1
|
Xie W, Kong Y, Ren C, Wen Y, Ying M, Xing H. Chemistries on the inner leaflet of the cell membrane. Chem Commun (Camb) 2025; 61:2387-2402. [PMID: 39810742 DOI: 10.1039/d4cc05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry. Next, we explore chemical biological strategies for engineering the inner leaflet, including genetic engineering, transmembrane peptides, and liposome fusion-based transport. In the perspective section, we discuss the challenges in developing chemistries for the inner leaflet of the cell membrane, aiming to inspire researchers and collaborators to explore this field and address its unanswered biological questions.
Collapse
Affiliation(s)
- Wenxue Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Cong Ren
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
- Research Institute of Hunan University in Chongqing, Chongqing, 401100, China
| |
Collapse
|
2
|
Gani Z, Kumar A, Raje M, Raje CI. Antimicrobial peptides: An alternative strategy to combat antimicrobial resistance. Drug Discov Today 2025; 30:104305. [PMID: 39900281 DOI: 10.1016/j.drudis.2025.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Antimicrobial peptides (AMPs) are a diverse group of naturally occurring molecules produced by eukaryotes and prokaryotes. They have an important role in innate immunity via their direct microbicidal properties or immunomodulatory activities against pathogens. With the widespread occurrence of antimicrobial resistance (AMR), AMPs are considered as viable alternatives for the treatment of multidrug-resistant microbes, inflammation, and, wound healing. The broad-spectrum antibacterial activity of AMPs is predominantly attributed to membrane disruption, leading to the formation of transmembrane pores and, eventually, cell lysis. However, mechanisms related to inhibition of cell wall synthesis, nucleic acid synthesis, protein synthesis, or enzymatic activity are also associated with these peptides. In this review, we discuss our current understanding, therapeutic uses and challenges associated with the clinical applications of AMPs.
Collapse
Affiliation(s)
- Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Center of Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manoj Raje
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India.
| |
Collapse
|
3
|
Guo Y, Farhan MHR, Gan F, Yang X, Li Y, Huang L, Wang X, Cheng G. Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides. Biotechnol Bioeng 2025; 122:247-264. [PMID: 39575657 DOI: 10.1002/bit.28886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 01/03/2025]
Abstract
Antibacterial resistance has emerged as a significant global concern, necessitating the urgent development of new antibacterial drugs. Antimicrobial peptides (AMPs) are naturally occurring peptides found in various organisms. Coupled with a wide range of antibacterial activity, AMPs are less likely to develop drug resistance and can act as potential agents for treating bacterial infections. However, their characteristics, such as low activity, instability, and toxicity, hinder their clinical application. Consequently, researchers are inclined towards artificial design and optimization based on natural AMPs. This review discusses the research advancements in the field of artificial designing and optimization of various AMPs. Moreover, it highlights various strategies for designing such peptides, aiming to provide valuable insights for developing novel AMPs.
Collapse
Affiliation(s)
- Ying Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Haris Raza Farhan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fei Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Science, Wuhan University, Wuhan, China
| | - Xiaohan Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Carrera-Aubesart A, Li J, Contreras E, Bello-Madruga R, Torrent M, Andreu D. From In Vitro Promise to In Vivo Reality: An Instructive Account of Infection Model Evaluation of Antimicrobial Peptides. Int J Mol Sci 2024; 25:9773. [PMID: 39337261 PMCID: PMC11431785 DOI: 10.3390/ijms25189773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics in the face of ever-increasing resistance. However, many AMPs fail to progress into clinics due to unexpected difficulties found in preclinical in vivo phases. Our research has focused on crotalicidin (Ctn), an AMP from snake venom, and a fragment thereof, Ctn[15-34], with improved in vitro antimicrobial and anticancer activities and remarkable serum stability. As the retroenantio versions of both AMPs maintained favorable profiles, in this work, we evaluate the in vivo efficacy of both the native-sequence AMPs and their retroenantio counterparts in a murine infection model with Acinetobacter baumannii. A significant reduction in bacterial levels is found in the mice treated with Ctn[15-34]. However, contrary to expectations, the retroenantio analogs either exhibit toxicity or lack efficacy when administered to mice. Our findings underscore the critical importance of in vivo infection model evaluation to fully calibrate the therapeutic potential of AMPs.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Estefanía Contreras
- Integrated Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Bello-Madruga
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
6
|
Zhuang Y, Quirk S, Stover ER, Bureau HR, Allen CR, Hernandez R. Tertiary Plasticity Drives the Efficiency of Enterocin 7B Interactions with Lipid Membranes. J Phys Chem B 2024; 128:2100-2113. [PMID: 38412510 PMCID: PMC10926100 DOI: 10.1021/acs.jpcb.3c08199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
The ability of antimicrobial peptides to efficiently kill their bacterial targets depends on the efficiency of their binding to the microbial membrane. In the case of enterocins, there is a three-part interaction: initial binding, unpacking of helices on the membrane surface, and permeation of the lipid bilayer. Helical unpacking is driven by disruption of the peptide hydrophobic core when in contact with membranes. Enterocin 7B is a leaderless enterocin antimicrobial peptide produced from Enterococcus faecalis that functions alone, or with its cognate partner enterocin 7A, to efficiently kill a wide variety of Gram-stain positive bacteria. To better characterize the role that tertiary structural plasticity plays in the ability of enterocin 7B to interact with the membranes, a series of arginine single-site mutants were constructed that destabilize the hydrophobic core to varying degrees. A series of experimental measures of structure, stability, and function, including CD spectra, far UV CD melting profiles, minimal inhibitory concentrations analysis, and release kinetics of calcein, show that decreased stabilization of the hydrophobic core is correlated with increased efficiency of a peptide to permeate membranes and in killing bacteria. Finally, using the computational technique of adaptive steered molecular dynamics, we found that the atomistic/energetic landscape of peptide mechanical unfolding leads to free energy differences between the wild type and its mutants, whose trends correlate well with our experiment.
Collapse
Affiliation(s)
- Yi Zhuang
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen Quirk
- Kimberly-Clark
Corporation, Atlanta, Georgia 30076-2199, United States
| | - Erica R. Stover
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hailey R. Bureau
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Caley R. Allen
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Wang X, Jin K. Robust Chemical Synthesis of "Difficult Peptides" via 2-Hydroxyphenol-pseudoproline (ψ 2-hydroxyphenolpro) Modifications. J Org Chem 2024; 89:3143-3149. [PMID: 38373048 DOI: 10.1021/acs.joc.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The challenging preparation of "difficult peptides" has always hindered the development of peptide-active pharmaceutical ingredients. Pseudoproline (ψpro) building blocks have been proven effective and powerful tools for the synthesis of "difficult peptides". In this paper, we efficiently prepared a set of novel 2-(oxazolidin-2-yl)phenol compounds as proline surrogates (2-hydroxyphenol-pseudoprolines, ψ2-hydroxyphenolpro) and applied it in the synthesis of many well-known "difficult peptides", including human thymosin α1, amylin, and β-amyloid (1-42) (Aβ42).
