- Laboratory of Sustainable Polymers, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
2
|
Curtis KA, Statt A, Reinhart WF. Predicting self-assembly of sequence-controlled copolymers with stochastic sequence variation. SOFT MATTER 2025; 21:2143-2151. [PMID: 39989378 DOI: 10.1039/d4sm01219d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sequence-controlled copolymers can self-assemble into a wide assortment of complex architectures, with exciting applications in nanofabrication and personalized medicine. However, polymer synthesis is notoriously imprecise, and stochasticity in both chemical synthesis and self-assembly poses a significant challenge to tight control over these systems. While it is increasingly viable to design "protein-like" sequences, specifying each individual monomer in a chain, the effect of variability within those sequences has not been well studied. In this work, we performed nearly 15 000 molecular dynamics simulations of sequence-controlled copolymer aggregates with varying level of sequence stochasticity. We utilized unsupervised learning to characterize the resulting morphologies and found that sequence variation leads to relatively smooth and predictable changes in morphology compared to ensembles of identical chains. Furthermore, structural response to sequence variation was accurately modeled using supervised learning, revealing several interesting trends in how specific families of sequences break down as monomer sequences become more variable. Our work presents a way forward in understanding and controlling the effect of sequence variation in sequence-controlled copolymer systems, which can hopefully be used to design advanced copolymer systems for technological applications in the future.
Collapse
Affiliation(s)
- Kaleigh A Curtis
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, USA
| | - Antonia Statt
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Wesley F Reinhart
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Danchin A. Use and dual use of synthetic biology. C R Biol 2025; 348:71-88. [PMID: 40052950 DOI: 10.5802/crbiol.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 03/26/2025]
Abstract
A brief history of the field shows that the impression of novelty we have today when we talk about synthetic biology is merely the sign of a rapid loss of memory of the events surrounding its creation. The dangers of misuse were identified even before the first experiments, but this has not led to a shared awareness. Building a cell ab initio involves combining a machine (called a chassis by specialists in the field) and a program in the form of synthetic DNA. Only the latter—the program—is the subject of the vast majority of work in the field, and it is there that the risks of misuse appear. Combined with knowledge of the genomic sequence of pathogens, DNA synthesis makes it possible to reconstitute dangerous organisms or even to develop new ways of propagating malicious software. Finally, the lack of thought given to the risk of accidents when laboratories develop gain-of-function experiments that increase the virulence of a pathogen makes a world where this type of experiments is developed particularly dangerous.
Collapse
|
4
|
Hakobyan K, Ishizuka F, Corrigan N, Xu J, Zetterlund PB, Prescott SW, Boyer C. RAFT Polymerization for Advanced Morphological Control: From Individual Polymer Chains to Bulk Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412407. [PMID: 39502004 DOI: 10.1002/adma.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Indexed: 01/11/2025]
Abstract
Control of the morphology of polymer systems is achieved through reversible-deactivation radical polymerization techniques such as Reversible Addition-Fragmentation chain Transfer (RAFT). Advanced RAFT techniques offer much more than just "living" polymerization - the RAFT toolkit now enables morphological control of polymer systems across many decades of length-scale. Morphological control is explored at the molecular-level in the context of syntheses where individual monomer unit insertion provides sequence-defined polymers (single unit monomer insertion, SUMI). By being able to define polymer architectures, the synthesis of bespoke shapes and sizes of nanostructures becomes possible by leveraging self-assembly (polymerization induced self-assembly, PISA). Finally, it is seen that macroscopic materials can be produced with nanoscale detail, based on phase-separated nanostructures (polymerization induced microphase separation, PIMS) and microscale detail based on 3D-printing technologies. RAFT control of morphology is seen to cross from molecular level to additive manufacturing length-scales, with complete morphological control over all length-scales.
Collapse
Affiliation(s)
- Karen Hakobyan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Fumi Ishizuka
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Per B Zetterlund
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
5
|
Chung YH, Oh JK. Research Trends in the Development of Block Copolymer-Based Biosensing Platforms. BIOSENSORS 2024; 14:542. [PMID: 39590001 PMCID: PMC11591610 DOI: 10.3390/bios14110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Biosensing technology, which aims to measure and control the signals of biological substances, has recently been developed rapidly due to increasing concerns about health and the environment. Top-down technologies have been used mainly with a focus on reducing the size of biomaterials to the nano-level. However, bottom-up technologies such as self-assembly can provide more opportunities to molecular-level arrangements such as directionality and the shape of biomaterials. In particular, block copolymers (BCPs) and their self-assembly have been significantly explored as an effective means of bottom-up technologies to achieve recent advances in molecular-level fine control and imaging technology. BCPs have been widely used in various biosensing research fields because they can artificially control highly complex nano-scale structures in a directionally controlled manner, and future application research based on interactions with biomolecules according to the development and synthesis of new BCP structures is greatly anticipated. Here, we comprehensively discuss the basic principles of BCPs technology, the current status of their applications in biosensing technology, and their limitations and future prospects. Rather than discussing a specific field in depth, this study comprehensively covers the overall content of BCPs as a biosensing platform, and through this, we hope to increase researchers' understanding of adjacent research fields and provide research inspiration, thereby bringing about great advances in the relevant research fields.
