1
|
Oshika, Bari VK. Molecular mechanism of host-yeast interactions and prevention by nanoformulation approaches. Microb Pathog 2025; 205:107663. [PMID: 40339625 DOI: 10.1016/j.micpath.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Fungal infections are a major source of morbidity and mortality in people with compromised immune systems, such as those with human immunodeficiency virus, cancer, organ transplant recipients, and patients undergoing chemotherapy in healthcare settings. According to a recent World Health Organization (WHO) fungal priority pathogens list, Cryptococcus spp., Candida spp., Aspergillus spp., and Candida auris cause severe invasive infections in human. These opportunistic pathogens cause a significant number of mycoses, which affect over a billion people annually. Around two million infections can be fatal, especially for those with compromised immune systems. To diagnose and treat mycoses, we need to understand the complex interactions between the fungus and the host during pathogenesis, the virulence-causing traits of the fungus, and how the host fights infection through the immune system. Although several antifungal drugs are available against fungal infections, their effectiveness is highly variable, with adverse effects. In addition, the increasing resistance to traditional antifungal treatments poses serious risks to the healthcare industry. Therefore, new therapeutic strategies are required to combat these potentially fatal fungal infections. Nanostructure-based formulations can improve the therapeutic efficacy of conventional medications by broadening their activities, decreasing toxicity, enhancing bioactivity, and improving biodistribution. The review highlights host and fungus interaction and how nanoformulations can be targeted against fungal infections.
Collapse
Affiliation(s)
- Oshika
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Gow NAR. Fungal cell wall biogenesis: structural complexity, regulation and inhibition. Fungal Genet Biol 2025; 179:103991. [PMID: 40334812 DOI: 10.1016/j.fgb.2025.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
The cell wall is the defining organelle of filamentous and yeast-like fungi. It is responsible for morphology, biotic and abiotic interactions and its components confer its unique and variable signature, making it a natural target for antifungal drugs, but a moving target for immune recognition. The wall is however more than the sum of its many parts. The polysaccharides and proteins of the cell wall must be made at the right time and the right place, but also linked together and remodelled throughout the cell cycle and in response to environmental challenges, nutrient availability, damage after predation and to be complaint to the need to establish mutualistic and parasitic associations. This review summarises recent advances in our understanding of the complex and vital process of fungal cell wall biogenesis using the human pathogens Candida albicans and Aspergillus fumigatus as the principal model fungi.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
van de Veerdonk FL, Carvalho A, Wauters J, Chamilos G, Verweij PE. Aspergillus fumigatus biology, immunopathogenicity and drug resistance. Nat Rev Microbiol 2025:10.1038/s41579-025-01180-z. [PMID: 40316713 DOI: 10.1038/s41579-025-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/04/2025]
Abstract
Aspergillus fumigatus is a saprophytic fungus prevalent in the environment and capable of causing severe invasive infection in humans. This organism can use strategies such as molecule masking, immune response manipulation and gene expression alteration to evade host defences. Understanding these mechanisms is essential for developing effective diagnostics and therapies to improve patient outcomes in Aspergillus-related diseases. In this Review, we explore the biology and pathogenesis of A. fumigatus in the context of host biology and disease, highlighting virus-associated pulmonary aspergillosis, a newly identified condition that arises in patients with severe pulmonary viral infections. In the post-pandemic landscape, in which immunotherapy is gaining attention for managing severe infections, we examine the host immune responses that are critical for controlling invasive aspergillosis and how A. fumigatus circumvents these defences. Additionally, we address the emerging issue of azole resistance in A. fumigatus, emphasizing the urgent need for greater understanding in an era marked by increasing antimicrobial resistance. This Review provides timely insights necessary for developing new immunotherapeutic strategies against invasive aspergillosis.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine, Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Joost Wauters
- Medical Intensive Care, University Hospitals Leuven and Department for Clinical Infectious and Inflammatory Disorders, University Leuven, Leuven, Belgium
| | - George Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Paul E Verweij
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Roth C, Moroz OV, Miranda SAD, Jahn L, Blagova EV, Lebedev AA, Segura DR, Stringer MA, Friis EP, Franco Cairo JPL, Davies GJ, Wilson KS. Structures of α-galactosaminidases from the CAZy GH114 family and homologs defining a new GH191 family of glycosidases. Acta Crystallogr D Struct Biol 2025; 81:234-251. [PMID: 40232846 PMCID: PMC12054363 DOI: 10.1107/s2059798325002864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Endo-galactosaminidases are an underexplored family of enzymes involved in the degradation of galactosaminogalactan (GAG) and other galactosamine-containing cationic exopolysaccharides produced by fungi and bacteria. These exopolysaccharides are part of the cell wall and extracellular matrix of microbial communities. Currently, these galactosaminidases are found in three distinct CAZy families: GH114, GH135 and GH166. Despite the widespread occurrence of these enzymes in nearly all bacterial and fungal clades, only limited biochemical and structural data are available for these three groups. To expand our knowledge of endo-galactosaminidases, we selected several sequences predicted to encode endo-galactosaminidases and produced them recombinantly for structural and functional studies. Only very few predicted proteins could be produced in soluble form, and activity against bacterial Pel (pellicle) polysaccharide could only be confirmed for one enzyme. Here, we report the structures of two bacterial and one fungal enzyme. Whereas the fungal enzyme belongs to family GH114, the two bacterial enzymes do not lie in the current GH families but instead define a new family, GH191. During structure solution we realized that crystals of all three enzymes had various defects including twinning and partial disorder, which in the case of a more severe pathology in one of the structures required the design of a specialized refinement/model-building protocol. Comparison of the structures revealed several features that might be responsible for the described activity pattern and substrate specificity compared with other GAG-degrading enzymes.