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
Lafuente I, Sevillano E, Peña N, Cuartero A, Hernández PE, Cintas LM, Muñoz-Atienza E, Borrero J. Production of Pumilarin and a Novel Circular Bacteriocin, Altitudin A, by Bacillus altitudinis ECC22, a Soil-Derived Bacteriocin Producer. Int J Mol Sci 2024; 25:2020. [PMID: 38396696 PMCID: PMC10888436 DOI: 10.3390/ijms25042020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.
Collapse
Affiliation(s)
- Irene Lafuente
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Ester Sevillano
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Nuria Peña
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Alicia Cuartero
- Centro de Educación Infantil, Primaria y Secundaria Obligatoria (CEIPSO) El Cantizal, Avenida Atenas s/n, 28232 Las Rozas, Madrid, Spain;
| | - Pablo E. Hernández
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Luis M. Cintas
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Madrid, Spain; (I.L.); (E.S.); (N.P.); (P.E.H.); (L.M.C.)
| |
Collapse
|
9
|
Wang CK, Huang YH, Shabbir F, Pham HT, Lawrence N, Benfield AH, van der Donk W, Henriques ST, Turner MS, Craik DJ. The Circular Bacteriocin enterocin NKR-5-3B has an Improved Stability Profile over Nisin. Peptides 2023:171049. [PMID: 37390898 DOI: 10.1016/j.peptides.2023.171049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Bacteriocins are a large family of bacterial peptides that have antimicrobial activity and potential applications as clinical antibiotics or food preservatives. Circular bacteriocins are a unique class of these biomolecules distinguished by a seamless circular topology, and are widely assumed to be ultra-stable based on this constraining structural feature. However, without quantitative studies of their susceptibility to defined thermal, chemical, and enzymatic conditions, their stability characteristics remain poorly understood, limiting their translational development. Here, we produced the circular bacteriocin enterocin NKR-5-3B (Ent53B) in mg/L quantities using a heterologous Lactococcus expression system, and characterized its thermal stability by NMR, chemical stability by circular dichroism and analytical HPLC, and enzymatic stability by analytical HPLC. We demonstrate that Ent53B is ultra-stable, resistant to temperatures approaching boiling, acidic (pH 2.6) and alkaline (pH 9.0) conditions, the chaotropic agent 6M urea, and following incubation with a range of proteases (i.e., trypsin, chymotrypsin, pepsin, and papain), conditions under which most peptides and proteins degrade. Ent53B is stable across a broader range of pH conditions and proteases than nisin, the most widely used bacteriocin in food manufacturing. Antimicrobial assays showed that differences in stability correlated with differences in bactericidal activity. Overall, this study provides quantitative support for circular bacteriocins being an ultra-stable class of peptide molecules, suggesting easier handling and distribution options available to them in practical applications as antimicrobial agents.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science,.
| | - Yen-Hua Huang
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Fatima Shabbir
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Huong T Pham
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Wilfred van der Donk
- Department of Chemistry and the Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience and Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science
| |
Collapse
|
10
|
Cebrián R, Martínez-García M, Fernández M, García F, Martínez-Bueno M, Valdivia E, Kuipers OP, Montalbán-López M, Maqueda M. Advances in the preclinical characterization of the antimicrobial peptide AS-48. Front Microbiol 2023; 14:1110360. [PMID: 36819031 PMCID: PMC9936517 DOI: 10.3389/fmicb.2023.1110360] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial resistance is a natural and inevitable phenomenon that constitutes a severe threat to global public health and economy. Innovative products, active against new targets and with no cross- or co-resistance with existing antibiotic classes, novel mechanisms of action, or multiple therapeutic targets are urgently required. For these reasons, antimicrobial peptides such as bacteriocins constitute a promising class of new antimicrobial drugs under investigation for clinical development. Here, we review the potential therapeutic use of AS-48, a head-to-tail cyclized cationic bacteriocin produced by Enterococcus faecalis. In the last few years, its potential against a wide range of human pathogens, including relevant bacterial pathogens and trypanosomatids, has been reported using in vitro tests and the mechanism of action has been investigated. AS-48 can create pores in the membrane of bacterial cells without the mediation of any specific receptor. However, this mechanism of action is different when susceptible parasites are studied and involves intracellular targets. Due to these novel mechanisms of action, AS-48 remains active against the antibiotic resistant strains tested. Remarkably, the effect of AS-48 against eukaryotic cell lines and in several animal models show little effect at the doses needed to inhibit susceptible species. The characteristics of this molecule such as low toxicity, microbicide activity, blood stability and activity, high stability at a wide range of temperatures or pH, resistance to proteases, and the receptor-independent effect make AS-48 unique to fight a broad range of microbial infections, including bacteria and some important parasites.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,*Correspondence: Rubén Cebrián, ✉
| | | | | | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,Biomedicinal Research Network Center, Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology, University of Granada, Granada, Spain,Manuel Montalbán-López, ✉
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
12
|
Corman HN, Ross JN, Fields FR, Shoue DA, McDowell MA, Lee SW. Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties. Microbiol Spectr 2022; 10:e0265822. [PMID: 36342284 PMCID: PMC9769502 DOI: 10.1128/spectrum.02658-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Leishmaniasis, a category I neglected tropical disease, is a group of diseases caused by the protozoan parasite Leishmania species with a wide range of clinical manifestations. Current treatment options can be highly toxic and expensive, with drug relapse and the emergence of resistance. Bacteriocins, antimicrobial peptides ribosomally produced by bacteria, are a relatively new avenue for potential antiprotozoal drugs. Particular interest has been focused on enterocin AS-48, with previously proven efficacy against protozoan species, including Leishmania spp. Sequential characterization of enterocin AS-48 has illustrated that antibacterial bioactivity is preserved in linearized, truncated forms; however, minimal domains of AS-48 bacteriocins have not yet been explored against protozoans. Using rational design techniques to improve membrane penetration activity, we designed peptide libraries using the minimal bioactive domain of AS-48 homologs. Stepwise changes to the charge (z), hydrophobicity (H), and hydrophobic dipole moment (μH) were achieved through lysine and tryptophan substitutions and the inversion of residues within the helical wheel, respectively. A total of 480 synthetic peptide variants were assessed for antileishmanial activity against Leishmania donovani. One hundred seventy-two peptide variants exhibited 50% inhibitory concentration (IC50) values below 20 μM against axenic amastigotes, with 60 peptide variants in the nanomolar range. Nine peptide variants exhibited potent activity against intracellular amastigotes with observed IC50 values of <4 μM and limited in vitro host cell toxicity, making them worthy of further drug development. Our work demonstrates that minimal bioactive domains of naturally existing bacteriocins can be synthetically engineered to increase membrane penetration against Leishmania spp. with minimal host cytotoxicity, holding the promise of novel, potent antileishmanial therapies. IMPORTANCE Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. There are three primary clinical forms, cutaneous, mucocutaneous, and visceral, with visceral leishmaniasis being fatal if left untreated. Current drug treatments are less than ideal, especially in resource-limited areas, due to the difficult administration and treatment regimens as well as the high cost and the emergence of drug resistance. Identifying potent antileishmanial agents is of the utmost importance. We utilized rational design techniques to synthesize enterocin AS-48 and AS-48-like bacteriocin-based peptides and screened these peptides against L. donovani using a fluorescence-based phenotypic assay. Our results suggest that bacteriocins, specifically these rationally designed AS-48-like peptides, are promising leads for further development as antileishmanial drugs.