Collapse
Affiliation(s)
- Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
6
|
Parkinson SJ, Fielden SDP, Thomas M, Miller AJ, Topham PD, Derry MJ, O’Reilly RK. Harnessing Cytosine for Tunable Nanoparticle Self-Assembly Behavior Using Orthogonal Stimuli. Biomacromolecules 2024; 25:4905-4912. [PMID: 39008804 PMCID: PMC11323014 DOI: 10.1021/acs.biomac.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Nucleobases control the assembly of DNA, RNA, etc. due to hydrogen bond complementarity. By combining these unique molecules with state-of-the-art synthetic polymers, it is possible to form nanoparticles whose self-assembly behavior could be altered under orthogonal stimuli (pH and temperature). Herein, we report the synthesis of cytosine-containing nanoparticles via aqueous reversible addition-fragmentation chain transfer polymerization-induced self-assembly. A poly(N-acryloylmorpholine) macromolecular chain transfer agent (mCTA) was chain-extended with cytosine acrylamide, and a morphological phase diagram was constructed. By exploiting the ability of cytosine to form dimers via hydrogen bonding, the self-assembly behavior of cytosine-containing polymers was altered when performed under acidic conditions. Under these conditions, stable nanoparticles could be formed at longer polymer chain lengths. Furthermore, the resulting nanoparticles displayed different morphologies compared to those at pH 7. Additionally, particle stability post-assembly could be controlled by varying pH and temperature. Finally, small-angle X-ray scattering was performed to probe their dynamic behavior under thermal cycling.
Collapse
Affiliation(s)
- Sam J. Parkinson
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Stephen D. P. Fielden
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Marjolaine Thomas
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Alisha J. Miller
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| | - Paul D. Topham
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United
Kingdom
| | - Matthew J. Derry
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United
Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Birmingham, Edgbaston B15 2TT, United
Kingdom
| |
Collapse
|
7
|
Baker J, Zhang R, Figg CA. Installing a Single Monomer within Acrylic Polymers Using Photoredox Catalysis. J Am Chem Soc 2024; 146:106-111. [PMID: 38128915 PMCID: PMC10785814 DOI: 10.1021/jacs.3c12221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Incorporating exactly one monomer at a defined position during a chain polymerization is exceptionally challenging due to the statistical nature of monomer addition. Herein, photoinduced electron/energy transfer (PET) enables the incorporation of exactly one vinyl ether into polyacrylates synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Near-quantitative addition (>96%) of a single vinyl ether is achieved while retaining >99% of the thiocarbonylthio chain ends. Kinetic studies reveal that performing the reactions at 2 °C limits unwanted chain breaking events. Finally, the syntheses of diblock copolymers are reported where molecular weights and dispersities are well-controlled on either side of the vinyl ether. Overall, this report introduces an approach to access acrylic copolymers containing exactly one chemical handle at a defined position, enabling novel macromolecular architectures to probe structure-function properties, introduce sites for de/reconstruction, store information, etc.
Collapse
Affiliation(s)
- Jared
G. Baker
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard Zhang
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - C. Adrian Figg
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Sharma R, Shrivastava P, Gautam L, Agrawal U, Mohana Lakshmi S, Vyas SP. Rationally designed block copolymer-based nanoarchitectures: An emerging paradigm for effective drug delivery. Drug Discov Today 2023; 28:103786. [PMID: 37742910 DOI: 10.1016/j.drudis.2023.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Various polymeric materials have been investigated to produce unique modes of delivery for drug modules to achieve either temporal or spatial control of bioactives delivery. However, after intravenous administration, phagocytic cells quickly remove these nanostructures from the systemic circulation via the reticuloendothelial system (RES). To overcome these concerns, ecofriendly block copolymers are increasingly being investigated as innovative carriers for the delivery of bioactives. In this review, we discuss the design, fabrication techniques, and recent advances in the development of block copolymers and their applications as drug carrier systems to improve the physicochemical and pharmacological attributes of bioactives.
Collapse
Affiliation(s)
- Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India; Babulal Tarabai Institute of Pharmaceutical Science, Sagar, M.P., 470228
| | - Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - S Mohana Lakshmi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
9
|
Davletbaeva IM, Li ED, Faizulina ZZ, Sazonov OO, Mikhailov OV, Safiullin KR, Davletbaev RS. Microporous Block Copolymers Modified with Cu(II)-Coordinated Polyethylene Oxide-Substituted Silicas for Analytical Sensors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6810. [PMID: 37895791 PMCID: PMC10608287 DOI: 10.3390/ma16206810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
The influence of stable-to-self-condensation Cu(II)-coordinated polyoxyethylene-substituted silicas (ASiP-Cu-0.5) on the synthesis of microporous block copolymers (OBCs) whose structural feature is the existence of coplanar polyisocyanate blocks of acetal nature (O-polyisocyanates) and a flexible-chain component of amphiphilic nature was studied. The use of ASiP-Cu-0.5 increased the yield of O-polyisocyanate blocks and the microphase separation of OBC. The resulting OBCs turned out to be effective sorbents for the analytical reagents PAN and PHENAZO, which, being in the micropore cavity, interacted with copper(II) and magnesium ions. To reduce the thickness of the selective OBC layer ten-fold and simplify the technology for obtaining analytical test systems, polyethylene terephthalate was used as a substrate for applying OBC. It was found that the increased sensitivity of the resulting test systems was due to the fact that in thin reaction layers, the efficiency of the formation of O-polyisocyanate blocks noticeably increased.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Ekaterina D. Li
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Zulfiya Z. Faizulina
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Oleg O. Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Oleg V. Mikhailov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Karim R. Safiullin
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia; (E.D.L.); (Z.Z.F.); (O.O.S.); (K.R.S.)