Collapse
Affiliation(s)
- Christian Roth
- Department for Biomolecular Systems, Carbohydrates Structure and FunctionMax Planck Institute of Colloids and InterfacesArnimallee 2214195BerlinGermany
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Suzan A. D. Miranda
- Department for Biomolecular Systems, Carbohydrates Structure and FunctionMax Planck Institute of Colloids and InterfacesArnimallee 2214195BerlinGermany
| | - Lucas Jahn
- Department for Biomolecular Systems, Carbohydrates Structure and FunctionMax Planck Institute of Colloids and InterfacesArnimallee 2214195BerlinGermany
| | - Elena V. Blagova
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Andrey A. Lebedev
- CCP4STFC Rutherford Appleton LaboratoryHarwell OxfordDidcotOX11 0QXUnited Kingdom
| | | | | | - Esben P. Friis
- Novonesis A/S, Biologiens Vej 2, 2800Kgs Lyngby, Denmark
| | - João P. L. Franco Cairo
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| |
Collapse
|
5
|
Kordana N, Johnson A, Quinn K, Obar JJ, Cramer RA. Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease. Microbiol Mol Biol Rev 2025; 89:e0001123. [PMID: 39927770 PMCID: PMC11948498 DOI: 10.1128/mmbr.00011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.
Collapse
Affiliation(s)
- Nicole Kordana
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Angus Johnson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine Quinn
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Shen W, Tao J, Wang Z, Wang S, Xue W. Zn(NTf 2) 2/NIS as a New Promoter System for Thioglycosides to Effectively Construct α-Galactosamines and α-Galactosazides. J Org Chem 2025; 90:3172-3183. [PMID: 39993229 DOI: 10.1021/acs.joc.4c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Zn(NTf2)2 in combination with N-iodosuccinimide provides a powerful promoter system, capable of activating 4, 6-O-di-tert-butylsilylene-thiogalactoamine and 4, 6-O-benzylidene-2-thiogalactoazide donors. The activation protocol is successfully applied to a wide range of alcohol acceptors, rendering excellent yields of α-galactosamines and α-galactosazides. This method features simple operation and the use of air-stable and commercially available zinc reagents.
Collapse
Affiliation(s)
- Wenyan Shen
- Department of Parmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Tao
- Department of Parmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhaoyan Wang
- Department of Parmacy, Lanzhou University, Lanzhou 730000, China
| | - Siyuan Wang
- Department of Parmacy, Lanzhou University, Lanzhou 730000, China
| | - Weihua Xue
- Department of Parmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Kadooka C, Yakabe S, Hira D, Futagami T, Goto M, Oka T. Functional redundancy and divergence of UDP-glucose 4-epimerases in galactose metabolism and cell wall biosynthesis in Aspergillus nidulans. Fungal Genet Biol 2025; 177:103972. [PMID: 39988081 DOI: 10.1016/j.fgb.2025.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Galactose-containing polysaccharides in the cell walls of filamentous fungi are vital for hyphal formation, mycelial aggregation, and adhesion. Uridine diphosphate (UDP)-glucose 4-epimerase, an enzyme capable of reversibly converting UDP-glucose to UDP-galactose, plays a key role in galactose metabolism. This study investigates the functional specialization and overlapping roles of UDP-glucose 4-epimerases, UgeA and UgeB, in Aspergillus nidulans. Enzyme activity assays revealed that UgeA catalyzes the interconversion of UDP-glucose and UDP-galactose, while UgeB facilitates both UDP-glucose/UDP-galactose and UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine interconversions. Both UgeA and UgeB successfully restored growth in a yeast gal10 disruptant, indicating their involvement in galactose metabolism in vivo. Additionally, the ugeB disruptant of A. nidulans exhibited growth retardation during galactose metabolism, a defect that was alleviated by complementation with ugeB or multiple-copy expression of ugeA. These findings elucidate the complex interplay between sugar metabolism and cell wall synthesis in filamentous fungi and offer insights for the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Shun Yakabe
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
8
|
Bednarek JM, Brown JCS. Elements of dissemination in cryptococcosis. mBio 2024; 15:e0215523. [PMID: 39470312 PMCID: PMC11633103 DOI: 10.1128/mbio.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
As healthcare improves and our ability to support patients with compromised immune systems increases, such patients become more vulnerable to microbes in the environment. These include fungal pathogens such as Cryptococcus neoformans, the primary cause of fungal meningitis and a top priority pathogen on the World Health Organization fungal pathogen list. Like many other environmental pathogens, C. neoformans must adapt to and thrive in diverse environments in order to cause disease: (i) the environmental niche, (ii) the lungs following inhalation of infectious particles, (iii) the bloodstream and/or lymphatic system during dissemination, and (iv) the central nervous system (CNS), where it causes a deadly cryptococcal meningoencephalitis. Because CNS infection is the driver of mortality and the presenting illness, understanding the dissemination process from both host and fungal perspectives is important for treating these infections. In this review, we discuss the different stages of dissemination, how fungal cells interact with host cells during disease, and the ability to adapt to different environments within hosts.