Collapse
Affiliation(s)
- Hannah N. Corman
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Jessica N. Ross
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | | | - Douglas A. Shoue
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Mary Ann McDowell
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Shaun W. Lee
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| |
Collapse
|
13
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
14
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
15
|
Biosynthesis and Production of Class II Bacteriocins of Food-Associated Lactic Acid Bacteria. FERMENTATION 2022. [DOI: 10.3390/fermentation8050217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteriocins are ribosomally synthesized peptides made by bacteria that inhibit the growth of similar or closely related bacterial strains. Class II bacteriocins are a class of bacteriocins that are heat-resistant and do not undergo extensive posttranslational modification. In lactic acid bacteria (LAB), class II bacteriocins are widely distributed, and some of them have been successfully applied as food preservatives or antibiotic alternatives. Class II bacteriocins can be further divided into four subcategories. In the same subcategory, variations were observed in terms of amino acid identity, peptide length, pI, etc. The production of class II bacteriocin is controlled by a dedicated gene cluster located in the plasmid or chromosome. Besides the pre-bacteriocin encoding gene, the gene cluster generally includes various combinations of immunity, transportation, and regulatory genes. Among class II bacteriocin-producing LAB, some strains/species showed low yield. A multitude of fermentation factors including medium composition, temperature, and pH have a strong influence on bacteriocin production which is usually strain-specific. Consequently, scientists are motivated to develop high-yielding strains through the genetic engineering approach. Thus, this review aims to present and discuss the distribution, sequence characteristics, as well as biosynthesis of class II bacteriocins of LAB. Moreover, the integration of modern biotechnology and genetics with conventional fermentation technology to improve bacteriocin production will also be discussed in this review.
Collapse
|
16
|
Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Cruz VL, Ramos J, Martinez-Salazar J, Montalban-Lopez M, Maqueda M. The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations. J Chem Inf Model 2021; 61:6066-6078. [PMID: 34874722 PMCID: PMC9178794 DOI: 10.1021/acs.jcim.1c00838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The AS-48 bacteriocin is a potent
antimicrobial polypeptide with
enhanced stability due to its circular sequence of peptidic bonds.
The mechanism of biological action is still not well understood in
spite of both the elucidation of the molecular structure some years
ago and several experiments performed that yielded valuable information
about the AS-48 bacterial membrane poration activity. In this work,
we present a computational study at an atomistic scale to analyze
the membrane disruption mechanism. The process is based on the two-stage
model: (1) peptide binding to the bilayer surface and (2) membrane
poration due to the surface tension exerted by the peptide. Indeed,
the induced membrane tension mechanism is able to explain stable formation
of pores leading to membrane disruption. The atomistic detail obtained
from the simulations allows one to envisage the contribution of the
different amino acids during the poration process. Clustering of cationic
residues and hydrophobic interactions between peptide and lipids seem
to be essential ingredients in the process. GLU amino acids have shown
to enhance the membrane disrupting ability of the bacteriocin. TRP24–TRP24
interactions make also an important contribution in the initial stages
of the poration mechanism. The detailed atomistic information obtained
from the simulations can serve to better understand bacteriocin structural
characteristics to design more potent antimicrobial therapies.
Collapse
Affiliation(s)
- Víctor L Cruz
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, Madrid 28006, Spain
| | - Javier Ramos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, Madrid 28006, Spain
| | - Javier Martinez-Salazar
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, Madrid 28006, Spain
| | - Manuel Montalban-Lopez
- Department of Microbiology, University of Granada, C/ Fuentenueva s/n, Granada 18071, Spain
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, C/ Fuentenueva s/n, Granada 18071, Spain
| |
Collapse
|
18
|
Giesler RJ, Spaltenstein P, Jacobsen MT, Xu W, Maqueda M, Kay MS. A glutamic acid-based traceless linker to address challenging chemical protein syntheses. Org Biomol Chem 2021; 19:8821-8829. [PMID: 34585207 PMCID: PMC8604549 DOI: 10.1039/d1ob01611c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.
Collapse
Affiliation(s)
- Riley J Giesler
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Michael T Jacobsen
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA
| | - Weiliang Xu
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, Utah 84112-5650, USA.
| |
Collapse
|
19
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
20
|
Hudson LK, Orellana LAG, Bryan DW, Moore A, Munafo JP, den Bakker HC, Denes TG. Phylogeny of the Bacillus altitudinis Complex and Characterization of a Newly Isolated Strain with Antilisterial Activity. J Food Prot 2021; 84:1321-1332. [PMID: 33793813 DOI: 10.4315/jfp-20-498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/27/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bacillus strain UTK D1-0055 was isolated from a laboratory environment and appeared to have antilisterial activity. The genome was sequenced, the strain was identified as Bacillus altitudinis, and a high-quality complete annotated genome was produced. The taxonomy was evaluated for this and related Bacillus species (B. aerophilus, B. pumilus, B. safensis, B. stratosphericus, and B. xiamenensis) because the taxonomy is unclear and contains errors in public databases such as NCBI. The included strains grouped into seven clusters based on average nucleotide identity. Strains designated as B. aerophilus, B. altitudinis, and B. stratosphericus grouped together in the cluster containing the B. altitudinis type strain, suggesting that these three species should be considered a single species, B. altitudinis. The antimicrobial activity of UTK D1-0055 was evaluated against a panel of 15 Listeria strains (nine Listeria monocytogenes serotypes, Listeria innocua, and Listeria marthii), other foodborne pathogens (six Salmonella enterica serotypes and Escherichia coli), and three representative fungi (Saccharomyces cerevisiae, Botrytis cinerea, and Hyperdermium pulvinatum). Antibacterial activity was observed against all Listeria strains, but no antibacterial effects were found against the other tested bacterial and fungal strains. Biosynthetic gene clusters were identified in silico that may be related to the observed antibacterial activity, and these clusters included genes that putatively encode bacteriocins and nonribosomally synthesized peptides. The B. altitudinis strain identified in this investigation had a broad range of antilisterial activity, suggesting that it and other related strains may be useful for biocontrol in the food industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Leticia A G Orellana
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA.,Zamorano Pan-American Agricultural School, San Antonio de Oriente, Francisco Morazán, Honduras
| | - Daniel W Bryan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Andrew Moore
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Henk C den Bakker
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, Georgia 30602, USA
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
21
|
Payne CD, Franke B, Fisher MF, Hajiaghaalipour F, McAleese CE, Song A, Eliasson C, Zhang J, Jayasena AS, Vadlamani G, Clark RJ, Minchin RF, Mylne JS, Rosengren KJ. A chameleonic macrocyclic peptide with drug delivery applications. Chem Sci 2021; 12:6670-6683. [PMID: 34040741 PMCID: PMC8132947 DOI: 10.1039/d1sc00692d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Head-to-tail cyclized peptides are intriguing natural products with unusual properties. The PawS-Derived Peptides (PDPs) are ribosomally synthesized as part of precursors for seed storage albumins in species of the daisy family, and are post-translationally excised and cyclized during proteolytic processing. Here we report a PDP twice the typical size and with two disulfide bonds, identified from seeds of Zinnia elegans. In water, synthetic PDP-23 forms a unique dimeric structure in which two monomers containing two β-hairpins cross-clasp and enclose a hydrophobic core, creating a square prism. This dimer can be split by addition of micelles or organic solvent and in monomeric form PDP-23 adopts open or closed V-shapes, exposing different levels of hydrophobicity dependent on conditions. This chameleonic character is unusual for disulfide-rich peptides and engenders PDP-23 with potential for cell delivery and accessing novel targets. We demonstrate this by conjugating a rhodamine dye to PDP-23, creating a stable, cell-penetrating inhibitor of the P-glycoprotein drug efflux pump.
