1
|
Wu D, Ouyang Q, Wang H, Mao Y. A kinetic model for USP14 regulated substrate degradation in 26S proteasome. PLoS Comput Biol 2025; 21:e1012761. [PMID: 40315273 PMCID: PMC12068737 DOI: 10.1371/journal.pcbi.1012761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/12/2025] [Accepted: 03/17/2025] [Indexed: 05/04/2025] Open
Abstract
Despite high-resolution structural studies on the USP14-proteasome-substrate complexes, time-resolved cryo-electron microscopy (cryo-EM) results on USP14-regulated allostery of the 26S proteasome are still very limited and a quantitative understanding of substrate degradation dynamics remains elusive. In this study, we propose a mean field model of ordinary differential equations (ODEs) for USP14 regulated substrate degradation in 26S proteasome. The kinetic model incorporates recent cryo-EM findings on the allostery of 26S proteasome and generates results in good agreement with time-resolved experimental observations. The model elucidates that USP14 typically reduces the substrate degradation rate and reveals the functional dependence of this rate on the concentrations of substrate and adenosine triphosphate (ATP). The half-maximal effective concentration (EC50) of the substrate for different ATP concentrations is predicted. When multiple substrates are present, the model suggests that substrates that are easier to insert into the OB-ring and disengage from the proteasome, or less likely to undergo deubiquitination would be more favored to be degraded by the USP14-bound proteasome. The mean field model proposed here quantitatively considers the process of proteasomal substrate degradation from the perspective of chemical kinetics, and provides a quantitative framework to decode the dynamic interplay between USP14 and the proteasome.
Collapse
Affiliation(s)
- Di Wu
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
- School of Physics, Zhejiang University, Hangzhou, China
| | - Hongli Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Youdong Mao
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
- AI for Science (AI4S)-Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
2
|
Ouyang H, How CY, Wang X, Yu C, Luo A, Huang L, Chen Y. Crosslinking-mediated Interactome Analysis Identified PHD2-HIF1α Interaction Hotspots and the Role of PHD2 in Regulating Protein Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628769. [PMID: 39763868 PMCID: PMC11702602 DOI: 10.1101/2024.12.16.628769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Prolyl Hydroxylase Domain protein 2 (PHD2) targets Hypoxia Inducible Factor alpha subunits (HIFα) for oxygen-dependent proline hydroxylation that leads to subsequent ubiquitination and degradation of HIFα. In addition to HIF proteins, growing evidence suggested that PHD2 may exert its multifaceted function through hydroxylase-dependent or independent activities. Given the critical role of PHD2 in diverse biological processes, it is important to comprehensively identify potential PHD2 interacting proteins. In this study, we engineered HeLa cells that stably express HTBH-tagged PHD2 to facilitate the identification of PHD2 interactome. Using DSSO-based cross-linking mass spectrometry (XL-MS) technology and LC-MSn analysis, we mapped PHD2-HIF1α interaction hotspots and identified over 300 PHD2 interacting proteins. Furthermore, we validated the COP9 Signalosome (CSN) complex, a major deneddylase complex, as a novel PHD2 interactor. DMOG treatment promoted interaction between PHD2 and CSN complex and enhanced the deneddylase activity of the CSN complex, resulting in increased level of free Cullin and reduced target protein ubiquitination. This mechanism may serve as a negative feedback regulation of the HIF transcription pathway.
Collapse
Affiliation(s)
- Haiping Ouyang
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Cindy Y. How
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Breckels LM, Hutchings C, Ingole KD, Kim S, Lilley KS, Makwana MV, McCaskie KJA, Villanueva E. Advances in spatial proteomics: Mapping proteome architecture from protein complexes to subcellular localizations. Cell Chem Biol 2024; 31:1665-1687. [PMID: 39303701 DOI: 10.1016/j.chembiol.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Proteins are responsible for most intracellular functions, which they perform as part of higher-order molecular complexes, located within defined subcellular niches. Localization is both dynamic and context specific and mislocalization underlies a multitude of diseases. It is thus vital to be able to measure the components of higher-order protein complexes and their subcellular location dynamically in order to fully understand cell biological processes. Here, we review the current range of highly complementary approaches that determine the subcellular organization of the proteome. We discuss the scale and resolution at which these approaches are best employed and the caveats that should be taken into consideration when applying them. We also look to the future and emerging technologies that are paving the way for a more comprehensive understanding of the functional roles of protein isoforms, which is essential for unraveling the complexities of cell biology and the development of disease treatments.
Collapse
Affiliation(s)
- Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Charlotte Hutchings
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kishor D Ingole
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Suyeon Kim
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Mehul V Makwana
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kieran J A McCaskie
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
4
|
Chandrasekharan G, Unnikrishnan M. High throughput methods to study protein-protein interactions during host-pathogen interactions. Eur J Cell Biol 2024; 103:151393. [PMID: 38306772 DOI: 10.1016/j.ejcb.2024.151393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
The ability of a pathogen to survive and cause an infection is often determined by specific interactions between the host and pathogen proteins. Such interactions can be both intra- and extracellular and may define the outcome of an infection. There are a range of innovative biochemical, biophysical and bioinformatic techniques currently available to identify protein-protein interactions (PPI) between the host and the pathogen. However, the complexity and the diversity of host-pathogen PPIs has led to the development of several high throughput (HT) techniques that enable the study of multiple interactions at once and/or screen multiple samples at the same time, in an unbiased manner. We review here the major HT laboratory-based technologies employed for host-bacterial interaction studies.
Collapse
Affiliation(s)
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
5
|
Sahoo MP, Lavy T, Cohen N, Sahu I, Kleifeld O. Activity-Guided Proteomic Profiling of Proteasomes Uncovers a Variety of Active (and Inactive) Proteasome Species. Mol Cell Proteomics 2024; 23:100728. [PMID: 38296025 PMCID: PMC10907802 DOI: 10.1016/j.mcpro.2024.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasomes are multisubunit, multicatalytic protein complexes present in eukaryotic cells that degrade misfolded, damaged, or unstructured proteins. In this study, we used an activity-guided proteomic methodology based on a fluorogenic peptide substrate to characterize the composition of proteasome complexes in WT yeast and the changes these complexes undergo upon the deletion of Pre9 (Δα3) or of Sem1 (ΔSem1). A comparison of whole-cell proteomic analysis to activity-guided proteasome profiling indicates that the amounts of proteasomal proteins and proteasome interacting proteins in the assembled active proteasomes differ significantly from their total amounts in the cell as a whole. Using this activity-guided profiling approach, we characterized the changes in the abundance of subunits of various active proteasome species in different strains, quantified the relative abundance of active proteasomes across these strains, and charted the overall distribution of different proteasome species within each strain. The distributions obtained by our mass spectrometry-based quantification were markedly higher for some proteasome species than those obtained by activity-based quantification alone, suggesting that the activity of some of these species is impaired. The impaired activity appeared mostly among 20SBlm10 proteasome species which account for 20% of the active proteasomes in WT. To identify the factors behind this impaired activity, we mapped and quantified known proteasome-interacting proteins. Our results suggested that some of the reduced activity might be due to the association of the proteasome inhibitor Fub1. Additionally, we provide novel evidence for the presence of nonmature and therefore inactive proteasomal protease subunits β2 and β5 in the fully assembled proteasomes.