| | - Ruslan S. Davletbaev
- Material Science and Technology of Materials Department, Kazan State Power Engineering University, Krasnoselskaya str., 51, 420066 Kazan, Russia;
| |
Collapse
|
10
|
Zhang M, Liu Y, Zuo X, Qian S, Pingali SV, Gillilan RE, Huang Q, Zhang D. pH-Dependent Solution Micellar Structure of Amphoteric Polypeptoid Block Copolymers with Positionally Controlled Ionizable Sites. Biomacromolecules 2023; 24:3700-3715. [PMID: 37478325 PMCID: PMC10428163 DOI: 10.1021/acs.biomac.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/09/2023] [Indexed: 07/23/2023]
Abstract
While solution micellization of ionic block copolymers (BCP) with randomly distributed ionization sites along the hydrophilic segments has been extensively studied, the roles of positionally controlled ionization sites along the BCP chains in their micellization and resulting micellar structure remain comparatively less understood. Herein, three amphoteric polypeptoid block copolymers carrying two oppositely charged ionizable sites, with one fixed at the hydrophobic terminus and the other varyingly positioned along the hydrophilic segment, have been synthesized by sequential ring-opening polymerization method. The presence of the ionizable site at the hydrophobic segment terminus is expected to promote polymer association toward equilibrium micellar structures in an aqueous solution. The concurrent presence of oppositely charged ionizable sites on the polymer chains allows the polymer association to be electrostatically modulated in a broad pH range (ca. 2-12). Micellization of the amphoteric polypeptoid BCP in dilute aqueous solution and the resulting micellar structure at different solution pHs was investigated by a combination of scattering and microscopic methods. Negative-stain transmission-electron microscopy (TEM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) analyses revealed the dominant presence of core-shell-type spherical micelles and occasional rod-like micelles with liquid crystalline (LC) domains in the micellar core. The micellar structures (e.g., aggregation number, radius of gyration, chain packing in the micelle) were found to be dependent on the solution pH and the position of the ionizable site along the chain. This study has highlighted the potential of controlling the position of ionizable sites along the BCP polymer to modulate the electrostatic and LC interactions, thus tailoring the micellar structure at different solution pH values in water.
Collapse
Affiliation(s)
- Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yun Liu
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shuo Qian
- Neutron
Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Richard E. Gillilan
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, New York 14850, United States
| | - Qingqiu Huang
- MacCHESS
(Macromolecular Diffraction Facility at CHESS), Cornell University, Ithaca, New York 14850, United States
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
Clothier GKK, Guimarães TR, Thompson SW, Rho JY, Perrier S, Moad G, Zetterlund PB. Multiblock copolymer synthesis via RAFT emulsion polymerization. Chem Soc Rev 2023; 52:3438-3469. [PMID: 37093560 DOI: 10.1039/d2cs00115b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the "holy grail" of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a "perfect" structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure-property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Thiago R Guimarães
- MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Julia Y Rho
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Wang TT, Luo ZH, Zhou YN. On the Precise Determination of Molar Mass and Dispersity in Controlled Chain-Growth Polymerization: A Distribution Function-Based Strategy. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tian-Tian Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, PR China
| |
Collapse
|
13
|
Häkkinen S, Tanaka J, Garcia Maset R, Hall SCL, Huband S, Rho JY, Song Q, Perrier S. Polymerisation-Induced Self-Assembly of Graft Copolymers. Angew Chem Int Ed Engl 2022; 61:e202210518. [PMID: 36002384 PMCID: PMC9828155 DOI: 10.1002/anie.202210518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/12/2023]
Abstract
We report the polymerisation-induced self-assembly of poly(lauryl methacrylate)-graft-poly(benzyl methacrylate) copolymers during reversible addition-fragmentation chain transfer (RAFT) grafting from polymerisation in a backbone-selective solvent. Electron microscopy images suggest the phase separation of grafts to result in a network of spherical particles, due to the ability of the branched architecture to freeze chain entanglements and to bridge core domains. Small-angle X-ray scattering data suggest the architecture promotes the formation of multicore micelles, the core morphology of which transitions from spheres to worms, vesicles, and inverted micelles with increasing volume fraction of the grafts. A time-resolved SAXS study is presented to illustrate the formation of the inverted phase during a polymerisation. The grafted architecture gives access to unusual morphologies and provides exciting new handles for controlling the polymer structure and material properties.