Collapse
Affiliation(s)
- Joseph M. Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Jessica C. S. Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Castano-Duque L, Lebar MD, Mack BM, Lohmar JM, Carter-Wientjes C. Investigating the Impact of Flavonoids on Aspergillus flavus: Insights into Cell Wall Damage and Biofilms. J Fungi (Basel) 2024; 10:665. [PMID: 39330424 PMCID: PMC11433479 DOI: 10.3390/jof10090665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Aspergillus flavus, a fungus known for producing aflatoxins, poses significant threats to agriculture and global health. Flavonoids, plant-derived compounds, inhibit A. flavus proliferation and mitigate aflatoxin production, although the precise molecular and physical mechanisms underlying these effects remain poorly understood. In this study, we investigated three flavonoids-apigenin, luteolin, and quercetin-applied to A. flavus NRRL 3357. We determined the following: (1) glycosylated luteolin led to a 10% reduction in maximum fungal growth capacity; (2) quercetin affected cell wall integrity by triggering extreme mycelial collapse, while apigenin and luteolin caused peeling of the outer layer of cell wall; (3) luteolin exhibited the highest antioxidant capacity in the environment compared to apigenin and quercetin; (4) osmotic stress assays did not reveal morphological defects; (5) flavonoids promoted cell adherence, a precursor for biofilm formation; and (6) RNA sequencing analysis revealed that flavonoids impact expression of putative cell wall and plasma membrane biosynthesis genes. Our findings suggest that the differential effects of quercetin, luteolin, and apigenin on membrane integrity and biofilm formation may be driven by their interactions with fungal cell walls. These insights may inform the development of novel antifungal additives or plant breeding strategies focusing on plant-derived compounds in crop protection.
Collapse
Affiliation(s)
- Lina Castano-Duque
- United States Department of Agriculture—Agriculture Research Services, New Orleans, LA 70124, USA; (M.D.L.); (B.M.M.); (J.M.L.); (C.C.-W.)
| | | | | | | | | |
Collapse
|
10
|
Umadevi K, Sundeep D, Varadharaj EK, Sastry CC, Shankaralingappa A, Chary RN, Vighnesh AR. Precision Detection of Fungal Co-Infections for Enhanced COVID-19 Treatment Strategies Using FESEM Imaging. Indian J Microbiol 2024; 64:1084-1098. [PMID: 39282206 PMCID: PMC11399527 DOI: 10.1007/s12088-024-01246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
The treatment of fungal infections presents significant challenges due to the lack of standardized diagnostic procedures, a restricted range of antifungal treatments, and the risk of harmful interactions between antifungal medications and the immunosuppressive drugs used in anti-inflammatory treatment for critically ill patients with COVID-19. Mucormycosis and aspergillosis are the primary invasive fungal infections in patients with severe COVID-19, occurring singly or in combination. Histopathological examination is a vital diagnostic technique that details the presence and invasion of fungi within tissues and blood vessels, and the body's response to the infection. However, the pathology report omits information on the most common fungi associated with the observed morphology, as well as other potential fungi and parasites that ought to be included in the differential diagnosis. This research marks significance in diagnosing fungal infections, such as mucormycosis and aspergillosis associated to COVID-19 by field emission scanning electron microscopy (FESEM) imaging to examine unstained histopathology slides, allowing for a detailed morphological analysis of the fungus. FESEM provides an unprecedented resolution and detail, surpassing traditional Hematoxylin & Eosin (H&E) and Grocott's Methenamine Silver (GMS) staining methods in identifying and differentiating dual fungal infections and diverse fungal species. The findings underscore the critical need for individualized treatment plans for patients severely affected by COVID-19 and compounded by secondary fungal infections. The high-magnification micrographs reveal specific fungal morphology and reproductive patterns. Current treatment protocols largely depend on broad-spectrum antifungal therapies. However this FESEM guided diagnostic approach can help in targeted patient specific anti fungal therapies. Such precision could lead to more effective early interventions, addressing the complex management required for severe COVID-19 cases with coexisting fungal infections. This approach significantly advances disease management and patient recovery, advocating for personalized, precision medicine in tackling this multifaceted clinical challenge. Graphical Abstract
Collapse
Affiliation(s)
- Kovuri Umadevi
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Dola Sundeep
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Eswaramoorthy K Varadharaj
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Chebbiyam Chandrasekhara Sastry
- Biomedical Research Laboratory, Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | | | - Rajarikam Nagarjuna Chary
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Alluru Raghavendra Vighnesh
- Department of Mechanical Engineering, Indian Institute of Technology (IIT-BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
11
|
Liu X, Sui J, Qi P, Luan J, Wang Y, Li C, Wang Q, Peng X, Zhao G, Lin J. Anti-Inflammatory Efficacy of Nanobody Specific to β-Glucan on a Fungal Cell Wall in a Murine Model of Fungal Keratitis. ACS Infect Dis 2024; 10:2991-2998. [PMID: 39083647 DOI: 10.1021/acsinfecdis.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Purpose: to explore the anti-inflammatory effects of a nanobody (Nb) specific to β-glucan on fungal keratitis (FK). Methods: in order to verify the therapeutic and anti-inflammatory efficacy of Nb in FK, the severity of inflammation was assessed with inflammatory scores, hematoxylin-eosin (HE) staining, and myeloperoxidase (MPO) assays. In corneas of mice of FK model and human corneal epithelial cells stimulated by fungal hyphae, real-time reverse transcriptase polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay were used to detect the expression levels of inflammatory cytokines and pattern recognition receptors (PRRs). In vivo, macrophages and neutrophils infiltration in the cornea stroma was detected by immunofluorescence (IFS) staining. Results: In murine models infected with Aspergillus fumigatus (A. fumigatus), Nb treatment could reduce the inflammatory scores. HE staining and MPO results showed Nb significantly alleviated corneal edema and reduced inflammatory cell infiltration 3 days post-infection. In addition, the expression levels of LOX-1 and Dectin-1 were significantly decreased in the Nb group in vivo. The expression of chemokines CCL2 and CXCL2 also decreased in the Nb group. Compared with the PBS group, the number of macrophages and neutrophils in the Nb group was significantly decreased, which was shown in IFS results. Moreover, Nb attenuated the expression of Dectin-1, LOX-1, and inflammatory mediators, including IL-6 and IL-8 in vitro. Conclusion: our study showed that Nb could alleviate FK by downregulating the expression of PRRs and inflammatory factors as well as reducing the infiltration of macrophages and neutrophils.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Pingli Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuwei Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
12
|
Chatrath A, Dey P, Greeley K, Maciel G, Huang L, Heiss C, Black I, Azadi P, Free SJ. Characterization of the Neurospora crassa Galactosaminogalactan Biosynthetic Pathway. Microorganisms 2024; 12:1509. [PMID: 39203353 PMCID: PMC11356417 DOI: 10.3390/microorganisms12081509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates.