Collapse
Affiliation(s)
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noam Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
6
|
Kovacs M, Geltinger F, Schartel L, Pöschl S, Briza P, Paschinger M, Boros K, Felder TK, Wimmer H, Duschl J, Rinnerthaler M. Ola1p trafficking indicates an interaction network between mitochondria, lipid droplets, and stress granules in times of stress. J Lipid Res 2023; 64:100473. [PMID: 37949369 PMCID: PMC10757043 DOI: 10.1016/j.jlr.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Protein aggregates arise naturally under normal physiological conditions, but their formation is accelerated by age or stress-induced protein misfolding. When the stressful event dissolves, these aggregates are removed by mechanisms, such as aggrephagy, chaperone-mediated autophagy, refolding attempts, or the proteasome. It was recently shown that mitochondria in yeast cells may support these primarily cytosolic processes. Protein aggregates attach to mitochondria, and misfolded proteins are transported into the matrix and degraded by mitochondria-specific proteases. Using a proximity labeling method and colocalization with an established stress granule (SG) marker, we were able to show that these mitochondria-localized aggregates that harbor the "super aggregator" Ola1p are, in fact, SGs. Our in vivo and in vitro studies have revealed that Ola1p can be transferred from mitochondria to lipid droplets (LDs). This "mitochondria to LD" aggregate transfer dampens proteotoxic effects. The LD-based protein aggregate removal system gains importance when other proteolytic systems fail. Furthermore, we were able to show that the distribution of SGs is drastically altered in LD-deficient yeast cells, demonstrating that LDs play a role in the SG life cycle.
Collapse
Affiliation(s)
- Melanie Kovacs
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Florian Geltinger
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria; Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lukas Schartel
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria; Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg University and Institute of Molecular Biology, Mainz, Germany
| | - Simon Pöschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Manuel Paschinger
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Kitti Boros
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Wimmer
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Jutta Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria.
| |
Collapse
|
7
|
Zhong B, An Y, Gao H, Zhao L, Li X, Liang Z, Zhang Y, Zhao Q, Zhang L. In vivo cross-linking-based affinity purification and mass spectrometry for targeting intracellular protein-protein interactions. Anal Chim Acta 2023; 1265:341273. [PMID: 37230567 DOI: 10.1016/j.aca.2023.341273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Comprehensive interactome analysis of targeted proteins is important to understand how proteins work together in regulating functions. Commonly, affinity purification followed by mass spectrometry (AP-MS) has been recognized as the most often used technique for studying protein-protein interactions (PPIs). However, some proteins with weak interactions, which are responsible for key roles in regulation, are easily broken during cell lysis and purification through an AP approach. Herein, we have developed an approach termed in vivo cross-linking-based affinity purification and mass spectrometry (ICAP-MS). By this method, in vivo cross-linking was introduced to covalently fix intracellular PPIs in their functional states to assure all PPIs could be integrally maintained during cell disruption. In addition, the chemically cleavable crosslinkers which were employed enabled unbinding of PPIs for in-depth identification of components within the interactome and biological analysis, while allowing binding of PPIs for cross-linking-mass spectrometry (CXMS)-based direct interaction determination. Multi-level information on targeted PPIs network can be obtained by ICAP-MS, including composition of interacting proteins, as well as direct interacting partners and binding sites. As a proof of concept, the interactome of MAPK3 from 293A cells was profiled with 6.15-fold improvement in identification than by conventional AP-MS. Meanwhile, 184 cross-link site pairs of these PPIs were experimentally identified by CXMS. Furthermore, ICAP-MS was applied in the temporal profiling of MAPK3 interactions under activation by cAMP-mediated pathway. The regulatory manner of MAPK pathways was presented through the quantitative changes of MAPK3 and its interacting proteins at different time points after activation. Therefore, all reported results demonstrated that the ICAP-MS approach may provide comprehensive information on interactome of targeted protein for functional exploration.
Collapse
Affiliation(s)
- Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Yuxin An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, China.
| |
Collapse
|
8
|
Choi WH, Yun Y, Byun I, Kim S, Lee S, Sim J, Levi S, Park SH, Jun J, Kleifeld O, Kim KP, Han D, Chiba T, Seok C, Kwon YT, Glickman MH, Lee MJ. ECPAS/Ecm29-mediated 26S proteasome disassembly is an adaptive response to glucose starvation. Cell Rep 2023; 42:112701. [PMID: 37384533 DOI: 10.1016/j.celrep.2023.112701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/07/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023] Open
Abstract
The 26S proteasome comprises 20S catalytic and 19S regulatory complexes. Approximately half of the proteasomes in cells exist as free 20S complexes; however, our mechanistic understanding of what determines the ratio of 26S to 20S species remains incomplete. Here, we show that glucose starvation uncouples 26S holoenzymes into 20S and 19S subcomplexes. Subcomplex affinity purification and quantitative mass spectrometry reveal that Ecm29 proteasome adaptor and scaffold (ECPAS) mediates this structural remodeling. The loss of ECPAS abrogates 26S dissociation, reducing degradation of 20S proteasome substrates, including puromycylated polypeptides. In silico modeling suggests that ECPAS conformational changes commence the disassembly process. ECPAS is also essential for endoplasmic reticulum stress response and cell survival during glucose starvation. In vivo xenograft model analysis reveals elevated 20S proteasome levels in glucose-deprived tumors. Our results demonstrate that the 20S-19S disassembly is a mechanism adapting global proteolysis to physiological needs and countering proteotoxic stress.
Collapse
Affiliation(s)
- Won Hoon Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yejin Yun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Sumin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Seho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jiho Sim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Shahar Levi
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Seo Hyeong Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Jeongmoo Jun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Oded Kleifeld
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Tomoki Chiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yong Tae Kwon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Michael H Glickman
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
9
|
Griffin ME, Thompson JW, Xiao Y, Sweredoski MJ, Aksenfeld RB, Jensen EH, Koldobskaya Y, Schacht AL, Kim TD, Choudhry P, Lomenick B, Garbis SD, Moradian A, Hsieh-Wilson LC. Functional glycoproteomics by integrated network assembly and partitioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.541482. [PMID: 37398272 PMCID: PMC10312638 DOI: 10.1101/2023.06.13.541482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The post-translational modification (PTM) of proteins by O-linked β-N-acetyl-D-glucosamine (O-GlcNAcylation) is widespread across the proteome during the lifespan of all multicellular organisms. However, nearly all functional studies have focused on individual protein modifications, overlooking the multitude of simultaneous O-GlcNAcylation events that work together to coordinate cellular activities. Here, we describe Networking of Interactors and SubstratEs (NISE), a novel, systems-level approach to rapidly and comprehensively monitor O-GlcNAcylation across the proteome. Our method integrates affinity purification-mass spectrometry (AP-MS) and site-specific chemoproteomic technologies with network generation and unsupervised partitioning to connect potential upstream regulators with downstream targets of O-GlcNAcylation. The resulting network provides a data-rich framework that reveals both conserved activities of O-GlcNAcylation such as epigenetic regulation as well as tissue-specific functions like synaptic morphology. Beyond O-GlcNAc, this holistic and unbiased systems-level approach provides a broadly applicable framework to study PTMs and discover their diverse roles in specific cell types and biological states.