Collapse
Affiliation(s)
- Satu Häkkinen
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Joji Tanaka
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Ramón Garcia Maset
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Stephen C. L. Hall
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryDidcotOX11 0QXUK
| | - Steven Huband
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Julia Y. Rho
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Qiao Song
- Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillNC 27599-3290USA
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
14
|
Chernikova EV, Mineeva KO. Reversible Deactivation Radical Copolymerization: Synthesis of Copolymers with Controlled Unit Sequence. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Maldonado‐Textle H, Jiménez‐Regalado EJ, St Thomas C. Thickening behavior of thermo‐associative water soluble multiblock copolymers under redox
RAFT
polymerization. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Claude St Thomas
- CONACYT‐CIQA, Centro de Investigación en Química Aplicada (CIQA) Saltillo Coahuila México
| |
Collapse
|
16
|
Ventura-Hunter C, Lechuga-Islas VD, Ulbrich J, Kellner C, Schubert US, Saldívar-Guerra E, Rosales-Guzmán M, Guerrero-Sánchez C. Glycerol methacrylate-based copolymers: Reactivity ratios, physicochemical characterization and cytotoxicity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Jia Y, Sun Z, Hu C, Pang X. Switchable Polymerization: A Practicable Strategy to Produce Biodegradable Block Copolymers with Diverse Properties. Chempluschem 2022; 87:e202200220. [PMID: 36071346 DOI: 10.1002/cplu.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Indexed: 11/11/2022]
Abstract
With the global demand for sustainable development, there has been an increasing interest in using natural biomass as raw resources to produce sustainable polymers as an alternative to petroleum-based polymers. Because monocomponent biodegradable polymers are often insufficient in performance, copolymers with well-engineered block structures are synthesized to reach wide tunability. Switchable polymerization is such a practical strategy to produce biodegradable block copolymers with diverse performance. This review focus on the performance of block copolymers bearing biodegradable polymer segments produced by diverse switchable polymerization. We highlight two main segments that are critical for biodegradable block copolymers, i. e., polyester and polycarbonate, summarize the multiple characters of materials from switchable polymerization such as antibacterial, shape memory, adhesives, etc. The state-of-the-art research on biodegradable block copolymers, as well as an outlook on the preparation and application of novel materials, are presented.
Collapse
Affiliation(s)
- Yifan Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
18
|
Hakkinen S, Tanaka J, Garcia Macet R, Hall S, Huband S, Rho J, Song Q, Perrier S. Polymerisation‐Induced Self‐Assembly of Graft Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Joji Tanaka
- University of Warwick Chemistry UNITED KINGDOM
| | | | | | | | - Julia Rho
- University of Warwick Chemistry UNITED KINGDOM
| | - Qiao Song
- University of Warwick Chemistry UNITED KINGDOM
| | - Sebastien Perrier
- University of Warwick Department of Chemistry Library Road CV4 7AL Coventry UNITED KINGDOM
| |
Collapse
|
19
|
Foster H, Stenzel MH, Chapman R. PET-RAFT Enables Efficient and Automated Multiblock Star Synthesis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Foster
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
20
|
Rupf S, Pröhm P, Plajer AJ. Lithium achieves sequence selective ring-opening terpolymerisation (ROTERP) of ternary monomer mixtures. Chem Sci 2022; 13:6355-6365. [PMID: 35733883 PMCID: PMC9159086 DOI: 10.1039/d2sc01776h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Heteroatom-containing degradable polymers have strong potential as sustainable replacements for petrochemically derived materials. However, to accelerate and broaden their uptake greater structural diversity and new synthetic methodologies are required. Here we report a sequence selective ring-opening terpolymerisation (ROTERP), in which three monomers (A, B, C) are selectively enchained into an (ABA'C) n sequence by a simple lithium catalyst. Degradable poly(ester-alt-ester-alt-trithiocarbonate)s are obtained in a M n range from 2.35 to 111.20 kDa which are not easily accessible via other polymerisation methodologies. The choice of alkali metal is key to achieve high activity and to control the terpolymer sequence. ROTERP is mechanistically compatible with ring-opening polymerisation (ROP) allowing switchable catalysis for blockpolymer synthesis. The ROTERP demonstrated in this study could be the first example of an entirely new family of sequence selective terpolymerisations.