Collapse
Affiliation(s)
- Colton D Payne
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Bastian Franke
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Mark F Fisher
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | | | - Courtney E McAleese
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Angela Song
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Carl Eliasson
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Jingjing Zhang
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - Achala S Jayasena
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - Grishma Vadlamani
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - Richard J Clark
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Rodney F Minchin
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Molecular Sciences, The ARC Centre of Excellence in Plant Energy Biology Crawley WA 6009 Australia
| | - K Johan Rosengren
- The University of Queensland, School of Biomedical Sciences Brisbane QLD 4072 Australia
| |
Collapse
|
22
|
Ross JN, Fields FR, Kalwajtys VR, Gonzalez AJ, O’Connor S, Zhang A, Moran TE, Hammers DE, Carothers KE, Lee SW. Synthetic Peptide Libraries Designed From a Minimal Alpha-Helical Domain of AS-48-Bacteriocin Homologs Exhibit Potent Antibacterial Activity. Front Microbiol 2020; 11:589666. [PMID: 33281785 PMCID: PMC7689250 DOI: 10.3389/fmicb.2020.589666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
The circularized bacteriocin enterocin AS-48 produced by Enterococcus sp. exhibits antibacterial activity through membrane disruption. The membrane-penetrating activity of enterocin AS-48 has been attributed to a specific alpha-helical region on the circular peptide. Truncated, linearized forms containing these domains have been shown to preserve limited bactericidal activity. We utilized the amino acid sequence of the active helical domain of enterocin AS-48 to perform a homology-based search of similar sequences in other bacterial genomes. We identified similar domains in three previously uncharacterized AS-48-like bacteriocin genes in Clostridium sordellii, Paenibacillus larvae, and Bacillus xiamenensis. Enterocin AS-48 and homologs from these bacterial species were used as scaffolds for the design of a minimal peptide library based on the active helical domain of each bacteriocin sequence. 95 synthetic peptide variants of each scaffold peptide, designated Syn-enterocin, Syn-sordellicin, Syn-larvacin, and Syn-xiamensin, were designed and synthesized from each scaffold sequence based on defined biophysical parameters. A total of 384 total peptides were assessed for antibacterial activity against Gram-negative and Gram-positive bacteria. Minimal Inhibitory Concentrations (MICs) as low as 15.6 nM could be observed for the most potent peptide candidate tested, with no significant cytotoxicity to eukaryotic cells. Our work demonstrates for the first time a general workflow of using minimal domains of natural bacteriocin sequences as scaffolds to design and rapidly synthesize a library of bacteriocin-based antimicrobial peptide variants for evaluation.
Collapse
Affiliation(s)
- Jessica N. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Francisco R. Fields
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Veronica R. Kalwajtys
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Alejandro J. Gonzalez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Samantha O’Connor
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Angela Zhang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
23
|
Crystal structure and site-directed mutagenesis of circular bacteriocin plantacyclin B21AG reveals cationic and aromatic residues important for antimicrobial activity. Sci Rep 2020; 10:17398. [PMID: 33060678 PMCID: PMC7562740 DOI: 10.1038/s41598-020-74332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022] Open
Abstract
Plantacyclin B21AG is a circular bacteriocin produced by Lactiplantibacillus plantarum B21 which displays antimicrobial activity against various Gram-positive bacteria including foodborne pathogens, Listeria monocytogenes and Clostridium perfringens. It is a 58-amino acid cyclised antimicrobial peptide, with the N and C termini covalently linked together. The circular peptide backbone contributes to remarkable stability, conferring partial proteolytic resistance and structural integrity under a wide temperature and pH range. Here, we report the first crystal structure of a circular bacteriocin from a food grade Lactobacillus. The protein was crystallised using the hanging drop vapour diffusion method and the structure solved to a resolution of 1.8 Å. Sequence alignment against 18 previously characterised circular bacteriocins revealed the presence of conserved charged and aromatic residues. Alanine substitution mutagenesis validated the importance of these residues. Minimum inhibitory concentration analysis of these Ala mutants showed that Phe8Ala and Trp45Ala mutants displayed a 48- and 32-fold reduction in activity, compared to wild type. The Lys19Ala mutant displayed the weakest activity, with a 128-fold reduction. These experiments demonstrate the relative importance of aromatic and cationic residues for the antimicrobial activity of plantacyclin B21AG and by extension, other circular bacteriocins sharing these evolutionarily conserved residues.