Collapse
Affiliation(s)
- Matthew E. Griffin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Co-first author
| | - John W. Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Co-first author
| | - Yao Xiao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Co-first author
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rita B. Aksenfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth H. Jensen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yelena Koldobskaya
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew L. Schacht
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Terry D. Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Priya Choudhry
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Spiros D. Garbis
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
10
|
Lin Z, Li R, Han Z, Liu Y, Gao L, Huang S, Miao Y, Miao R. The Universally Conserved Unconventional G Protein YchF Is Critical for Growth and Stress Response. Life (Basel) 2023; 13:life13041058. [PMID: 37109587 PMCID: PMC10144078 DOI: 10.3390/life13041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The ancient guanine nucleotide-binding (G) proteins are a group of critical regulatory and signal transduction proteins, widely involved in diverse cellular processes of all kingdoms of life. YchF is a kind of universally conserved novel unconventional G protein that appears to be crucial for growth and stress response in eukaryotes and bacteria. YchF is able to bind and hydrolyze both adenine nucleoside triphosphate (ATP) and guanosine nucleoside triphosphate (GTP), unlike other members of the P-loop GTPases. Hence, it can transduce signals and mediate multiple biological functions by using either ATP or GTP. YchF is not only a nucleotide-dependent translational factor associated with the ribosomal particles and proteasomal subunits, potentially bridging protein biosynthesis and degradation, but also sensitive to reactive oxygen species (ROS), probably recruiting many partner proteins in response to environmental stress. In this review, we summarize the latest insights into how YchF is associated with protein translation and ubiquitin-dependent protein degradation to regulate growth and maintain proteostasis under stress conditions.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongfang Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiwei Han
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Liu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suchang Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Buneeva OA, Kopylov AT, Medvedev AE. Proteasome Interactome and Its Role in the Mechanisms of Brain Plasticity. BIOCHEMISTRY (MOSCOW) 2023; 88:319-336. [PMID: 37076280 DOI: 10.1134/s0006297923030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Abstract
Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins. Since the identified proteins belong to certain metabolic pathways, multiple enrichment of the proteasome fraction with these proteins indicates their important role in proteasome functioning. Extrapolation of the experimental data, obtained on various biological objects, to the human brain suggests that the proteasome-associated proteins account for at least 28% of the human brain proteome. The proteasome interactome of the brain contains a large number of proteins involved in the assembly of these supramolecular complexes, regulation of their functioning, and intracellular localization, which could be changed under different conditions (for example, during oxidative stress) or in different phases of the cell cycle. In the context of molecular functions of the Gene Ontology (GO) Pathways, the proteins of the proteasome interactome mediate cross-talk between components of more than 30 metabolic pathways annotated in terms of GO. The main result of these interactions is binding of adenine and guanine nucleotides, crucial for realization of the nucleotide-dependent functions of the 26S and 20S proteasomes. Since the development of neurodegenerative pathology is often associated with regioselective decrease in the functional activity of proteasomes, a positive therapeutic effect would be obviously provided by the factors increasing proteasomal activity. In any case, pharmacological regulation of the brain proteasomes seems to be realized through the changes in composition and/or activity of the proteins associated with proteasomes (deubiquitinase, PKA, CaMKIIα, etc.).
Collapse
Affiliation(s)
- Olga A Buneeva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | | | |
Collapse
|
12
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Wippel HH, Chavez JD, Tang X, Bruce JE. Quantitative interactome analysis with chemical cross-linking and mass spectrometry. Curr Opin Chem Biol 2022; 66:102076. [PMID: 34393043 PMCID: PMC8837725 DOI: 10.1016/j.cbpa.2021.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Structural plasticity and dynamic protein-protein interactions are critical determinants of protein function within living systems. Quantitative chemical cross-linking with mass spectrometry (qXL-MS) is an emerging technology able to provide information on changes in protein conformations and interactions. Importantly, qXL-MS is applicable to complex biological systems, including living cells and tissues, thereby providing insights into proteins within their native environments. Here, we present an overview of recent technological developments and applications involving qXL-MS, including design and synthesis of isotope-labeled cross-linkers, development of new liquid chromatography-MS methodologies, and computational developments enabling interpretation of the data.
Collapse
Affiliation(s)
- Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Wang Y, Hu Y, Höti N, Huang L, Zhang H. Characterization of In Vivo Protein Complexes via Chemical Cross-Linking and Mass Spectrometry. Anal Chem 2022; 94:1537-1542. [PMID: 34962381 PMCID: PMC9006583 DOI: 10.1021/acs.analchem.1c02410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cells perform various functions by proteins via protein complexes. Characterization of protein complexes is critical to understanding their biological and clinical significance and has been one of the major efforts of functional proteomics. To date, most protein complexes are characterized by the in vitro system from protein extracts after the cells or tissues are lysed, and it has been challenging to determine which of these protein complexes are formed in intact cells. Herein, we report an approach to preserve protein complexes using in vivo cross-linking, followed by size exclusion chromatography and data-independent acquisition mass spectrometry. This approach enables the characterization of in vivo protein complexes from cells or tissues, which allows the determination of protein complexes in clinical research. More importantly, the described approach can identify protein complexes that are not detected by the in vitro system, which provide unique protein function information.
Collapse
Affiliation(s)
- Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| |
Collapse
|
15
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
16
|
Leissing F, Misch NV, Wang X, Werner L, Huang L, Conrath U, Beckers GJM. Purification of MAP-kinase protein complexes and identification of candidate components by XL-TAP-MS. PLANT PHYSIOLOGY 2021; 187:2381-2392. [PMID: 34609515 PMCID: PMC8644975 DOI: 10.1093/plphys/kiab446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The purification of low-abundance protein complexes and detection of in vivo protein-protein interactions in complex biological samples remains a challenging task. Here, we devised crosslinking and tandem affinity purification coupled to mass spectrometry (XL-TAP-MS), a quantitative proteomics approach for analyzing tandem affinity-purified, crosslinked protein complexes from plant tissues. We exemplarily applied XL-TAP-MS to study the MKK2-Mitogen-activated protein kinase (MPK4) signaling module in Arabidopsis thaliana. A tandem affinity tag consisting of an in vivo-biotinylated protein domain flanked by two hexahistidine sequences was adopted to allow for the affinity-based isolation of formaldehyde-crosslinked protein complexes under fully denaturing conditions. Combined with 15N stable isotopic labeling and tandem MS we captured and identified a total of 107 MKK2-MPK4 module-interacting proteins. Consistent with the role of the MPK signaling module in plant immunity, many of the module-interacting proteins are involved in the biotic and abiotic stress response of Arabidopsis. Validation of binary protein-protein interactions by in planta split-luciferase assays and in vitro kinase assays disclosed several direct phosphorylation targets of MPK4. Together, the XL-TAP-MS approach purifies low abundance protein complexes from biological samples and discovers previously unknown protein-protein interactions.
Collapse
Affiliation(s)
- Franz Leissing
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany
| | - Nicola V Misch
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California, Irvine, California 92697, USA
| | - Linda Werner
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California 92697, USA
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany
| | - Gerold J M Beckers
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
17
|
Yu C, Wang X, Li W, Liu Y, Huang L. Developing a Bimolecular Affinity Purification Strategy to Isolate 26S Proteasome Holocomplexes for Complex-Centric Proteomic Analysis. Anal Chem 2021; 93:13407-13413. [PMID: 34550675 DOI: 10.1021/acs.analchem.1c03551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 26S proteasome is a mega-dalton protein complex responsible for intracellular degradation in eukaryotes. It is composed of two subcomplexes: the 20S core particle and the 19S regulatory particle, which form compositionally and structurally heterogeneous proteasome complexes in cells. To fully characterize the 26S proteasome, it is necessary to understand its structural and functional diversities. Multiple mass spectrometry (MS) methodologies have been developed in recent years for the study of proteasome structural dynamics in which biochemically isolated complexes are subjected to analysis. Due to the inherent heterogeneity of proteasome complexes, single-bait affinity purification typically results in a mixture of compositionally heterogeneous complexes regardless of the baits, making accurate assessment of complex-specific conformations and functions challenging. To facilitate complex-centric analysis, we have adopted a bimolecular affinity purification method utilizing a dual-bait cell line expressing tagged 19S and tagged 20S subunits to improve the homogeneity of the resulting 26S holocomplexes. To establish the method, four types of purifications were performed and the resulting samples were extensively examined by biochemical analysis and two label-free quantitative MS methods. Our results have demonstrated the effectiveness of this purification strategy in improving the complex homogeneity for downstream biochemical and MS characterizations. This strategy will be valuable for facilitating detailed quantitative assessments of complex-specific molecular details under different conditions and can be directly adopted for studying other complexes.