Collapse
Affiliation(s)
- Susanne Rupf
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Patrick Pröhm
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Alex J Plajer
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| |
Collapse
|
21
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Nguyen D, Tao L, Li Y. Integration of Machine Learning and Coarse-Grained Molecular Simulations for Polymer Materials: Physical Understandings and Molecular Design. Front Chem 2022; 9:820417. [PMID: 35141207 PMCID: PMC8819075 DOI: 10.3389/fchem.2021.820417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, the synthesis of monomer sequence-defined polymers has expanded into broad-spectrum applications in biomedical, chemical, and materials science fields. Pursuing the characterization and inverse design of these polymer systems requires our fundamental understanding not only at the individual monomer level, but also considering the chain scales, such as polymer configuration, self-assembly, and phase separation. However, our accessibility to this field is still rudimentary due to the limitations of traditional design approaches, the complexity of chemical space along with the burdened cost and time issues that prevent us from unveiling the underlying monomer sequence-structure-property relationships. Fortunately, thanks to the recent advancements in molecular dynamics simulations and machine learning (ML) algorithms, the bottlenecks in the tasks of establishing the structure-function correlation of the polymer chains can be overcome. In this review, we will discuss the applications of the integration between ML techniques and coarse-grained molecular dynamics (CGMD) simulations to solve the current issues in polymer science at the chain level. In particular, we focus on the case studies in three important topics-polymeric configuration characterization, feed-forward property prediction, and inverse design-in which CGMD simulations are leveraged to generate training datasets to develop ML-based surrogate models for specific polymer systems and designs. By doing so, this computational hybridization allows us to well establish the monomer sequence-functional behavior relationship of the polymers as well as guide us toward the best polymer chain candidates for the inverse design in undiscovered chemical space with reasonable computational cost and time. Even though there are still limitations and challenges ahead in this field, we finally conclude that this CGMD/ML integration is very promising, not only in the attempt of bridging the monomeric and macroscopic characterizations of polymer materials, but also enabling further tailored designs for sequence-specific polymers with superior properties in many practical applications.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Lei Tao
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
23
|
Alshehri IH, Pahovnik D, Žagar E, Shipp DA. Stepwise Gradient Copolymers of n-Butyl Acrylate and Isobornyl Acrylate by Emulsion RAFT Copolymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ishah H. Alshehri
- Department of Chemistry & Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5665, United States
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Devon A. Shipp
- Department of Chemistry & Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5665, United States
| |
Collapse
|
24
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Yang L, Han L, Zhu H, Ma H. Pyrene label used as a scale for sequence-controlled functionalized polymers. Polym Chem 2022. [DOI: 10.1039/d1py01607e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrene-labeled sequence-controlled polymers (SCPs) was synthesized, and the differences among sequences were reflected directly by pyrene luminescence. The pyrene label can be used as a quantitative scale for characterizing SCPs.
Collapse
Affiliation(s)
- Lincan Yang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
26
|
Conka R, Marien Y, Van Steenberge P, Hoogenboom R, D'hooge DR. A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d1py01391b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of well-defined gradient, block-gradient and di-block copolymers with both asymmetric and symmetric compositions considering hydrophilic and hydrophobic monomer units is relevant for application fields, such as drug/gene delivery...
Collapse
|
27
|
Dearman M, Ogbonna ND, Amofa CA, Peters AJ, Lawrence J. Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers. Polym Chem 2022. [DOI: 10.1039/d2py00819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glass transition temperature (Tg) of bottlebrush polymers can be controlled via side-chain length, blend composition and brush topology. Elucidating interactions between these parameters and their design rules enables accurate targeting of Tg at arbitrary molecular weights.
Collapse
Affiliation(s)
- Michael Dearman
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| | - Nduka D. Ogbonna
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| | - Chamberlain A. Amofa
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| | - Andrew J. Peters
- Department of Chemical Engineering, Louisiana Tech University, Ruston, Louisiana, 71272, USA
| | - Jimmy Lawrence
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, 70803, USA
| |
Collapse
|
28
|
Catania R, Foralosso R, Spanos L, Russo E, Mastrotto F, Gurnani P, Butler K, Williams H, Stolnik S, Mantovani G. Direct routes to functional RAFT agents from substituted N-alkyl maleimides. Polym Chem 2022. [DOI: 10.1039/d1py01565f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three different routes are presented for the synthesis of functional RAFT agents from N-substituted maleimides, which are then used to synthesise α,β,ω-functional RAFT polymers.
Collapse
Affiliation(s)
- Rosa Catania
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Ruggero Foralosso
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lampros Spanos
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Emanuele Russo
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin Butler
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw Williams
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Giuseppe Mantovani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
29
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
30
|
Lehnen AC, Kurki J, Hartlieb M. The difference between photo-iniferter and conventional RAFT polymerization: high livingness enables the straightforward synthesis of multiblock copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01530c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-iniferter (PI)-RAFT polymerization, the direct activation of chain transfer agents via light, is a fascinating polymerization technique, as it overcomes some restriction of conventional RAFT polymerization. As such, we elucidated...
Collapse
|
31
|
Hern ZC, Quan SM, Dai R, Lai A, Wang Y, Liu C, Diaconescu PL. ABC and ABAB Block Copolymers by Electrochemically Controlled Ring-Opening Polymerization. J Am Chem Soc 2021; 143:19802-19808. [PMID: 34792339 DOI: 10.1021/jacs.1c08648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An electrochemically controlled synthesis of multiblock copolymers by alternating the redox states of (salfan)Zr(OtBu)2 (salfan = 1,1'-di(2-tert-butyl-6-N-methylmethylenephenoxy)ferrocene) is reported. Aided by electrochemistry with a glassy carbon working electrode, an in situ potential switch alters the catalyst's oxidation state and its subsequent monomer (l-lactide, β-butyrolactone, or cyclohexene oxide) selectivity in one pot. Various multiblock copolymers were prepared, including an ABAB tetrablock copolymer, poly(cyclohexene oxide-b-lactide-b-cyclohexene oxide-b-lactide), and an ABC triblock copolymer, poly(hydroxybutyrate-b-cyclohexene oxide-b-lactide). The polymers produced using this technique are similar to those produced via a chemical redox reagent method, displaying moderately narrow dispersities (1.1-1.5) and molecular weights ranging from 7 to 26 kDa.