Collapse
|
24
|
Dupuis JH, Wang S, Song C, Yada RY. The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics. PLoS One 2020; 15:e0237884. [PMID: 32841243 PMCID: PMC7447066 DOI: 10.1371/journal.pone.0237884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 01/31/2023] Open
Abstract
The Solanum tuberosum plant specific insert (StPSI) has a defensive role in potato plants, with the requirements of acidic pH and anionic lipids. The StPSI contains a set of three highly conserved disulfide bonds that bridge the protein’s helical domains. Removal of these bonds leads to enhanced membrane interactions. This work examined the effects of their sequential removal, both individually and in combination, using all-atom molecular dynamics to elucidate the role of disulfide linkages in maintaining overall protein tertiary structure. The tertiary structure was found to remain stable at both acidic (active) and neutral (inactive) pH despite the removal of disulfide linkages. The findings include how the dimer structure is stabilized and the impact on secondary structure on a residue-basis as a function of disulfide bond removal. The StPSI possesses an extensive network of inter-monomer hydrophobic interactions and intra-monomer hydrogen bonds, which is likely the key to the stability of the StPSI by stabilizing local secondary structure and the tertiary saposin-fold, leading to a robust association between monomers, regardless of the disulfide bond state. Removal of disulfide bonds did not significantly impact secondary structure, nor lead to quaternary structural changes. Instead, disulfide bond removal induces regions of amino acids with relatively higher or lower variation in secondary structure, relative to when all the disulfide bonds are intact. Although disulfide bonds are not required to preserve overall secondary structure, they may have an important role in maintaining a less plastic structure within plant cells in order to regulate membrane affinity or targeting.
Collapse
Affiliation(s)
- John H. Dupuis
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, People's Republic of China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People’s Republic of China
| | - Rickey Y. Yada
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
25
|
Flowering Poration-A Synergistic Multi-Mode Antibacterial Mechanism by a Bacteriocin Fold. iScience 2020; 23:101423. [PMID: 32795916 PMCID: PMC7424198 DOI: 10.1016/j.isci.2020.101423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Bacteriocins are a distinct family of antimicrobial proteins postulated to porate bacterial membranes. However, direct experimental evidence of pore formation by these proteins is lacking. Here we report a multi-mode poration mechanism induced by four-helix bacteriocins, epidermicin NI01 and aureocin A53. Using a combination of crystallography, spectroscopy, bioassays, and nanoscale imaging, we established that individual two-helix segments of epidermicin retain antibacterial activity but each of these segments adopts a particular poration mode. In the intact protein these segments act synergistically to balance out antibacterial and hemolytic activities. The study sets a precedent of multi-mode membrane disruption advancing the current understanding of structure-activity relationships in pore-forming proteins. Bacteriocins are antibacterial proteins believed to form pores in bacterial membranes A multi-helix bacteriocin fold induces a multi-mode poration mechanism Each of two-helix segments of the bacteriocin adopts a particular poration mode These segments act synergistically balancing out antibacterial and hemolytic activities
Collapse
|
26
|
Al-Madboly LA, El-Deeb NM, Kabbash A, Nael MA, Kenawy AM, Ragab AE. Purification, Characterization, Identification, and Anticancer Activity of a Circular Bacteriocin From Enterococcus thailandicus. Front Bioeng Biotechnol 2020; 8:450. [PMID: 32656185 PMCID: PMC7324803 DOI: 10.3389/fbioe.2020.00450] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
New anticancer agents are continually needed because cancerous cells continue to evolve resistance to the currently available chemotherapeutic agents. The aim of the present study was to screen, purify and characterize a hepatotoxic bacteriocin from Enterococcus species. The production of bacteriocin from the Enterococcus isolates was achieved based on their antibacterial activity against indicator reference strains. Enterococcus isolates showed a broad spectrum of antibacterial activity by forming inhibition zones with diameters ranged between 12 and 29 mm. The most potent bacteriocin producing strain was molecularly identified as Enterococcus thailandicus. The crude extracted bacteriocin was purified by cation exchange and size exclusion chromatography that resulted in 83 fractions. Among them, 18 factions were considered as bacteriocins based on their positive antibacterial effects. The anticancer effects of the purified bacteriocins were tested against HepG2 cell line. The most promising enterocin (LNS18) showed the highest anticancer effects against HepG2 cells (with 75.24% cellular inhibition percentages), with IC50 value 15.643 μM and without any significant cytotoxic effects on normal fibroblast cells (BJ ATCC® CRL-2522™). The mode of anticancer action of enterocin LNS18 against HepG2 cells could be explained by its efficacy to induce cellular ROS, decrease HepG2 CD markers and arrest cells in G0 phase. Amino acid sequence of enterocin LNS18 was determined and the deduced peptide of the structural gene showed 86 amino acids that shared 94.7% identity with enterocin NKR-5-3B from E. faecium. Enterocin LNS18 consisted of 6 α-helices; 5 circular and one linear. Model-template alignment constructed between enterocin LNS18 and NKR-5-3B revealed 95.31% identity. The predicted 3D homology model of LNS18, after circularization and release of 22 amino acids, showed the formation of a bond between Leu23 and Trp86 amino acid residues at the site of circularization. Furthermore, areas of positive charges were due to the presence of 6 lysine residues resulting in a net positive charge of +4 on the bacteriocin surface. Based on the above mentioned results, our characterized bacteriocin is a promising agent to target liver cancer without any significant toxic effects on normal cell lines.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nehal M El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Manal A Nael
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed M Kenawy
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
27
|
Vezina B, Rehm BHA, Smith AT. Bioinformatic prospecting and phylogenetic analysis reveals 94 undescribed circular bacteriocins and key motifs. BMC Microbiol 2020; 20:77. [PMID: 32252629 PMCID: PMC7132975 DOI: 10.1186/s12866-020-01772-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Background Circular bacteriocins are antimicrobial peptides produced by bacteria with a N and C termini ligation. They have desirable properties such as activity at low concentrations along with thermal, pH and proteolytic resistance. There are twenty experimentally confirmed circular bacteriocins as part of bacteriocin gene clusters, with transport, membrane and immunity proteins. Traditionally, novel antimicrobials are found by testing large numbers of isolates against indicator strains, with no promise of corresponding novel sequence. Results Through bioprospecting publicly available sequence databases, we identified ninety-nine circular bacteriocins across a variety of bacteria bringing the total to 119. They were grouped into two families within class I modified bacteriocins (i and ii) and further divided into subfamilies based on similarity to experimentally confirmed circular bacteriocins. Within subfamilies, sequences overwhelmingly shared similar characteristics such as sequence length, presence of a polybasic region, conserved locations of aromatic residues, C and N termini, gene clusters similarity, translational coupling and hydrophobicity profiles. At least ninety were predicted to be putatively functional based on gene clusters. Furthermore, bacteriocins identified from Enterococcus, Staphylococcus and Streptococcus species may have activity against clinically relevant strains, due to the presence of putative immunity genes required for expression in a toxin-antitoxin system. Some strains such as Paenibacillus larvae subsp. pulvifaciens SAG 10367 contained multiple circular bacteriocin gene clusters from different subfamilies, while some strains such as Bacillus cereus BCE-01 contained clusters with multiple circular bacteriocin structural genes. Conclusions Sequence analysis provided rapid insight into identification of novel, putative circular bacteriocins, as well as conserved genes likely essential for circularisation. This represents an expanded library of putative antimicrobial proteins which are potentially active against human, plant and animal pathogens.