Collapse
Affiliation(s)
- Apurva Chatrath
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Protyusha Dey
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Kevin Greeley
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Gabriela Maciel
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| | - Lei Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (L.H.)
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA; (A.C.); (K.G.)
| |
Collapse
|
13
|
Yugueros SI, Peláez J, Stajich JE, Fuertes-Rabanal M, Sánchez-Vallet A, Largo-Gosens A, Mélida H. Study of fungal cell wall evolution through its monosaccharide composition: An insight into fungal species interacting with plants. Cell Surf 2024; 11:100127. [PMID: 38873189 PMCID: PMC11170279 DOI: 10.1016/j.tcsw.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Every fungal cell is encapsulated in a cell wall, essential for cell viability, morphogenesis, and pathogenesis. Most knowledge of the cell wall composition in fungi has focused on ascomycetes, especially human pathogens, but considerably less is known about early divergent fungal groups, such as species in the Zoopagomycota and Mucoromycota phyla. To shed light on evolutionary changes in the fungal cell wall, we studied the monosaccharide composition of the cell wall of 18 species including early diverging fungi and species in the Basidiomycota and Ascomycota phyla with a focus on those with pathogenic lifestyles and interactions with plants. Our data revealed that chitin is the most characteristic component of the fungal cell wall, and was found to be in a higher proportion in the early divergent groups. The Mucoromycota species possess few glucans, but instead have other monosaccharides such as fucose and glucuronic acid that are almost exclusively found in their cell walls. Additionally, we observed that hexoses (glucose, mannose and galactose) accumulate in much higher proportions in species belonging to Dikarya. Our data demonstrate a clear relationship between phylogenetic position and fungal cell wall carbohydrate composition and lay the foundation for a better understanding of their evolution and their role in plant interactions.
Collapse
Affiliation(s)
- Sara I. Yugueros
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Jorge Peláez
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
14
|
Heilig L, Natasha F, Trinks N, Aimanianda V, Wong SSW, Fontaine T, Terpitz U, Strobel L, Le Mauff F, Sheppard DC, Schäuble S, Kurzai O, Hünniger K, Weiss E, Vargas M, Howell PL, Panagiotou G, Wurster S, Einsele H, Loeffler J. CD56-mediated activation of human natural killer cells is triggered by Aspergillus fumigatus galactosaminogalactan. PLoS Pathog 2024; 20:e1012315. [PMID: 38889192 PMCID: PMC11216564 DOI: 10.1371/journal.ppat.1012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/01/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Invasive aspergillosis causes significant morbidity and mortality in immunocompromised patients. Natural killer (NK) cells are pivotal for antifungal defense. Thus far, CD56 is the only known pathogen recognition receptor on NK cells triggering potent antifungal activity against Aspergillus fumigatus. However, the underlying cellular mechanisms and the fungal ligand of CD56 have remained unknown. Using purified cell wall components, biochemical treatments, and ger mutants with altered cell wall composition, we herein found that CD56 interacts with the A. fumigatus cell wall carbohydrate galactosaminogalactan (GAG). This interaction induced NK-cell activation, degranulation, and secretion of immune-enhancing chemokines and cytotoxic effectors. Supernatants from GAG-stimulated NK cells elicited antifungal activity and enhanced antifungal effector responses of polymorphonuclear cells. In conclusion, we identified A. fumigatus GAG as a ligand of CD56 on human primary NK cells, stimulating potent antifungal effector responses and activating other immune cells.
Collapse
Affiliation(s)
- Linda Heilig
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Fariha Natasha
- Department of Biotechnology & Biophysics Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Nora Trinks
- Department of Biotechnology & Biophysics Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Vishukumar Aimanianda
- Department of Mycology, Immunobiology of Aspergillus, Institut Pasteur, Paris, France
| | - Sarah Sze Wah Wong
- Department of Mycology, Immunobiology of Aspergillus, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Fungal Biology and Pathogenicity laboratory, Paris, France
| | - Ulrich Terpitz
- Department of Biotechnology & Biophysics Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Lea Strobel
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - François Le Mauff
- Infectious Disease in Global Health Program, McGill University Health Centre, Montreal, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Canada
| | - Donald C. Sheppard
- Infectious Disease in Global Health Program, McGill University Health Centre, Montreal, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI), Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene und Microbiology, University of Wuerzburg, Wuerzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans-Knöll-Institute Jena, Germany
| | - Kerstin Hünniger
- Institute for Hygiene und Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Esther Weiss
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Mario Vargas
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - P. Lynne Howell
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute (HKI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
15
|
Ruijgrok G, Wu DY, Overkleeft HS, Codée JDC. Synthesis and application of bacterial exopolysaccharides. Curr Opin Chem Biol 2024; 78:102418. [PMID: 38134611 DOI: 10.1016/j.cbpa.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Exopolysaccharides are produced and excreted by bacteria in the generation of biofilms to provide a protective environment. These polysaccharides are generally generated as heterogeneous polymers of varying length, featuring diverse substitution patterns. To obtain well-defined fragments of these polysaccharides, organic synthesis often is the method of choice, as it allows for full control over chain length and the installation of a pre-determined substitution pattern. This review presents several recent syntheses of exopolysaccharide fragments of Pseudomonas aeruginosa and Staphylococcus aureus and illustrates how these have been used to study biosynthesis enzymes and generate synthetic glycoconjugate vaccines.