Collapse
Affiliation(s)
- Zachary C Hern
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Stephanie M Quan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ruxi Dai
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Amy Lai
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Yihang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
32
|
Concurrent control over sequence and dispersity in multiblock copolymers. Nat Chem 2021; 14:304-312. [PMID: 34845344 DOI: 10.1038/s41557-021-00818-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Controlling monomer sequence and dispersity in synthetic macromolecules is a major goal in polymer science as both parameters determine materials' properties and functions. However, synthetic approaches that can simultaneously control both sequence and dispersity remain experimentally unattainable. Here we report a simple, one pot and rapid synthesis of sequence-controlled multiblocks with on-demand control over dispersity while maintaining a high livingness, and good agreement between theoretical and experimental molecular weights and quantitative yields. Key to our approach is the regulation in the activity of the chain transfer agent during a controlled radical polymerization that enables the preparation of multiblocks with gradually ascending (Ɖ = 1.16 → 1.60), descending (Ɖ = 1.66 → 1.22), alternating low and high dispersity values (Ɖ = 1.17 → 1.61 → 1.24 → 1.70 → 1.26) or any combination thereof. We further demonstrate the potential of our methodology through the synthesis of highly ordered pentablock, octablock and decablock copolymers, which yield multiblocks with concurrent control over both sequence and dispersity.
Collapse
|
33
|
Hartlieb M. Photo-Iniferter RAFT Polymerization. Macromol Rapid Commun 2021; 43:e2100514. [PMID: 34750911 DOI: 10.1002/marc.202100514] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
34
|
Jia H, Ding D, Hu J, Dai J, Yang J, Li G, Lou X, Xia F. AIEgen-Based Lifetime-Probes for Precise Furin Quantification and Identification of Cell Subtypes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104615. [PMID: 34553420 DOI: 10.1002/adma.202104615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Biochemical sensing probes based on aggregation-induced-emission luminogens (AIEgens) are widely used in biological imaging and therapy, chemical sensing, and material sciences. However, it is still a great challenge to quantify the targets through fluorescence intensity of AIEgen probes due to their undesirable aggregations. Here, a PyTPA-ZGO probe with three lifetime signals for precise quantification of furin is constructed: the lifetime signal 1 and signal 2 comes from AIEgen PyTPA-P (τPn ) and inorganic nanoparticles Zn2 GeO4 :Mn2+ -NH2 (τZn ), respectively, while the lifetime signal 3 is marked as the composite dual-lifetime signal (CDLSn , C D L S n = τ Z n τ P n ). In contrast, the fluorescence intensity signal of PyTPA-P shows defectively quantitative performance. Furthermore, it is found that the CDLSn exhibits higher significant differences than the two other lifetime signals (τPn and τZn ) thanks to its wide range between the maximum and minimum signal values and small standard deviation. Therefore, CDLSn is further used to accurately identify cell subtypes based on the specific concentration of furin in each subtype. The lifetime criterion can realize precise quantification, and it should be a promising direction of AIEgen-based quantitative analysis in the future.
Collapse
Affiliation(s)
- Hui Jia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jingjing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juliang Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Guogang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
35
|
He G, Li H, Zhao J. One‐Step Sequence‐Selective Synthesis of Block Copolyester from Mixed Phthalic Anhydride, Cyclohexene Oxide, and
δ
‐Valerolactone. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guanchen He
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Heng Li
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
36
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion‐like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Graeme Moad
- CSIRO Manufacturing Bag 10 Clayton South VIC 3169 Australia
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
37
|
A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 2021; 5:859-869. [PMID: 37117386 DOI: 10.1038/s41570-021-00328-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.
Collapse
|
38
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion-like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021; 60:23281-23288. [PMID: 34411397 DOI: 10.1002/anie.202108159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Synthesis of multicompositional polymeric nanoparticles of diameters 100-150 nm comprising well-defined multiblock copolymers reaching from the particle surface to the particle core was conducted using surfactant-free aqueous macroRAFT emulsion polymerization. The imposed constraints on chain mobility as well as chemical incompatibility between the blocks result in microphase separation, leading to formation of an onion-like multilayered particle morphology with individual layer thicknesses of approximately 20 nm. The approach provides considerable versatility in particle morphology design as the composition of individual layers as well as the number of layers can be tailored as desired, offering more complex particle design compared to approaches relying on self-assembly of preformed diblock copolymers within particles. Microphase separation can occur in these systems under conditions where the corresponding bulk system would not theoretically result in microphase separation.