Collapse
Affiliation(s)
- Ben Vezina
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Andrew T Smith
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia.
| |
Collapse
|
28
|
Fisher MF, Payne CD, Rosengren KJ, Mylne JS. An Orbitide from Ratibida columnifera Seed Containing 16 Amino Acid Residues. JOURNAL OF NATURAL PRODUCTS 2019; 82:2152-2158. [PMID: 31392883 DOI: 10.1021/acs.jnatprod.9b00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyclic peptides are abundant in plants and have attracted interest due to their bioactivity and potential as drug scaffolds. Orbitides are head-to-tail cyclic peptides that are ribosomally synthesized, post-translationally modified, and lack disulfide bonds. All known orbitides contain 5-12 amino acid residues. Here we describe PLP-53, a novel orbitide from the seed of Ratibida columnifera. PLP-53 consists of 16 amino acids, four residues larger than any known orbitide. NMR structural studies showed that, compared to previously characterized orbitides, PLP-53 is more flexible and, under the studied conditions, did not adopt a single ordered conformation based on analysis of NOEs and chemical shifts.
Collapse
Affiliation(s)
- Mark F Fisher
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| | - Colton D Payne
- Faculty of Medicine, School of Biomedical Sciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Joshua S Mylne
- School of Molecular Sciences , The University of Western Australia , 35 Stirling Highway , Crawley , WA 6009 , Australia
| |
Collapse
|
29
|
Baños A, García JD, Núñez C, Mut-Salud N, Ananou S, Martínez-Bueno M, Maqueda M, Valdivia E. Subchronic toxicity study in BALBc mice of enterocin AS-48, an anti-microbial peptide produced by Enterococcus faecalis UGRA10. Food Chem Toxicol 2019; 132:110667. [PMID: 31288051 DOI: 10.1016/j.fct.2019.110667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 01/20/2023]
Abstract
Few studies have examined the use of animal models to evaluate the in-vivo toxicity of antimicrobial peptides, but such research is essential to their safe use in foods. This study was performed to evaluate any adverse effects of enterocin AS-48, a circular bacteriocin produced by Enterococcus strains, when administered to BALB/c mice at concentrations of 50, 100, and 200 mg/kg in the diet for 90 days. Animals dosed with nisin at a dietary concentration of 200 mg/kg served as a reference treated group. There were no deaths in any of the animal groups, and the AS-48 treatment produced no abnormalities or clinical signs on body weights, food consumption, urinalysis, haematology, or blood biochemistry. Furthermore, there were no significant differences in the weights of liver, spleen, heart, kidneys, and intestines between control mice and those treated with AS-48 or nisin. The histopathological study showed moderate vacuolar degeneration in hepatocytes of some animals fed 100 or 200 mg/kg AS-48 (3/10 and 2/10 respectively). However, this anomaly was lower than in the group treated with nisin (5/10). Conclusively, no toxicologically significant changes were associated in BALB/c mice fed with 50, 100, and 200 mg/kg enterocin AS-48 for 90 days.
Collapse
Affiliation(s)
- Alberto Baños
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - J David García
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Cristina Núñez
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Nuria Mut-Salud
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Samir Ananou
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Eva Valdivia
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
30
|
Koehbach J, Craik DJ. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol Sci 2019; 40:517-528. [DOI: 10.1016/j.tips.2019.04.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
|
31
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Falco A, Medina-Gali RM, Poveda JA, Bello-Perez M, Novoa B, Encinar JA. Antiviral Activity of a Turbot ( Scophthalmus maximus) NK-Lysin Peptide by Inhibition of Low-pH Virus-Induced Membrane Fusion. Mar Drugs 2019; 17:md17020087. [PMID: 30717094 PMCID: PMC6410327 DOI: 10.3390/md17020087] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022] Open
Abstract
Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71–100) exerts an anti-protozoal activity, probably due to membrane rupture. In addition, NK-lysine protein is highly expressed in zebrafish in response to viral infections. In this work several biophysical methods, such as vesicle aggregation, leakage and fluorescence anisotropy, are employed to investigate the interaction of Nkl71–100 with different glycerophospholipid vesicles. At acidic pH, Nkl71–100 preferably interacts with phosphatidylserine (PS), disrupts PS membranes, and allows the content leakage from vesicles. Furthermore, Nkl71–100 exerts strong antiviral activity against spring viremia of carp virus (SVCV) by inhibiting not only the binding of viral particles to host cells, but also the fusion of virus and cell membranes, which requires a low pH context. Such antiviral activity seems to be related to the important role that PS plays in these steps of the replication cycle of SVCV, a feature that is shared by other families of virus-comprising members with health and veterinary relevance. Consequently, Nkl71–100 is shown as a promising broad-spectrum antiviral candidate.
Collapse
Affiliation(s)
- Alberto Falco
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Regla María Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Melissa Bello-Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), 36208 Vigo, Spain.
| | - José Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| |
Collapse
|
33
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
34
|
Vasilchenko AS, Valyshev AV. Pore-forming bacteriocins: structural–functional relationships. Arch Microbiol 2018; 201:147-154. [DOI: 10.1007/s00203-018-1610-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/19/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
|
35
|
Perez RH, Zendo T, Sonomoto K. Circular and Leaderless Bacteriocins: Biosynthesis, Mode of Action, Applications, and Prospects. Front Microbiol 2018; 9:2085. [PMID: 30233551 PMCID: PMC6131525 DOI: 10.3389/fmicb.2018.02085] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/15/2018] [Indexed: 01/02/2023] Open
Abstract
Bacteriocins are a huge family of ribosomally synthesized peptides known to exhibit a range of bioactivities, most predominantly antibacterial activities. Bacteriocins from lactic acid bacteria are of particular interest due to the latter's association to food fermentation and the general notion of them to be safe. Among the family of bacteriocins, the groups known as circular bacteriocins and leaderless bacteriocins are gaining more attention due to their enormous potential for industrial application. Circular bacteriocins and leaderless bacteriocins, arguably the least understood groups of bacteriocins, possess distinctively peculiar characteristics in their structures and biosynthetic mechanisms. Circular bacteriocins have N-to-C- terminal covalent linkage forming a structurally distinct circular peptide backbone. The circular nature of their structures provides them superior stability against various stresses compared to most linear bacteriocins. The molecular mechanism of their biosynthesis, albeit has remained poorly understood, is believed to possesses huge application prospect as it can serve as scaffold in bioengineering other biologically important peptides. On the other hand, while most bacteriocins are synthesized as inactive precursor peptides, which possess an N-terminal leader peptide attached to a C-terminal propeptide, leaderless bacteriocins are atypical as they do not have an N-terminal leader peptide, hence the name. Leaderless bacteriocins are active right after translation as they do not undergo any post-translational processing common to other groups of bacteriocins. This "simplicity" in the biosynthesis of leaderless bacteriocins offers a huge commercial potential as scale-up production systems are considerably easier to assemble. In this review, we summarize the current studies of both circular and leaderless bacteriocins, highlighting the progress in understanding their biosynthesis, mode of action, application and their prospects.