Collapse
Affiliation(s)
- Gijs Ruijgrok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Dung-Yeh Wu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| |
Collapse
|
16
|
Liu S, Lu X, Dai M, Zhang S. Transcription factor CreA is involved in the inverse regulation of biofilm formation and asexual development through distinct pathways in Aspergillus fumigatus. Mol Microbiol 2023; 120:830-844. [PMID: 37800624 DOI: 10.1111/mmi.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
The exopolysaccharide galactosaminogalactan (GAG) contributes to biofilm formation and virulence in the pathogenic fungus Aspergillus fumigatus. Increasing evidence indicates that GAG production is inversely linked with asexual development. However, the mechanisms underlying this regulatory relationship are unclear. In this study, we found that the dysfunction of CreA, a conserved transcription factor involved in carbon catabolite repression in many fungal species, causes abnormal asexual development (conidiation) under liquid-submerged culture conditions specifically in the presence of glucose. The loss of creA decreased GAG production independent of carbon sources. Furthermore, CreA contributed to asexual development and GAG production via distinct pathways. CreA promoted A. fumigatus GAG production by positively regulating GAG biosynthetic genes (uge3 and agd3). CreA suppressed asexual development in glucose liquid-submerged culture conditions via central conidiation genes (brlA, abaA, and wetA) and their upstream activators (flbC and flbD). Restoration of brlA expression to the wild-type level by flbC or flbD deletion abolished the abnormal submerged conidiation in the creA null mutant but did not restore GAG production. The C-terminal region of CreA was crucial for the suppression of asexual development, and the repressive domain contributed to GAG production. Overall, CreA is involved in GAG production and asexual development in an inverse manner.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
17
|
Stepanov AA, Vasilchenko AV, Vasilchenko AS. Subinhibitory effects of 2,4-diacetylphloroglucinol on filamentous fungus Aspergillus fumigatus. J Appl Microbiol 2023; 134:lxad294. [PMID: 38086610 DOI: 10.1093/jambio/lxad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
AIMS Aspergillus fungi are common members of the soil microbiota. Some physiological and structural characteristics of Aspergillus species make them important participants in soil ecological processes. In this study, we aimed to evaluate the impact of 2,4-diacetylphloroglucinol (2,4-DAPG), a common metabolite of soil and rhizosphere bacteria, on the physiology of Aspergillus fumigatus. METHODS AND RESULTS Integrated analysis using microscopy, spectrophotometry, and liquid chromatography showed the following effects of 2,4-DAPG on Aspergillus physiology. It was found that A. fumigatus in the biofilm state is resistant to high concentrations of 2,4-DAPG. However, experimental exposure led to a depletion of the extracellular polymeric substance, changes in the structure of the cell wall of the mycelium (increase in the content of α- and β-glucans, chitin, and ergosterol), and conidia (decrease in the content of DHN-melanin). 2,4-DAPG significantly reduced the production of mycotoxins (gliotoxin and fumagillin) but increased the secretion of proteases and galactosaminogalactan. CONCLUSIONS Overall, the data obtained suggest that 2,4-DAPG-producing Pseudomonas bacteria are unlikely to directly eliminate A. fumigatus fungi, as they exhibit a high level of resistance when in the biofilm state. However, at low concentrations, 2,4-DAPG significantly alters the physiology of aspergilli, potentially reducing the adaptive and competitive capabilities of these fungi.
Collapse
Affiliation(s)
- Artyom A Stepanov
- Laboratory of antimicrobial resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
| | - Anastasia V Vasilchenko
- Laboratory of antimicrobial resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
- Laboratory of Biochemistry and Ecology of Microorganisms, All-Russian Institute of Plant Protection, Pushkin 196608, Russia
| | - Alexey S Vasilchenko
- Laboratory of antimicrobial resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia
| |
Collapse
|
18
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Fernando LD, Pérez-Llano Y, Dickwella Widanage MC, Jacob A, Martínez-Ávila L, Lipton AS, Gunde-Cimerman N, Latgé JP, Batista-García RA, Wang T. Structural adaptation of fungal cell wall in hypersaline environment. Nat Commun 2023; 14:7082. [PMID: 37925437 PMCID: PMC10625518 DOI: 10.1038/s41467-023-42693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Halophilic fungi thrive in hypersaline habitats and face a range of extreme conditions. These fungal species have gained considerable attention due to their potential applications in harsh industrial processes, such as bioremediation and fermentation under unfavorable conditions of hypersalinity, low water activity, and extreme pH. However, the role of the cell wall in surviving these environmental conditions remains unclear. Here we employ solid-state NMR spectroscopy to compare the cell wall architecture of Aspergillus sydowii across salinity gradients. Analyses of intact cells reveal that A. sydowii cell walls contain a rigid core comprising chitin, β-glucan, and chitosan, shielded by a surface shell composed of galactomannan and galactosaminogalactan. When exposed to hypersaline conditions, A. sydowii enhances chitin biosynthesis and incorporates α-glucan to create thick, stiff, and hydrophobic cell walls. Such structural rearrangements enable the fungus to adapt to both hypersaline and salt-deprived conditions, providing a robust mechanism for withstanding external stress. These molecular principles can aid in the optimization of halophilic strains for biotechnology applications.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anand Jacob
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
- Fungal Respiratory Infections Research Unit, University of Angers, Angers, France
| | | | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
20
|
Fernandes C, Casadevall A, Gonçalves T. Mechanisms of Alternaria pathogenesis in animals and plants. FEMS Microbiol Rev 2023; 47:fuad061. [PMID: 37884396 DOI: 10.1093/femsre/fuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/18/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.