Collapse
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thiago R Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
De Keer L, Cavalli F, Estupiñán D, Krüger AJD, Rocha S, Van Steenberge PHM, Reyniers MF, De Laporte L, Hofkens J, Barner L, D’hooge DR. Synergy of Advanced Experimental and Modeling Tools to Underpin the Synthesis of Static Step-Growth-Based Networks Involving Polymeric Precursor Building Blocks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lies De Keer
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- School of Chemistry and Physics, and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Federica Cavalli
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Diego Estupiñán
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Andreas J. D. Krüger
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH Aachen University, Worringerweg 2, 52072 Aachen, Germany
- Department of Advanced Materials for Biomedicine, Institute of Applied Medical Engineering (AME), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Susana Rocha
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | - Laura De Laporte
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), Polymeric Biomaterials, RWTH Aachen University, Worringerweg 2, 52072 Aachen, Germany
- Department of Advanced Materials for Biomedicine, Institute of Applied Medical Engineering (AME), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Leonie Barner
- School of Chemistry and Physics, and Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70a, 9052 Gent, Belgium
| |
Collapse
|
40
|
Rosetto G, Deacy AC, Williams CK. Mg(ii) heterodinuclear catalysts delivering carbon dioxide derived multi-block polymers. Chem Sci 2021; 12:12315-12325. [PMID: 34603661 PMCID: PMC8480424 DOI: 10.1039/d1sc03856g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon dioxide derived polymers are emerging as useful materials for applications spanning packaging, construction, house-hold goods and automotive components. To accelerate and broaden their uptake requires both more active and selective catalysts and greater structural diversity for the carbon dioxide derived polymers. Here, highly active catalysts show controllable selectivity for the enchainment of mixtures of epoxide, anhydride, carbon dioxide and lactone. Firstly, metal dependent selectivity differences are uncovered using a series of dinuclear catalysts, Mg(ii)Mg(ii), Zn(ii)Zn(ii), Mg(ii)Zn(ii), and Mg(ii)Co(ii), each exposed to mixtures of bio-derived tricyclic anhydride, cyclohexene oxide and carbon dioxide (1 bar). Depending upon the metal combinations, different block structures are possible with Zn(ii)Zn(ii) yielding poly(ester-b-carbonate); Mg(ii)Mg(ii) or Mg(ii)Co(ii) catalysts delivering poly(carbonate-b-ester); and Mg(ii)Zn(ii) furnishing a random copolymer. These results indicate that carbon dioxide insertion reactions follow the order Co(ii) > Mg(ii) > Zn(ii). Using the most active and selective catalyst, Mg(ii)Co(ii), and exploiting reversible on/off switches between carbon dioxide/nitrogen at 1 bar delivers precision triblock (ABA), pentablock (BABAB) and heptablock (ABABABA) polymers (where A = poly(cyclohexylene oxide-alt-tricyclic anhydride), PE; B = poly(cyclohexene carbonate), PCHC). The Mg(ii)Co(ii) catalyst also selectively polymerizes a mixture of anhydride, carbon dioxide, cyclohexene oxide and ε-caprolactone to deliver a CBABC pentablock copolymer (A = PE, B = PCHC C = poly(caprolactone), PCL). The catalysts combine high activity and selectivity to deliver new polymers featuring regularly placed carbon dioxide and biomass derived linkages.
Collapse
Affiliation(s)
- Gloria Rosetto
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Arron C Deacy
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| |
Collapse
|
41
|
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021; 334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, Jaipur, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
42
|
Zhang J, Farias‐Mancilla B, Kulai I, Hoeppener S, Lonetti B, Prévost S, Ulbrich J, Destarac M, Colombani O, Schubert US, Guerrero‐Sanchez C, Harrisson S. Effect of Hydrophilic Monomer Distribution on Self-Assembly of a pH-Responsive Copolymer: Spheres, Worms and Vesicles from a Single Copolymer Composition. Angew Chem Int Ed Engl 2021; 60:4925-4930. [PMID: 32997426 PMCID: PMC7984367 DOI: 10.1002/anie.202010501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Indexed: 11/22/2022]
Abstract
A series of copolymers containing 50 mol % acrylic acid (AA) and 50 mol % butyl acrylate (BA) but with differing composition profiles ranging from an AA-BA diblock copolymer to a linear gradient poly(AA-grad-BA) copolymer were synthesized and their pH-responsive self-assembly behavior was investigated. While assemblies of the AA-BA diblock copolymer were kinetically frozen, the gradient-like compositions underwent reversible changes in size and morphology in response to changes in pH. In particular, a diblock copolymer consisting of two random copolymer segments of equal length (16 mol % and 84 mol % AA content, respectively) formed spherical micelles at pH >5, a mix of spherical and wormlike micelles at pH 5 and vesicles at pH 4. These assemblies were characterized by dynamic light scattering, cryo-transmission electron microscopy and small angle neutron scattering.