Collapse
Affiliation(s)
- Rodney H Perez
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan.,National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños, Philippines
| | - Takeshi Zendo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Kenji Sonomoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00359-18. [PMID: 29987141 DOI: 10.1128/aac.00359-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
The increasing incidence of multidrug-resistant Mycobacterium tuberculosis strains and the very few drugs available for treatment are promoting the discovery and development of new molecules that could help in the control of this disease. Bacteriocin AS-48 is an antibacterial peptide produced by Enterococcus faecalis and is active against several Gram-positive bacteria. We have found that AS-48 was active against Mycobacterium tuberculosis, including H37Rv and other reference and clinical strains, and also against some nontuberculous clinical mycobacterial species. The combination of AS-48 with either lysozyme or ethambutol (commonly used in the treatment of drug-susceptible tuberculosis) increased the antituberculosis action of AS-48, showing a synergic interaction. Under these conditions, AS-48 exhibits a MIC close to some MICs of the first-line antituberculosis agents. The inhibitory activity of AS-48 and its synergistic combination with ethambutol were also observed on M. tuberculosis-infected macrophages. Finally, AS-48 did not show any cytotoxicity against THP-1, MHS, and J774.2 macrophage cell lines at concentrations close to its MIC. In summary, bacteriocin AS-48 has interesting antimycobacterial activity in vitro and low cytotoxicity, so further studies in vivo will contribute to its development as a potential additional drug for antituberculosis therapy.
Collapse
|
37
|
Classes, Databases, and Prediction Methods of Pharmaceutically and Commercially Important Cystine-Stabilized Peptides. Toxins (Basel) 2018; 10:toxins10060251. [PMID: 29921767 PMCID: PMC6024828 DOI: 10.3390/toxins10060251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Cystine-stabilized peptides represent a large family of peptides characterized by high structural stability and bactericidal, fungicidal, or insecticidal properties. Found throughout a wide range of taxa, this broad and functionally important family can be subclassified into distinct groups dependent upon their number and type of cystine bonding patters, tertiary structures, and/or their species of origin. Furthermore, the annotation of proteins related to the cystine-stabilized family are under-represented in the literature due to their difficulty of isolation and identification. As a result, there are several recent attempts to collate them into data resources and build analytic tools for their dynamic prediction. Ultimately, the identification and delivery of new members of this family will lead to their growing inclusion into the repertoire of commercial viable alternatives to antibiotics and environmentally safe insecticides. This review of the literature and current state of cystine-stabilized peptide biology is aimed to better describe peptide subfamilies, identify databases and analytics resources associated with specific cystine-stabilized peptides, and highlight their current commercial success.
Collapse
|
38
|
Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective. Front Microbiol 2018; 9:950. [PMID: 29892271 PMCID: PMC5985334 DOI: 10.3389/fmicb.2018.00950] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.
Collapse
Affiliation(s)
- Nicholas P Greene
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elise Kaplan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Allister Crow
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Hemu X, Tam JP. Macrocyclic Antimicrobial Peptides Engineered from ω-Conotoxin. Curr Pharm Des 2018; 23:2131-2138. [PMID: 28245769 PMCID: PMC5470054 DOI: 10.2174/1381612822666161027120518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022]
Abstract
The potent calcium channel blocker ω-conotoxin MVIIA is a linear cystine-knot peptide with multiple basic amino acids at both termini. This work shows that macrocyclization of MVIIA linking two positive-charge terminal clusters as a contiguous segment converts a conotoxin into an antimicrobial peptide. In addition, conversion of disulfide bonds to amino butyric acids improved the antimicrobial activity of the cyclic analogs. Ten macrocyclic analogs, with or without disulfide bonds, were prepared by both Boc and Fmoc chemistry using native chemical ligation. All cyclic analogs were active against selected Gram-positive and Gram-negative bacteria with minimal inhibitory concentrations in a low μM range. In contrast, MVIIA and its linear analog were inactive at concentrations up to 0.5 mM. The cyclic analogs also showed 2 to 3-fold improved chemotactic activity against human monocytes THP-1 compared with MVIIA. Reduction of molecular stability against thermal and acid treatment due to the reduced number of disulfide crosslinks can be partly restored by backbone cyclization. Together, these results show that macrocyclization and side chain modification of a linear conopeptide lead to a gain-of-function, which brings a new perspective in designing and engineering of peptidyl therapeutics.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 03s-71, Singapore 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 03s-71, Singapore 637551, Singapore
| |
Collapse
|
40
|
Assessing in vitro digestibility of food biopreservative AS-48. Food Chem 2018; 246:249-257. [DOI: 10.1016/j.foodchem.2017.10.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
|
41
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
42
|
van Heel AJ, Montalban-Lopez M, Oliveau Q, Kuipers OP. Genome-guided identification of novel head-to-tail cyclized antimicrobial peptides, exemplified by the discovery of pumilarin. Microb Genom 2017; 3:e000134. [PMID: 29177092 PMCID: PMC5695211 DOI: 10.1099/mgen.0.000134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/01/2017] [Indexed: 11/18/2022] Open
Abstract
The need for novel antibiotics in an era where antimicrobial resistance is on the rise, and the number of new approved antimicrobial drugs reaching the market is declining, is evident. The underused potential of post-translationally modified peptides for clinical use makes this class of peptides interesting candidates. In this study, we made use of the vast amounts of available genomic data and screened all publicly available prokaryotic genomes (~3000) to identify 394 novel head-to-tail cyclized antimicrobial peptides. To verify these in silico results, we isolated and characterized a novel antimicrobial peptide from Bacillus pumilus that we named pumilarin. Pumilarin was demonstrated to have a circular structure and showed antimicrobial activity against several indicator strains, including pathogens.
Collapse
Affiliation(s)
- Auke J van Heel
- 1Molecular Genetics, University of Groningen, Groningen, Nijenborgh 7, NA 9747 AG, The Netherlands
| | - Manuel Montalban-Lopez
- 1Molecular Genetics, University of Groningen, Groningen, Nijenborgh 7, NA 9747 AG, The Netherlands.,2Department of Microbiology, University of Granada, Granada, Spain
| | - Quentin Oliveau
- 1Molecular Genetics, University of Groningen, Groningen, Nijenborgh 7, NA 9747 AG, The Netherlands
| | - Oscar P Kuipers
- 1Molecular Genetics, University of Groningen, Groningen, Nijenborgh 7, NA 9747 AG, The Netherlands
| |
Collapse
|
43
|
Rohrbacher F, Zwicky A, Bode JW. Chemical synthesis of a homoserine-mutant of the antibacterial, head-to-tail cyclized protein AS-48 by α-ketoacid-hydroxylamine (KAHA) ligation. Chem Sci 2017; 8:4051-4055. [PMID: 28580120 PMCID: PMC5434751 DOI: 10.1039/c7sc00789b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
An antibacterial cyclic AS-48 protein was chemically synthesized by α-ketoacid-hydroxylamine (KAHA) ligation. Initial challenges associated with the exceptionally hydrophobic segments arising from the amphiphilic nature of the protein were resolved by the development of bespoke reaction conditions for hydrophobic segments, using hexafluoroisopropanol (HFIP) as a co-solvent. The synthetic protein displays similar biological activity and properties to those of the native protein. To support the current understanding of its antibacterial mode of action, we demonstrate the ability of AS-48 to be incorporated into synthetic multilamellar vesicles (MLVs).