Collapse
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California 92697, United States
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California, Irvine, California 92697, United States
| | - Wenxue Li
- Yale Cancer Biology Institute, Department of Pharmacology, Yale University, West Haven, Connecticut 06516, United States
| | - Yansheng Liu
- Yale Cancer Biology Institute, Department of Pharmacology, Yale University, West Haven, Connecticut 06516, United States
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California 92697, United States
| |
Collapse
|
18
|
Dannenmaier S, Desroches Altamirano C, Schüler L, Zhang Y, Hummel J, Milanov M, Oeljeklaus S, Koch HG, Rospert S, Alberti S, Warscheid B. Quantitative proteomics identifies the universally conserved ATPase Ola1p as a positive regulator of heat shock response in Saccharomyces cerevisiae. J Biol Chem 2021; 297:101050. [PMID: 34571008 PMCID: PMC8531669 DOI: 10.1016/j.jbc.2021.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
The universally conserved P-loop ATPase Ola1 is implicated in various cellular stress response pathways, as well as in cancer and tumor progression. However, Ola1p functions are divergent between species, and the involved mechanisms are only poorly understood. Here, we studied the role of Ola1p in the heat shock response of the yeast Saccharomyces cerevisiae using a combination of quantitative and pulse labeling-based proteomics approaches, in vitro studies, and cell-based assays. Our data show that when heat stress is applied to cells lacking Ola1p, the expression of stress-protective proteins is enhanced. During heat stress Ola1p associates with detergent-resistant protein aggregates and rapidly forms assemblies that localize to stress granules. The assembly of Ola1p was also observed in vitro using purified protein and conditions, which resembled those in living cells. We show that loss of Ola1p results in increased protein ubiquitination of detergent-insoluble aggregates recovered from heat-shocked cells. When cells lacking Ola1p were subsequently relieved from heat stress, reinitiation of translation was delayed, whereas, at the same time, de novo synthesis of central factors required for protein refolding and the clearance of aggregates was enhanced when compared with wild-type cells. The combined data suggest that upon acute heat stress, Ola1p is involved in the stabilization of misfolded proteins, which become sequestered in cytoplasmic stress granules. This function of Ola1p enables cells to resume translation in a timely manner as soon as heat stress is relieved.
Collapse
Affiliation(s)
- Stefan Dannenmaier
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Lisa Schüler
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Hummel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Simon Alberti
- BIOTEC and CMCB, Technische Universität Dresden, Dresden, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Li H, Frankenfield AM, Houston R, Sekine S, Hao L. Thiol-Cleavable Biotin for Chemical and Enzymatic Biotinylation and Its Application to Mitochondrial TurboID Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2358-2365. [PMID: 33909971 PMCID: PMC8898397 DOI: 10.1021/jasms.1c00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein biotinylation via chemical or enzymatic reactions is often coupled with streptavidin-based enrichment and on-bead digestion in numerous biological applications. However, the popular on-bead digestion method faces major challenges of streptavidin contamination, overwhelming signals from endogenous biotinylated proteins, the lost information on biotinylation sites, and limited sequence coverage of enriched proteins. Here, we explored thiol-cleavable biotin as an alternative approach to elute biotinylated proteins from streptavidin-coated beads for both chemical biotinylation and biotin ligase-based proximity labeling. All possible amino acid sites for biotinylation were thoroughly evaluated in addition to the primary lysine residue. We found that biotinylation at lysine residues notably reduces the trypsin digestion efficiency, which can be mitigated by the thiol-cleavable biotinylation method. We then evaluated the applicability of thiol-cleavable biotin as a substrate for proximity labeling in living cells, where TurboID biotin ligase was engineered onto the mitochondrial inner membrane facing the mitochondrial matrix. As a proof-of-principle study, thiol-cleavable biotin-assisted TurboID proteomics achieved remarkable intraorganelle spatial resolution with significantly enriched proteins localized in the mitochondrial inner membrane and mitochondrial matrix.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, United States
| | - Ashley M Frankenfield
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, United States
| | - Ryan Houston
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Bridgeside Point I, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Shiori Sekine
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Bridgeside Point I, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, United States
| | - Ling Hao
- Department of Chemistry, The George Washington University, Science and Engineering Hall, 800 22nd Street, NW, Washington, DC 20052, United States
| |
Collapse
|
20
|
Kalathiya U, Padariya M, Faktor J, Coyaud E, Alfaro JA, Fahraeus R, Hupp TR, Goodlett DR. Interfaces with Structure Dynamics of the Workhorses from Cells Revealed through Cross-Linking Mass Spectrometry (CLMS). Biomolecules 2021; 11:382. [PMID: 33806612 PMCID: PMC8001575 DOI: 10.3390/biom11030382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
The fundamentals of how protein-protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein-protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.
Collapse
Affiliation(s)
- Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Etienne Coyaud
- Protéomique Réponse Inflammatoire Spectrométrie de Mass—PRISM, Inserm U1192, University Lille, CHU Lille, F-59000 Lille, France;
| | - Javier A. Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK
| | - David R. Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (M.P.); (J.F.); (J.A.A.); (R.F.); (T.R.H.)
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8Z 7X8, Canada
- Genome BC Proteome Centre, University of Victoria, Victoria, BC V8Z 5N3, Canada
| |
Collapse
|
21
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Zacharias AO, Fang Z, Rahman A, Talukder A, Cornelius S, Chowdhury SM. Affinity and chemical enrichment strategies for mapping low‐abundance protein modifications and protein‐interaction networks. J Sep Sci 2020; 44:310-322. [DOI: 10.1002/jssc.202000930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Adway O. Zacharias
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington Texas USA
| | - Zixiang Fang
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington Texas USA
| | - Aurchie Rahman
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington Texas USA
| | - Akash Talukder
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington Texas USA
| | - Sharel Cornelius
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington Texas USA
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington Texas USA
| |
Collapse
|
23
|
Alkafeef SS, Lane S, Yu C, Zhou T, Solis NV, Filler SG, Huang L, Liu H. Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLoS Genet 2020; 16:e1008881. [PMID: 32525871 PMCID: PMC7319344 DOI: 10.1371/journal.pgen.1008881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/26/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell. Mammalian pathogens occupy a diverse set of niches within the host organism. These niches vary in iron and oxygen availability. As a commensal and pathogen of humans, its ability to regulate iron uptake and utilization in response to bioavailable iron level is critical for its survival in different host environments encompassing a broad range of iron levels. This study aims to understand how C. albicans senses and responds to iron level to regulate multiple aspects of its biology. The cytosolic monothiol glutaredoxin Grx3 is a critical regulator of C. albicans iron homeostasis and virulence. Taking a proteomic approach, we identified a large list of Grx3 associated proteins of diverse functions, including iron-sulfur trafficking, iron homeostasis, metabolism redox homeostasis, protein translation, DNA maintenance and repair. In support of these protein associations, Grx3 is important for all these processes. Thus, Grx3 is a global regulator of iron homeostasis and other iron dependent cellular processes.