Collapse
Affiliation(s)
- Chantal Fernandes
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Wolfe Street, Room E5132, Baltimore, Maryland 21205, USA
| | - Teresa Gonçalves
- CNC-UC - Center for Neuroscience and Cell Biology of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| |
Collapse
|
21
|
Liu H, Luo Z, Rao Y. Manipulation of fungal cell wall integrity to improve production of fungal natural products. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:49-78. [PMID: 38783724 DOI: 10.1016/bs.aambs.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungi, as an important industrial microorganism, play an essential role in the production of natural products (NPs) due to their advantages of utilizing cheap raw materials as substrates and strong protein secretion ability. Although many metabolic engineering strategies have been adopted to enhance the biosynthetic pathway of NPs in fungi, the fungal cell wall as a natural barrier tissue is the final and key step that affects the efficiency of NPs synthesis. To date, many important progresses have been achieved in improving the synthesis of NPs by regulating the cell wall structure of fungi. In this review, we systematically summarize and discuss various strategies for modifying the cell wall structure of fungi to improve the synthesis of NPs. At first, the cell wall structure of different types of fungi is systematically described. Then, strategies to disrupt cell wall integrity (CWI) by regulating the synthesis of cell wall polysaccharides and binding proteins are summarized, which have been applied to improve the synthesis of NPs. In addition, we also summarize the studies on the regulation of CWI-related signaling pathway and the addition of exogenous components for regulating CWI to improve the synthesis of NPs. Finally, we propose the current challenges and essential strategies to usher in an era of more extensive manipulation of fungal CWI to improve the production of fungal NPs.
Collapse
Affiliation(s)
- Huiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P.R. China.
| |
Collapse
|
22
|
Baig DI, Zafar Z, Khan HA, Younus A, Bhatti MF. Genome-wide identification and comparative in-silico characterization of β-galactosidase (GH-35) in ascomycetes and its role in germ tube development of Aspergillus fumigatus via RNA-seq analysis. PLoS One 2023; 18:e0286428. [PMID: 37347747 PMCID: PMC10287015 DOI: 10.1371/journal.pone.0286428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
β-galactosidase (Lactase), an enzyme belonging to the glycoside hydrolase family causing the hydrolysis and trans-glycosylation of β-D-galactosides, has a vital role in dairy industries. The current investigation emphasizes on in-silico identification and comparative analysis of different fungal lactases present in Aspergillus fumigatus, Aspergillus oryzae, Botrytis cinerea, and Fusarium fujikuroi. Prediction of motifs and domains, chromosomal positioning, gene structure, gene ontology, sub-cellular localization and protein modeling were performed using different bioinformatics tools to have an insight into the structural and functional characteristics of β-galactosidases. Evolutionary and homology relationships were established by phylogenetic and synteny analyses. A total of 14 β-gal genes (GH-35) were identified in these species. Identified lactases, having 5 domains, were predicted to be stable, acidic, non-polar and extracellularly localized with roles in polysaccharide catabolic process. Results showed variable exonic/intronic ratios of the gene structures which were randomly positioned on chromosomes. Moreover, synteny blocks and close evolutionary relationships were observed between Aspergillus fumigatus and Aspergillus oryzae. Structural insights allowed the prediction of best protein models based on the higher ERRAT and Q-MEAN values. And RNA-sequencing analysis, performed on A. fumigatus, elucidated the role of β-gal in germ tube development. This study would pave the way for efficient fungal lactase production as it identified β-gal genes and predicted their various features and also it would provide a road-way to further the understanding of A. fumigatus pathogenicity via the expression insights of β-gal in germ tube development.
Collapse
Affiliation(s)
- Danish Ilyas Baig
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Zafar
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Haris Ahmed Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amna Younus
- National Institutes of Health (NIH), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
23
|
Schiefermeier-Mach N, Heinrich L, Lechner L, Perkhofer S. Regulation of Surfactant Protein Gene Expression by Aspergillus fumigatus in NCl-H441 Cells. Microorganisms 2023; 11:microorganisms11041011. [PMID: 37110432 PMCID: PMC10143823 DOI: 10.3390/microorganisms11041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes serious lung diseases in immunocompromised patients. The lung surfactant produced by alveolar type II and Clara cells in the lungs is an important line of defense against A. fumigatus. The surfactant consists of phospholipids and surfactant proteins (SP-A, SP-B, SP-C and SP-D). The binding to SP-A and SP-D proteins leads to the agglutination and neutralization of lung pathogens as well as the modulation of immune responses. SP-B and SP-C proteins are essential for surfactant metabolism and can modulate the local immune response; however, the molecular mechanisms remain unclear. We investigated changes in the SP gene expression in human lung NCI-H441 cells infected with conidia or treated with culture filtrates obtained from A. fumigatus. To further identify fungal cell wall components that may affect the expression of SP genes, we examined the effect of different A. fumigatus mutant strains, including dihydroxynaphthalene (DHN)-melanin-deficient ΔpksP, galactomannan (GM)-deficient Δugm1 and galactosaminogalactan (GAG)-deficient Δgt4bc strains. Our results show that the tested strains alter the mRNA expression of SP, with the most prominent and consistent downregulation of the lung-specific SP-C. Our findings also suggest that secondary metabolites rather than the membrane composition of conidia/hyphae inhibit SP-C mRNA expression in NCI-H441 cells.