Collapse
Affiliation(s)
- Florian Rohrbacher
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland .
| | - André Zwicky
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland .
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , 8093 Zürich , Switzerland . .,Institute of Transformative bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| |
Collapse
|
44
|
Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents. Antimicrob Agents Chemother 2017; 61:AAC.02288-16. [PMID: 28167557 DOI: 10.1128/aac.02288-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
We report the feasibility of enterocin AS-48, a circular cationic peptide produced by Enterococcus faecalis, as a new leishmanicidal agent. AS-48 is lethal to Leishmania promastigotes as well as to axenic and intracellular amastigotes at low micromolar concentrations, with scarce cytotoxicity to macrophages. AS-48 induced a fast bioenergetic collapse of L. donovani promastigotes but only a partial permeation of their plasma membrane with limited entrance of vital dyes, even at concentrations beyond its full lethality. Fluoresceinated AS-48 was visualized inside parasites by confocal microscopy and seen to cause mitochondrial depolarization and reactive oxygen species production. Altogether, AS-48 appeared to have a mixed leishmanicidal mechanism that includes both plasma membrane permeabilization and additional intracellular targets, with mitochondrial dysfunctionality being of special relevance. This complex leishmanicidal mechanism of AS-48 persisted even for the killing of intracellular amastigotes, as evidenced by transmission electron microscopy. We demonstrated the potentiality of AS-48 as a new and safe leishmanicidal agent, expanding the growing repertoire of eukaryotic targets for bacteriocins, and our results provide a proof of mechanism for the search of new leishmanicidal bacteriocins, whose diversity constitutes an almost endless source for new structures at moderate production cost and whose safe use on food preservation is well established.
Collapse
|
45
|
Towle KM, Vederas JC. Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. MEDCHEMCOMM 2017; 8:276-285. [PMID: 30108744 PMCID: PMC6072434 DOI: 10.1039/c6md00607h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Abstract
Bacteriocins are potent antimicrobial peptides that are ribosomally produced and exported by bacteria, presumably to aid elimination of competing microorganisms. Many circular and linear leaderless bacteriocins have a recuring three dimensional structural motif known as a saposin-like fold. Although these bacteriocin sizes and sequences are often quite different, and their mechanisms of action vary, this conserved motif of multiple helices appears critical for activity and may enable peptide-lipid and peptide-receptor interactions in target bacterial cell membranes. Comparisons between electrostatic surfaces and hydrophobic surface maps of different bacteriocins are discussed emphasizing similarities and differences in the context of proposed modes of action.
Collapse
Affiliation(s)
- K M Towle
- Department of Chemistry , University of Alberta , Edmonton , Alberta , T6G 2G2 Canada .
| | - J C Vederas
- Department of Chemistry , University of Alberta , Edmonton , Alberta , T6G 2G2 Canada .
| |
Collapse
|
46
|
Barbosa AAT, Mantovani HC, Jain S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 2017; 37:852-864. [PMID: 28049350 DOI: 10.1080/07388551.2016.1262323] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products.
Collapse
Affiliation(s)
| | | | - Sona Jain
- a Departamento de Morfologia , Universidade Federal de Sergipe , São Cristóvão , Sergipe , Brazil
| |
Collapse
|
47
|
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016; 17:882. [PMID: 27821051 PMCID: PMC5100339 DOI: 10.1186/s12864-016-3224-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. RESULTS We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. CONCLUSIONS Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
48
|
Kommineni S, Kristich CJ, Salzman NH. Harnessing bacteriocin biology as targeted therapy in the GI tract. Gut Microbes 2016; 7:512-517. [PMID: 27624536 PMCID: PMC5153615 DOI: 10.1080/19490976.2016.1233089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 02/03/2023] Open
Abstract
Recently, our laboratory demonstrated that bacteriocins produced by commensal enterococci provide an advantage in niche maintenance in the highly competitive environment of the gastrointestinal (GI) tract. Bacterial production of bacteriocins is a conserved defense strategy to help establish an ecological niche. Bacteriocin-encoding genes in enterococci are often carried on mobile genetic elements, including conjugative plasmids, enabling the transfer of such traits to other community members in a shared niche. Use of a novel mouse model for enterococcal colonization of the GI tract allowed us to investigate enterococcal dynamics and the role of enterococcal bacteriocins in the mouse GI tract. We examined the role of bacteriocin-21, carried on the pPD1 plasmid, in enterococcal colonization of the gut. We discovered that Enterococcus faecalis (EF) harboring pPD1 effectively colonizes the GI tract by using Bac-21 to eliminate its competition. In our study, we also present evidence for active conjugation in the GI tract, a strategy EF uses to enhance the number of bacteriocin producers in a given niche and eliminate bacteriocin-susceptible populations. Using an engineered strain of EF that is capable of producing Bac-21 but impaired in its conjugation ability, we were able to reduce pre-existing colonization by vancomycin-resistant enterococci in the mouse gut. Thus, our results suggest a novel therapeutic strategy to de-colonize antibiotic-resistant enterococci from the GI tract of patients and thereby prevent the emergence of resistant enterococcal infections that are otherwise difficult, or impossible, to treat.
Collapse
Affiliation(s)
- Sushma Kommineni
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Christopher J. Kristich
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Nita H. Salzman
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| |
Collapse
|
49
|
Purification, characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Truman AW. Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides. Beilstein J Org Chem 2016; 12:1250-68. [PMID: 27559376 PMCID: PMC4979651 DOI: 10.3762/bjoc.12.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a large class of natural products that are remarkably chemically diverse given an intrinsic requirement to be assembled from proteinogenic amino acids. The vast chemical space occupied by RiPPs means that they possess a wide variety of biological activities, and the class includes antibiotics, co-factors, signalling molecules, anticancer and anti-HIV compounds, and toxins. A considerable amount of RiPP chemical diversity is generated from cyclisation reactions, and the current mechanistic understanding of these reactions will be discussed here. These cyclisations involve a diverse array of chemical reactions, including 1,4-nucleophilic additions, [4 + 2] cycloadditions, ATP-dependent heterocyclisation to form thiazolines or oxazolines, and radical-mediated reactions between unactivated carbons. Future prospects for RiPP pathway discovery and characterisation will also be highlighted.
Collapse
Affiliation(s)
- Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|