Collapse
Affiliation(s)
- Selma S Alkafeef
- Department of Biological Chemistry, University of California, Irvine, California, United States of America.,Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Shelley Lane
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.,David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| |
Collapse
|
24
|
Liebelt F, Sebastian RM, Moore CL, Mulder MPC, Ovaa H, Shoulders MD, Vertegaal ACO. SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock. Cell Rep 2020; 26:236-249.e4. [PMID: 30605679 PMCID: PMC6316133 DOI: 10.1016/j.celrep.2018.12.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The role of stress-induced increases in SUMO2/3 conjugation during the heat shock response (HSR) has remained enigmatic. We investigated SUMO signal transduction at the proteomic and functional level during the HSR in cells depleted of proteostasis network components via chronic heat shock factor 1 inhibition. In the recovery phase post heat shock, high SUMO2/3 conjugation was prolonged in cells lacking sufficient chaperones. Similar results were obtained upon inhibiting HSP90, indicating that increased chaperone activity during the HSR is critical for recovery to normal SUMO2/3 levels post-heat shock. Proteasome inhibition likewise prolonged SUMO2/3 conjugation, indicating that stress-induced SUMO2/3 targets are subsequently degraded by the ubiquitin-proteasome system. Functionally, we suggest that SUMOylation can enhance the solubility of target proteins upon heat shock, a phenomenon that we experimentally observed in vitro. Collectively, our results implicate SUMO2/3 as a rapid response factor that coordinates proteome degradation and assists the maintenance of proteostasis upon proteotoxic stress. Chaperone depletion delays recovery of SUMOylation in response to heat shock SUMOylated proteins are targeted to the proteasome during heat shock recovery Chaperone depletion impairs clearance of Ub/SUMO co-modified proteins after stress SUMO is a rapid response factor likely increasing protein solubility under heat shock
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands
| | - Rebecca M Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher L Moore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monique P C Mulder
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2300 RA, the Netherlands.
| |
Collapse
|
25
|
Zhang J, Zhao R, Yu C, Bryant CLN, Wu K, Liu Z, Ding Y, Zhao Y, Xue B, Pan ZQ, Li C, Huang L, Fang L. IKK-Mediated Regulation of the COP9 Signalosome via Phosphorylation of CSN5. J Proteome Res 2020; 19:1119-1130. [PMID: 31950832 DOI: 10.1021/acs.jproteome.9b00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The COP9 signalosome (CSN) is an evolutionarily conserved multisubunit protein complex, which controls protein degradation through deneddylation and inactivation of cullin-RING ubiquitin E3 ligases (CRLs). Recently, the CSN complex has been linked to the NF-κB signaling pathway due to its association with the IKK complex. However, how the CSN complex is regulated in this signaling pathway remains unclear. Here, we have carried out biochemical experiments and confirmed the interaction between the CSN and IKK complexes. In addition, we have determined that overexpression of IKKα or IKKβ leads to enhanced phosphorylation of CSN5, the catalytic subunit for CSN deneddylase activity. Mutational analyses have revealed that phosphorylation at serine 201 and threonine 205 of CSN5 impairs CSN-mediated deneddylation activity in vitro. Interestingly, TNF-α treatment not only enhances the interaction between CSN and IKK but also induces an IKK-dependent phosphorylation of CSN5 at serine 201, linking CSN to TNF-α signaling through IKK. Moreover, TNF-α treatment affects the CSN interaction network globally, especially the associations of CSN with the proteasome complex, eukaryotic translation initiation factor complex, and CRL components. Collectively, our results provide new insights into IKK-mediated regulation of CSN associated with the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jingzi Zhang
- Medical School and Model Animal Research Center of Nanjing University, Nanjing 210093, China
| | - Ruoyu Zhao
- Medical School and Model Animal Research Center of Nanjing University, Nanjing 210093, China
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, Unites States
| | - Christine L N Bryant
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, Unites States
| | - Kenneth Wu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, United States
| | - Zhihong Liu
- School of Life Science, Nanjing University, Nanjing 210023, China
| | - Yibing Ding
- Medical School and Model Animal Research Center of Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- Medical School and Model Animal Research Center of Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Medical School and Model Animal Research Center of Nanjing University, Nanjing 210093, China
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, United States
| | - Chaojun Li
- Medical School and Model Animal Research Center of Nanjing University, Nanjing 210093, China
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, Unites States
| | - Lei Fang
- Medical School and Model Animal Research Center of Nanjing University, Nanjing 210093, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Stevens LM, Zhang Y, Volnov Y, Chen G, Stein DS. Isolation of secreted proteins from Drosophila ovaries and embryos through in vivo BirA-mediated biotinylation. PLoS One 2019; 14:e0219878. [PMID: 31658274 PMCID: PMC6816556 DOI: 10.1371/journal.pone.0219878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
The extraordinarily strong non-covalent interaction between biotin and avidin (kD = 10-14-10-16) has permitted this interaction to be used in a wide variety of experimental contexts. The Biotin Acceptor Peptide (BAP), a 15 amino acid motif that can be biotinylated by the E. coli BirA protein, has been fused to proteins-of-interest, making them substrates for in vivo biotinylation. Here we report on the construction and characterization of a modified BirA bearing signals for secretion and endoplasmic reticulum (ER) retention, for use in experimental contexts requiring biotinylation of secreted proteins. When expressed in the Drosophila female germline or ovarian follicle cells under Gal4-mediated transcriptional control, the modified BirA protein could be detected and shown to be enzymatically active in ovaries and progeny embryos. Surprisingly, however, it was not efficiently retained in the ER, and instead appeared to be secreted. To determine whether this secreted protein, now designated secBirA, could biotinylate secreted proteins, we generated BAP-tagged versions of two secreted Drosophila proteins, Torsolike (Tsl) and Gastrulation Defective (GD), which are normally expressed maternally and participate in embryonic pattern formation. Both Tsl-BAP and GD-BAP were shown to exhibit normal patterning activity. Co-expression of Tsl-BAP together with secBirA in ovarian follicle cells resulted in its biotinylation, which permitted its isolation from both ovaries and progeny embryos using Avidin-coupled affinity matrix. In contrast, co-expression with secBirA in the female germline did not result in detectable biotinylation of GD-BAP, possibly because the C-terminal location of the BAP tag made it inaccessible to BirA in vivo. Our results indicate that secBirA directs biotinylation of proteins bound for secretion in vivo, providing access to powerful experimental approaches for secreted proteins-of-interest. However, efficient biotinylation of target proteins may vary depending upon the location of the BAP tag or other structural features of the protein.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuan Zhang
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuri Volnov
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Geng Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - David S. Stein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
27
|
Lin DW, Chung BP, Huang JW, Wang X, Huang L, Kaiser P. Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion. J Biol Chem 2019; 294:10877-10885. [PMID: 31138654 DOI: 10.1074/jbc.ra119.008422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Work in yeast models has benefitted tremendously from the insertion of epitope or fluorescence tags at the native gene locus to study protein function and behavior under physiological conditions. In contrast, work in mammalian cells largely relies on overexpression of tagged proteins because high-quality antibodies are only available for a fraction of the mammalian proteome. CRISPR/Cas9-mediated genome editing has recently emerged as a powerful genome-modifying tool that can also be exploited to insert various tags and fluorophores at gene loci to study the physiological behavior of proteins in most organisms, including mammals. Here we describe a versatile toolset for rapid tagging of endogenous proteins. The strategy utilizes CRISPR/Cas9 and microhomology-mediated end joining repair for efficient tagging. We provide tools to insert 3×HA, His6FLAG, His6-Biotin-TEV-RGSHis6, mCherry, GFP, and the auxin-inducible degron tag for compound-induced protein depletion. This approach and the developed tools should greatly facilitate functional analysis of proteins in their native environment.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Wang
- Physiology and Biophysics, University of California, Irvine, California 92617
| | - Lan Huang
- Physiology and Biophysics, University of California, Irvine, California 92617
| | | |
Collapse
|
28
|
Abstract
The ubiquitin proteasome system (UPS) degrades individual proteins in a highly regulated fashion and is responsible for the degradation of misfolded, damaged, or unneeded cellular proteins. During the past 20 years, investigators have established a critical role for the UPS in essentially every cellular process, including cell cycle progression, transcriptional regulation, genome integrity, apoptosis, immune responses, and neuronal plasticity. At the center of the UPS is the proteasome, a large and complex molecular machine containing a multicatalytic protease complex. When the efficiency of this proteostasis system is perturbed, misfolded and damaged protein aggregates can accumulate to toxic levels and cause neuronal dysfunction, which may underlie many neurodegenerative diseases. In addition, many cancers rely on robust proteasome activity for degrading tumor suppressors and cell cycle checkpoint inhibitors necessary for rapid cell division. Thus, proteasome inhibitors have proven clinically useful to treat some types of cancer, especially multiple myeloma. Numerous cellular processes rely on finely tuned proteasome function, making it a crucial target for future therapeutic intervention in many diseases, including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes, and cancer. In this review, we discuss the structure and function of the proteasome, the mechanisms of action of different proteasome inhibitors, various techniques to evaluate proteasome function in vitro and in vivo, proteasome inhibitors in preclinical and clinical development, and the feasibility for pharmacological activation of the proteasome to potentially treat neurodegenerative disease.