Collapse
Affiliation(s)
- Natalia Schiefermeier-Mach
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Lea Heinrich
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Lukas Lechner
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| | - Susanne Perkhofer
- Research and Innovation Unit, Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Abstract
The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and β-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.
Collapse
Affiliation(s)
- Neil A R Gow
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, UK.
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
26
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
27
|
Solid-state NMR molecular snapshots of Aspergillus fumigatus cell wall architecture during a conidial morphotype transition. Proc Natl Acad Sci U S A 2023; 120:e2212003120. [PMID: 36719915 PMCID: PMC9963690 DOI: 10.1073/pnas.2212003120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides β-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.
Collapse
|
28
|
Seegers CII, Lee DJ, Zarnovican P, Kirsch SH, Müller R, Haselhorst T, Routier FH. Identification of Compounds Preventing A. fumigatus Biofilm Formation by Inhibition of the Galactosaminogalactan Deacetylase Agd3. Int J Mol Sci 2023; 24:ijms24031851. [PMID: 36768176 PMCID: PMC9915216 DOI: 10.3390/ijms24031851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner.
Collapse
Affiliation(s)
- Carla I. I. Seegers
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Danielle J. Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Patricia Zarnovican
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Susanne H. Kirsch
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Françoise H. Routier
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
29
|
Understanding Aspergillus fumigatus galactosaminogalactan biosynthesis: A few questions remain. Cell Surf 2023; 9:100095. [PMID: 36691652 PMCID: PMC9860509 DOI: 10.1016/j.tcsw.2023.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
Half a century after their discovery, polymers of N-acetylgalactosamine produced by the Aspergilli have garnered new interest as mediators of fungal virulence. Recent work has focused on the Aspergillus fumigatus secreted and cell wall-associated heteropolymer, galactosaminogalactan (GAG). This polymer, composed of galactose (Gal) and partially deacetylated N-acetylgalactosamine (GalNAc), plays a role in a variety of pathogenic processes including biofilm formation, immune modulation and evasion, and resistance to antifungals. Given its many potential contributions to fungal pathogenesis, GAG is a promising therapeutic target for novel antifungal strategies. As such, several studies have sought to elucidate the biosynthetic pathways required for GAG production and secretion. Herein we review the progress made in the understanding of the molecular mechanisms underlying GAG synthesis and identify several gaps in our understanding of this process.
Collapse
|
30
|
Safeer A, Kleijburg F, Bahri S, Beriashvili D, Veldhuizen EJA, van Neer J, Tegelaar M, de Cock H, Wösten HAB, Baldus M. Probing Cell-Surface Interactions in Fungal Cell Walls by High-Resolution 1 H-Detected Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202202616. [PMID: 36181715 PMCID: PMC10099940 DOI: 10.1002/chem.202202616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.
Collapse
Affiliation(s)
- Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Fleur Kleijburg
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Edwin J A Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (The, Netherlands
| | - Jacq van Neer
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Martin Tegelaar
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| |
Collapse
|
31
|
Pazynina GV, Tsygankova SV, Sablina MA, Shilova NV, Paramonov AS, Chizhov AO, Bovin NV. Synthesis of Sug1-4GalNAcα disaccharides and their interaction with human blood antibodies. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Huang SF, Ying-Jung Wu A, Shin-Jung Lee S, Huang YS, Lee CY, Yang TL, Wang HW, Chen HJ, Chen YC, Ho TS, Kuo CF, Lin YT. COVID-19 associated mold infections: Review of COVID-19 associated pulmonary aspergillosis and mucormycosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022:S1684-1182(22)00285-7. [PMID: 36586744 PMCID: PMC9751001 DOI: 10.1016/j.jmii.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
COVID-19-associated mold infection (CAMI) is defined as development of mold infections in COVID-19 patients. Co-pathogenesis of viral and fungal infections include the disruption of tissue barrier following SARS CoV-2 infection with the damage in the alveolar space, respiratory epithelium and endothelium injury and overwhelming inflammation and immune dysregulation during severe COVID-19. Other predisposing risk factors permissive to fungal infections during COVID-19 include the administration of immune modulators such as corticosteroids and IL-6 antagonist. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) is increasingly reported during the COVID-19 pandemic. CAPA usually developed within the first month of COVID infection, and CAM frequently arose 10-15 days post diagnosis of COVID-19. Diagnosis is challenging and often indistinguishable during the cytokine storm in COVID-19, and several diagnostic criteria have been proposed. Development of CAPA and CAM is associated with a high mortality despiteappropriate anti-mold therapy. Both isavuconazole and amphotericin B can be used for treatment of CAPA and CAM; voriconazole is the primary agent for CAPA and posaconazole is an alternative for CAM. Aggressive surgery is recommended for CAM to improve patient survival. A high index of suspicion and timely and appropriate treatment is crucial to improve patient outcome.