Collapse
Affiliation(s)
- Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | | | - Ihor Kulai
- IMRCP UMR5623Université de Toulouse118, route de Narbonne31062Toulouse Cedex 9France
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Barbara Lonetti
- IMRCP UMR5623Université de Toulouse118, route de Narbonne31062Toulouse Cedex 9France
| | | | - Jens Ulbrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Mathias Destarac
- IMRCP UMR5623Université de Toulouse118, route de Narbonne31062Toulouse Cedex 9France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM)UMR 6283 CNRSLe Mans Université/ CNRSAvenue Olivier Messiaen72085Le Mans Cedex 9France
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Carlos Guerrero‐Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM)Friedrich Schiller University of JenaHumboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM)07743JenaGermany
| | - Simon Harrisson
- LCPO UMR 5629Université Bordeaux/ CNRS/ Ecole Nationale Supérieure de Chimie, de Biologie & de Physique16 Avenue Pey-Berland33607Pessac CedexFrance
| |
Collapse
|
43
|
Zhang J, Farias‐Mancilla B, Kulai I, Hoeppener S, Lonetti B, Prévost S, Ulbrich J, Destarac M, Colombani O, Schubert US, Guerrero‐Sanchez C, Harrisson S. Einfluss der Verteilung hydrophiler Monomere auf die Selbstassemblierung eines pH‐responsiven Copolymers: Kugeln, Würmer und Vesikel aus einer einzigen Copolymerkomposition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Barbara Farias‐Mancilla
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Ihor Kulai
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Barbara Lonetti
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Sylvain Prévost
- Institut Laue-Langevin 71 Avenue des Martyrs Grenoble Frankreich
| | - Jens Ulbrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Mathias Destarac
- IMRCP UMR5623 Université de Toulouse 118, route de Narbonne 31062 Toulouse Cedex 9 Frankreich
| | - Olivier Colombani
- IMMM UMR6283 Université du Maine – UFR Sciences et Techniques Avenue Olivier Messiaen 72085 Le Mans Cedex 9 Frankreich
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Carlos Guerrero‐Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM) Friedrich Schiller University of Jena Humboldtstrasse 10 (IOMC) and Philosophenweg 7 (JCSM) 07743 Jena Deutschland
| | - Simon Harrisson
- LCPO UMR 5629 Université Bordeaux/ CNRS/ Ecole Nationale Supérieure de Chimie, de Biologie & de Physique 16 Avenue Pey-Berland 33607 Pessac Cedex Frankreich
| |
Collapse
|
44
|
Khan M, Guimarães TR, Choong K, Moad G, Perrier S, Zetterlund PB. RAFT Emulsion Polymerization for (Multi)block Copolymer Synthesis: Overcoming the Constraints of Monomer Order. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02415] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kenneth Choong
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
45
|
St Thomas C, Elizalde LE, Regalado EJ, De Jesús-Téllez MA, Festag G, Schubert US, Guerrero-Sánchez C. Understanding the influence of chemical structure and length of hydrophobic blocks on the rheological properties of associative copolymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Philipps K, Junkers T, Michels JJ. The block copolymer shuffle in size exclusion chromatography: the intrinsic problem with using elugrams to determine chain extension success. Polym Chem 2021. [DOI: 10.1039/d1py00210d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Is an increase in hydrodynamic volume always expected in block copolymer synthesis? Why SEC is sometimes not the last word.
Collapse
Affiliation(s)
- Kai Philipps
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Tanja Junkers
- Polymer Reaction Design Group
- School of Chemistry
- Monash University
- Clayton
- Australia
| | | |
Collapse
|
47
|
Semsarilar M, Abetz V. Polymerizations by RAFT: Developments of the Technique and Its Application in the Synthesis of Tailored (Co)polymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mona Semsarilar
- Institut Européen des Membranes IEM (UMR5635) Université Montpellier CNRS ENSCM CC 047, Université Montpellie 2 place E. Bataillon Montpellier 34095 France
| | - Volker Abetz
- Institut für Physikalische Chemie Grindelallee 117 Universität Hamburg Hamburg 20146 Germany
- Zentrum für Material‐und Küstenforschung GmbH Institut für Polymerforschung Max‐Planck‐Straße 1 Helmholtz‐Zentrum Geesthacht Geesthacht 21502 Germany
| |
Collapse
|
48
|
Miyajima M, Satoh K, Horibe T, Ishihara K, Kamigaito M. Multifactor Control of Vinyl Monomer Sequence, Molecular Weight, and Tacticity via Iterative Radical Additions and Olefin Metathesis Reactions. J Am Chem Soc 2020; 142:18955-18962. [DOI: 10.1021/jacs.0c09289] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takahiro Horibe
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
49
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
50
|
Cunningham RD, Kopf AH, Elenbaas BOW, Staal BB, Pfukwa R, Killian JA, Klumperman B. Iterative RAFT-Mediated Copolymerization of Styrene and Maleic Anhydride toward Sequence- and Length-Controlled Copolymers and Their Applications for Solubilizing Lipid Membranes. Biomacromolecules 2020; 21:3287-3300. [DOI: 10.1021/acs.biomac.0c00736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Randy D. Cunningham
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Adrian H. Kopf
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Barend O. W. Elenbaas
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Bastiaan B.P. Staal
- BASF SE, RAA/AC, E210, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Rueben Pfukwa
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - J. Antoinette Killian
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|