Collapse
Affiliation(s)
- Tiffany A Thibaudeau
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
29
|
Balasingam N, Brandon HE, Ross JA, Wieden HJ, Thakor N. Cellular roles of the human Obg-like ATPase 1 (hOLA1) and its YchF homologs. Biochem Cell Biol 2019; 98:1-11. [PMID: 30742486 DOI: 10.1139/bcb-2018-0353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
P-loop NTPases comprise one of the major superfamilies of nucleotide binding proteins, which mediate a variety of cellular processes, such as mRNA translation, signal transduction, cell motility, and growth regulation. In this review, we discuss the structure and function of two members of the ancient Obg-related family of P-loop GTPases: human Obg-like ATPase 1 (hOLA1), and its bacterial/plant homolog, YchF. After a brief discussion of nucleotide binding proteins in general and the classification of the Obg-related family in particular, we discuss the sequence and structural features of YchF and hOLA1. We then explore the various functional roles of hOLA1 in mammalian cells during stress response and cancer progression, and of YchF in bacterial cells. Finally, we directly compare and contrast the structure and function of hOLA1 with YchF before summarizing the future perspectives of hOLA1 research. This review is timely, given the variety of recent studies aimed at understanding the roles of hOLA1 and YchF in such critical processes as cellular-stress response, oncogenesis, and protein synthesis.
Collapse
Affiliation(s)
- Nirujah Balasingam
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Harland E Brandon
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Joseph A Ross
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada
| | - Nehal Thakor
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Canadian Centre for Behavioral Neuroscience (CCBN), Department of Neuroscience, University of Lethbridge, 4401 University Drive W, Lethbridge, AB T1K 3M4, Canada.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
30
|
Yu C, Wang X, Huszagh AS, Viner R, Novitsky E, Rychnovsky SD, Huang L. Probing H 2O 2-mediated Structural Dynamics of the Human 26S Proteasome Using Quantitative Cross-linking Mass Spectrometry (QXL-MS). Mol Cell Proteomics 2019; 18:954-967. [PMID: 30723094 DOI: 10.1074/mcp.tir119.001323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic protein aggregation-induced impairment of cell function and homeostasis are hallmarks of age-related neurodegenerative pathologies. As proteasomal degradation represents the major clearance pathway for oxidatively damaged proteins, a detailed understanding of the molecular events underlying its stress response is critical for developing strategies to maintain cell viability and function. Although the 26S proteasome has been shown to disassemble during oxidative stress, its conformational dynamics remains unclear. To this end, we have developed a new quantitative cross-linking mass spectrometry (QXL-MS) workflow to explore the structural dynamics of proteasome complexes in response to oxidative stress. This strategy comprises SILAC-based metabolic labeling, HB tag-based affinity purification, a 2-step cross-linking reaction consisting of mild in vivo formaldehyde and on-bead DSSO cross-linking, and multi-stage tandem mass spectrometry (MSn) to identify and quantify cross-links. This integrated workflow has been successfully applied to explore the molecular events underlying oxidative stress-dependent proteasomal regulation by comparative analyses of proteasome complex topologies from treated and untreated cells. Our results show that H2O2 treatment weakens the 19S-20S interaction within the 26S proteasome, along with reorganizations within the 19S and 20S subcomplexes. Altogether, this work sheds light on the mechanistic response of the 26S to acute oxidative stress, suggesting an intermediate proteasomal state(s) before H2O2-mediated dissociation of the 26S. The QXL-MS strategy presented here can be applied to study conformational changes of other protein complexes under different physiological conditions.
Collapse
Affiliation(s)
- Clinton Yu
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92694
| | - Xiaorong Wang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92694
| | - Alexander Scott Huszagh
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92694
| | - Rosa Viner
- §Thermo Fisher, 355 River Oaks Parkway, San Jose, CA 95134
| | - Eric Novitsky
- ¶Department of Chemistry, University of California, Irvine, Irvine, CA 92694
| | - Scott D Rychnovsky
- ¶Department of Chemistry, University of California, Irvine, Irvine, CA 92694
| | - Lan Huang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92694;.
| |
Collapse
|
31
|
Iljina M, Dear AJ, Garcia GA, De S, Tosatto L, Flagmeier P, Whiten DR, Michaels TCT, Frenkel D, Dobson CM, Knowles TPJ, Klenerman D. Quantifying Co-Oligomer Formation by α-Synuclein. ACS NANO 2018; 12:10855-10866. [PMID: 30371053 PMCID: PMC6262461 DOI: 10.1021/acsnano.8b03575] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Small oligomers of the protein α-synuclein (αS) are highly cytotoxic species associated with Parkinson's disease (PD). In addition, αS can form co-aggregates with its mutational variants and with other proteins such as amyloid-β (Aβ) and tau, which are implicated in Alzheimer's disease. The processes of self-oligomerization and co-oligomerization of αS are, however, challenging to study quantitatively. Here, we have utilized single-molecule techniques to measure the equilibrium populations of oligomers formed in vitro by mixtures of wild-type αS with its mutational variants and with Aβ40, Aβ42, and a fragment of tau. Using a statistical mechanical model, we find that co-oligomer formation is generally more favorable than self-oligomer formation at equilibrium. Furthermore, self-oligomers more potently disrupt lipid membranes than do co-oligomers. However, this difference is sometimes outweighed by the greater formation propensity of co-oligomers when multiple proteins coexist. Our results suggest that co-oligomer formation may be important in PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Marija Iljina
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Alexander J. Dear
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gonzalo A. Garcia
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Suman De
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Laura Tosatto
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Patrick Flagmeier
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Daniel R. Whiten
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Thomas C. T. Michaels
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Daan Frenkel
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Christopher M. Dobson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- E-mail:
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- UK
Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- E-mail:
| |
Collapse
|
32
|
Minic Z, Dahms TES, Babu M. Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:96-108. [PMID: 30380468 DOI: 10.1016/j.jchromb.2018.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
Investigating protein-protein interactions and protein phosphorylation can be of great significance when studying biological processes and human diseases at the molecular level. However, sample complexity, presence of low abundance proteins, and dynamic nature of the proteins often impede in achieving sufficient analytical depth in proteomics research. In this regard, chromatographic separation methodologies have played a vital role in the identification and quantification of proteins in complex sample mixtures. The combination of peptide and protein fractionation techniques with advanced high-performance mass spectrometry has allowed the researchers to successfully study the protein-protein interactions and protein phosphorylation. Several new fractionation strategies for large scale analysis of proteins and peptides have been developed to study protein-protein interactions and protein phosphorylation. These emerging chromatography methodologies have enabled the identification of several hundred protein complexes and even thousands of phosphorylation sites in a single study. In this review, we focus on current workflow strategies and chromatographic tools, highlighting their advantages and disadvantages, and examining their associated challenges and future potential.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry and Biomolecular Science, University of Ottawa, John L. Holmes, Mass Spectrometry Facility, 10 Marie-Curie, Marion Hall, Room 02, Ottawa, ON K1N 1A2, Canada.
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
33
|
Jung Y, Seong KM, Baek JH, Kim J. Ssb2 is a novel factor in regulating synthesis and degradation of Gcn4 in Saccharomyces cerevisiae. Mol Microbiol 2018; 110:728-740. [PMID: 30039896 DOI: 10.1111/mmi.14088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022]
Abstract
Yeast cells respond to environmental stress by inducing the master regulator Gcn4 to control genes involved in biosynthesis of amino acids and purine pathways. Gcn4 is a member of the basic leucine Zipper family and binds directly as a homodimer to a conserved regulatory region of target genes. Ssb2 was discovered to rescue the mutant Gcn4 which has a point mutation that decreases DNA-binding affinity. Ssb2 is part of the Hsp70 protein family responsible for protein quality control and it is thought that Ssb2 assists the passage of nascent polypeptide chains from the ribosomes. To characterize the mechanism behind the rescue of the mutant gcn4 phenotype, transcriptional activity and protein levels of Gcn4 were analyzed. We found that Ssb2 improved the expression of Gcn4 target genes by increasing the DNA-binding affinity of gcn4 mutants to target gene promoters under conditions of amino acid starvation. Gcn4 levels increased at both translational and post-translational levels without regulating GCN4 steady-state mRNA levels. We also found that the nuclear export signal of Ssb2 is required for interaction with Gcn4 and rescue of the gcn4 mutant phenotype. These findings suggest that Ssb2 is a critical factor that modulates Gcn4 functions in the nucleus and cytosol.
Collapse
Affiliation(s)
- Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Je-Hyun Baek
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
34
|
Sinz A. Cross‐Linking/Mass Spectrometry for Studying Protein Structures and Protein–Protein Interactions: Where Are We Now and Where Should We Go from Here? Angew Chem Int Ed Engl 2018; 57:6390-6396. [DOI: 10.1002/anie.201709559] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of PharmacyMartin Luther University Halle-Wittenberg Wolfgang-Langenbeck-Str. 4 06120 Halle (Saale) Germany
| |
Collapse
|
35
|
Mohr JP, Perumalla P, Chavez JD, Eng JK, Bruce JE. Mango: A General Tool for Collision Induced Dissociation-Cleavable Cross-Linked Peptide Identification. Anal Chem 2018; 90:6028-6034. [PMID: 29676898 PMCID: PMC5959040 DOI: 10.1021/acs.analchem.7b04991] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemical cross-linking combined with mass spectrometry provides a method to study protein structures and interactions. The introduction of cleavable bonds in a cross-linker provides an avenue to decouple released peptide masses from their precursor species, greatly simplifying the downstream search, allowing for whole proteome investigations to be performed. Typically, these experiments have been challenging to carry out, often utilizing nonstandard methods to fully identify cross-linked peptides. Mango is an open source software tool that extracts precursor masses from chimeric spectra generated using cleavable cross-linkers, greatly simplifying the downstream search. As it is designed to work with chimeric spectra, Mango can be used on traditional high-resolution tandem mass spectrometry (MS/MS) capable mass spectrometers without the need for additional modifications. When paired with a traditional proteomics search engine, Mango can be used to identify several thousand cross-linked peptide pairs searching against the entire Escherichia coli proteome. Mango provides an avenue to perform whole proteome cross-linking experiments without specialized instrumentation or access to nonstandard methods.
Collapse
Affiliation(s)
- Jared P. Mohr
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Poorna Perumalla
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Juan D. Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Jimmy K. Eng
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
36
|
Sinz A. Vernetzung/Massenspektrometrie zur Untersuchung von Proteinstrukturen und Protein‐Protein‐Wechselwirkungen: Wo stehen wir und welchen Weg wollen wir einschlagen? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Sinz
- Abteilung für Pharmazeutische Chemie & BioanalytikInstitut für PharmazieMartin-Luther-Universität Halle-Wittenberg Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale) Deutschland
| |
Collapse
|
37
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
38
|
Kandasamy G, Andréasson C. Hsp70-Hsp110 chaperones deliver ubiquitin dependent and independent substrates to the 26S proteasome for proteolysis. J Cell Sci 2018; 131:jcs.210948. [DOI: 10.1242/jcs.210948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/14/2018] [Indexed: 02/01/2023] Open
Abstract
In protein quality control, proteotoxic misfolded proteins are recognized by molecular chaperones, ubiquitylated by dedicated quality-control ligases and delivered to 26S proteasome for degradation. The chaperone Hsp70 and its nucleotide exchange factor Hsp110 functions in the degradation of misfolded proteins by the ubiquitin-proteasome system via poorly understood mechanisms. Here we report that yeast Hsp110 (Sse1 and Sse2) functions in the degradation of Hsp70-associated ubiquitin conjugates at the post-ubiquitylation step and is required for the proteasomal degradation of ubiquitin-independent substrates. Hsp110 associates with the 19S regulatory particle of the 26S proteasome and interacts with Hsp70 to facilitate the delivery of Hsp70 substrates for proteasomal degradation. Using a highly defined ubiquitin-independent proteasome substrate we show that the mere introduction of a single Hsp70-binding site renders its degradation dependent on Hsp110. The findings define a dedicated and chaperone-dependent pathway for the efficient shuttling of cellular proteins to the proteasome with profound implications for understanding protein quality control and cellular stress management.
Collapse
Affiliation(s)
- Ganapathi Kandasamy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
39
|
Wang X, Huang L. Dissecting Dynamic and Heterogeneous Proteasome Complexes Using In Vivo Cross-Linking-Assisted Affinity Purification and Mass Spectrometry. Methods Mol Biol 2018; 1844:401-410. [PMID: 30242723 DOI: 10.1007/978-1-4939-8706-1_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein-protein interactions are essential for protein complex formation and function. Affinity purification coupled with mass spectrometry (AP-MS) is the method of choice for studying protein-protein interactions at the systems level under different physiological conditions. Although effective in capturing stable protein interactions, transient, weak, and/or dynamic interactors are often lost due to extended procedures during conventional AP-MS experiments. To circumvent this problem, we have recently developed XAP (in vivo cross-linking (X)-assisted affinity purification)-MS strategy to better preserve dynamic protein complexes under native lysis conditions. In addition, we have developed XBAP (in vivo cross-linking (X)-assisted bimolecular tandem affinity purification)-MS method by incorporating XAP with bimolecular affinity purification to define dynamic and heterogeneous protein subcomplexes. Here we describe general experimental protocols of XAP- and XBAP-MS to study dynamic protein complexes and their subcomplexes, respectively. Specifically, we present their applications in capturing and identifying proteasome dynamic interactors and ubiquitin receptor (UbR)-proteasome subcomplexes.
Collapse
Affiliation(s)
- Xiaorong Wang
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
40
|
Gagarinova A, Phanse S, Cygler M, Babu M. Insights from protein-protein interaction studies on bacterial pathogenesis. Expert Rev Proteomics 2017; 14:779-797. [DOI: 10.1080/14789450.2017.1365603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
41
|
Gu ZC, Wu E, Sailer C, Jando J, Styles E, Eisenkolb I, Kuschel M, Bitschar K, Wang X, Huang L, Vissa A, Yip CM, Yedidi RS, Friesen H, Enenkel C. Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast. Mol Biol Cell 2017; 28:2479-2491. [PMID: 28768827 PMCID: PMC5597321 DOI: 10.1091/mbc.e17-03-0162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/16/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Proteasomes are key protease complexes responsible for protein degradation, and their localization changes with the growth conditions. This work in yeast shows that proteasomes exit the nucleus with the transition from proliferation to quiescence. Ubiquitin is a key player in proteasome dynamics and cytoplasmic proteasome granule formation. Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Edwin Wu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Carolin Sailer
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Julia Jando
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Erin Styles
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ina Eisenkolb
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Maike Kuschel
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Katharina Bitschar
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Xiaorong Wang
- Department of Physics and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physics and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Adriano Vissa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Christopher M Yip
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ravikiran S Yedidi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Helena Friesen
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
42
|
Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y. Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle. Mol Cell 2017; 67:322-333.e6. [PMID: 28689658 PMCID: PMC5580496 DOI: 10.1016/j.molcel.2017.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/14/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.
Collapse
Affiliation(s)
- Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiayi Wu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuanchen Dong
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shuobing Chen
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Shuangwu Sun
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yong-Bei Ma
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qi Ouyang
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China; Peking-Tsinghua Joint Center for Life Science, Peking University, Beijing 100871, China
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Youdong Mao
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China; Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Rampler E, Coman C, Hermann G, Sickmann A, Ahrends R, Koellensperger G. LILY-lipidome isotope labeling of yeast: in vivo synthesis of 13C labeled reference lipids for quantification by mass spectrometry. Analyst 2017; 142:1891-1899. [PMID: 28475182 DOI: 10.1039/c7an00107j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantification is an essential task in comprehensive lipidomics studies challenged by the high number of lipids, their chemical diversity and their dynamic range of the lipidome. In this work, we introduce lipidome isotope labeling of yeast (LILY) in order to produce (non-radioactive) isotopically labeled eukaryotic lipid standards in yeast for normalization and quantification in mass spectrometric assays. More specifically, LILY is a fast and efficient in vivo labeling strategy in Pichia pastoris for the production of 13C labeled lipid library further paving the way to comprehensive compound-specific internal standardization in quantitative mass spectrometry based assays. More than 200 lipid species (from PA, PC, PE, PG, PI, PS, LysoGP, CL, DAG, TAG, DMPE, Cer, HexCer, IPC, MIPC) were obtained from yeast extracts with an excellent 13C enrichment >99.5%, as determined by complementary high resolution mass spectrometry based shotgun and high resolution LC-MS/MS analysis. In a first proof of principle study we tested the relative and absolute quantification capabilities of the 13C enriched lipids obtained by LILY using a parallel reaction monitoring based LC-MS approach. In relative quantification it could be shown that compound specific internal standardization was essential for the accuracy extending the linear dynamic range to four orders of magnitude. Excellent analytical figures of merit were observed for absolute quantification for a selected panel of 5 investigated glycerophospholipids (e.g. LOQs around 5 fmol absolute; typical concentrations ranging between 1 to 10 nmol per 108 yeast cell starting material; RSDs <10% (N = 4)).
Collapse
Affiliation(s)
- Evelyn Rampler
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiolgy, Althanstraße 14, 1090 Vienna, Austria
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Gerrit Hermann
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and ISOtopic Solutions, Währingerstr. 38, 1090 Vienna, Austria
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany and College of Physical Sciences, University of Aberdeen, Department of Chemistry, AB24 3UE Aberdeen, UK and Medizinische Fakultät, Medizinische Proteom-Center (MCP), Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiolgy, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
45
|
Wang X, Cimermancic P, Yu C, Schweitzer A, Chopra N, Engel JL, Greenberg C, Huszagh AS, Beck F, Sakata E, Yang Y, Novitsky EJ, Leitner A, Nanni P, Kahraman A, Guo X, Dixon JE, Rychnovsky SD, Aebersold R, Baumeister W, Sali A, Huang L. Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome. Mol Cell Proteomics 2017; 16:840-854. [PMID: 28292943 PMCID: PMC5417825 DOI: 10.1074/mcp.m116.065326] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/13/2017] [Indexed: 12/28/2022] Open
Abstract
The 26S proteasome is the macromolecular machine responsible for ATP/ubiquitin dependent degradation. As aberration in proteasomal degradation has been implicated in many human diseases, structural analysis of the human 26S proteasome complex is essential to advance our understanding of its action and regulation mechanisms. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for elucidating structural topologies of large protein assemblies, with its unique capability of studying protein complexes in cells. To facilitate the identification of cross-linked peptides, we have previously developed a robust amine reactive sulfoxide-containing MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). To better understand the structure and regulation of the human 26S proteasome, we have established new DSSO-based in vivo and in vitro XL-MS workflows by coupling with HB-tag based affinity purification to comprehensively examine protein-protein interactions within the 26S proteasome. In total, we have identified 447 unique lysine-to-lysine linkages delineating 67 interprotein and 26 intraprotein interactions, representing the largest cross-link dataset for proteasome complexes. In combination with EM maps and computational modeling, the architecture of the 26S proteasome was determined to infer its structural dynamics. In particular, three proteasome subunits Rpn1, Rpn6, and Rpt6 displayed multiple conformations that have not been previously reported. Additionally, cross-links between proteasome subunits and 15 proteasome interacting proteins including 9 known and 6 novel ones have been determined to demonstrate their physical interactions at the amino acid level. Our results have provided new insights on the dynamics of the 26S human proteasome and the methodologies presented here can be applied to study other protein complexes.
Collapse
Affiliation(s)
- Xiaorong Wang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92697
| | - Peter Cimermancic
- §Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94143
| | - Clinton Yu
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92697
| | - Andreas Schweitzer
- ¶Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Nikita Chopra
- §Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94143
| | - James L Engel
- ‖Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093
| | - Charles Greenberg
- §Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94143
| | - Alexander S Huszagh
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92697
| | - Florian Beck
- ¶Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Eri Sakata
- ¶Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Yingying Yang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92697
| | - Eric J Novitsky
- **Department of Chemistry, University of California, Irvine, Irvine, California 92697
| | - Alexander Leitner
- ‡‡Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Paolo Nanni
- §§Functional Genomics Center Zurich (FGCZ), University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Abdullah Kahraman
- ¶¶Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Xing Guo
- ‖Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093
| | - Jack E Dixon
- ‖Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093
| | - Scott D Rychnovsky
- **Department of Chemistry, University of California, Irvine, Irvine, California 92697
| | - Ruedi Aebersold
- ‡‡Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Wolfgang Baumeister
- ¶Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Andrej Sali
- §Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California 94143
| | - Lan Huang
- From the ‡Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92697;
| |
Collapse
|
46
|
In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome. Mol Cell 2017; 66:488-502.e7. [DOI: 10.1016/j.molcel.2017.04.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
|
47
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
48
|
Yu C, Huszagh A, Viner R, Novitsky EJ, Rychnovsky SD, Huang L. Developing a Multiplexed Quantitative Cross-Linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes. Anal Chem 2016; 88:10301-10308. [PMID: 27626298 PMCID: PMC5361889 DOI: 10.1021/acs.analchem.6b03148] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.
Collapse
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Alexander Huszagh
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Rosa Viner
- Thermo Fisher, 355 River Oaks Parkway, San Jose, CA 95134
| | - Eric J. Novitsky
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697
| | | | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
49
|
Iljina M, Tosatto L, Choi ML, Sang JC, Ye Y, Hughes CD, Bryant CE, Gandhi S, Klenerman D. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein. Sci Rep 2016; 6:33928. [PMID: 27671749 PMCID: PMC5037366 DOI: 10.1038/srep33928] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/31/2016] [Indexed: 12/12/2022] Open
Abstract
The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura Tosatto
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Minee L Choi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jason C Sang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Department of Cell Biology, Harvard Medical School, Boston, 02115, USA
| | - Craig D Hughes
- Department of Veterinary Medicine, University Of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine, University Of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Sonia Gandhi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
50
|
Tsimokha AS, Zaykova JJ, Bottrill A, Barlev NA. Extracellular Proteasomes Are Deficient in 19S Subunits as Revealed by iTRAQ Quantitative Proteomics. J Cell Physiol 2016; 232:842-851. [DOI: 10.1002/jcp.25492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Anna S. Tsimokha
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Julia J. Zaykova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Andrew Bottrill
- Department of Biochemistry; University of Leicester; Leicester United Kingdom
| | - Nikolai A. Barlev
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| |
Collapse
|