Collapse
Affiliation(s)
- Shiang-Fen Huang
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Medical College, New Taipei City, Taiwan
| | - Susan Shin-Jung Lee
- School of Internal Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan,Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Taiwan
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yuan Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Liang Yang
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho- Su Memorial Hospital, Taipei, Taiwan
| | - Hung Jui Chen
- Department of Infectious Diseases, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi Ching Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan,College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan,Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan,Corresponding author
| | - Yi-Tsung Lin
- Division of Infectious Disease, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Corresponding author
| | | |
Collapse
|
33
|
Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification. PLoS Pathog 2022; 18:e1010976. [DOI: 10.1371/journal.ppat.1010976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover, the biological functions of the Elongator complex in human fungal pathogens remain unknown. In this study, we verified that the Elongator complex of the opportunistic fungal pathogen Aspergillus fumigatus consists of six subunits (Elp1-6), and the loss of any subunit results in similarly defective colony phenotypes with impaired hyphal growth and reduced conidiation. The catalytic subunit-Elp3 of the Elongator complex includes a S-adenosyl methionine binding (rSAM) domain and a lysine acetyltransferase (KAT) domain, and it plays key roles in the hyphal growth, biofilm-associated exopolysaccharide galactosaminogalactan (GAG) production, adhesion and virulence of A. fumigatus; however, Elp3 does not affect H3K14 acetylation levels in vivo. LC–MS/MS chromatograms revealed that loss of Elp3 abolished the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNA wobble uridine (U34), and the overexpression of tRNAGlnUUG and tRNAGluUUC, which normally harbor mcm5s2U modifications, mainly rescues the defects of the Δelp3 mutant, suggesting that tRNA modification rather than lysine acetyltransferase is responsible for the primary function of Elp3 in A. fumigatus. Strikingly, global proteomic comparison analyses showed significantly upregulated expression of genes related to amino acid metabolism in the Δelp3 mutant strain compared to the wild-type strain. Western blotting showed that deletion of elp3 resulted in overexpression of the amino acid starvation-responsive transcription factor CpcA, and deletion of CpcA markedly reversed the defective phenotypes of the Δelp3 mutant, including attenuated virulence. Therefore, the findings of this study demonstrate that A. fumigatus Elp3 functions as a tRNA-modifying enzyme in the regulation of growth, GAG production, adhesion and virulence by maintaining intracellular amino acid homeostasis. More broadly, our study highlights the importance of U34 tRNA modification in regulating cellular metabolic states and virulence traits of fungal pathogens.
Collapse
|
34
|
Seegers CII, Roth IR, Zarnovican P, Buettner FFR, Routier FH. Characterisation of a gene cluster involved in aspergillus fumigatus zwitterionic glycosphingolipid synthesis. Glycobiology 2022; 32:814-824. [PMID: 35713520 DOI: 10.1093/glycob/cwac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The human pathogenic fungus Aspergillus fumigatus synthesises the zwitterionic glycolipid Manα1,3Manα1,6GlcNα1,2IPC, named Af3c. Similar glycosphingolipids having a glucosamine (GlcN) linked in α1,2 to inositolphosphoceramide (IPC) as core structure have only been described in a few pathogenic fungi. Here, we describe an Ammophilus fumigatus cluster of 5 genes (AFUA_8G02040 to AFUA_8G02090) encoding proteins required for the glycan part of the glycosphingolipid Af3c. Besides the already characterised UDP-GlcNAc:IPC α1,2-N-acetylglucosaminyltransferase (GntA), the cluster encodes a putative UDP-GlcNAc transporter (NstA), a GlcNAc de-N-acetylase (GdaA), and two mannosyltransferases (OchC and ClpC). The function of these proteins was inferred from analysis of the glycolipids extracted from A. fumigatus strains deficient in one of the genes. Moreover, successive introduction of the genes encoding GntA, GdaA, OchC and ClpC in the yeast Saccharomyces cerevisiae enabled the reconstitution of the Af3c biosynthetic pathway. Absence of Af3c slightly reduced the virulence of A. fumigatus in a Galleria mellonella infection model.
Collapse
Affiliation(s)
- Carla I I Seegers
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Isabel Ramón Roth
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Patricia Zarnovican
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Falk F R Buettner
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Françoise H Routier
- Institute for Clinical Biochemistry, OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
35
|
Phosphatidylinositol 3-Kinase (PI3K) Orchestrates Aspergillus fumigatus-Induced Eosinophil Activation Independently of Canonical Toll-Like Receptor (TLR)/C-Type-Lectin Receptor (CLR) Signaling. mBio 2022; 13:e0123922. [PMID: 35695427 PMCID: PMC9426586 DOI: 10.1128/mbio.01239-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Eosinophilia is associated with various persisting inflammatory diseases and often coincides with chronic fungal infections or fungal allergy as in the case of allergic bronchopulmonary aspergillosis (ABPA). Here, we show that intranasal administration of live Aspergillus fumigatus conidia causes fatal lung damage in eosinophilic interleukin-5 (IL-5)-transgenic mice. To further investigate the activation of eosinophils by A. fumigatus, we established a coculture system of mouse bone marrow-derived eosinophils (BMDE) with different A. fumigatus morphotypes and analyzed the secretion of cytokines, chemokines, and eicosanoids. A. fumigatus-stimulated BMDE upregulated expression of CD11b and downregulated CD62L and CCR3. They further secreted several proinflammatory mediators, including IL-4, IL-13, IL-18, macrophage inflammatory protein-1α (MIP-1α)/CC chemokine ligand 3 (CCL3), MIP-1β/CCL4, and thromboxane. This effect required direct interaction and adherence between eosinophils and A. fumigatus, as A. fumigatus culture supernatants or A. fumigatus mutant strains with impaired adhesion elicited a rather poor eosinophil response. Unexpectedly, canonical Toll-like receptor (TLR) or C-type-lectin receptor (CLR) signaling was largely dispensable, as the absence of MYD88, TRIF, or caspase recruitment domain-containing protein 9 (CARD9) resulted in only minor alterations. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway in A. fumigatus-induced eosinophil activation. Correspondingly, we could show that phosphatidylinositol 3-kinase (PI3K) inhibitors successfully prevent A. fumigatus-induced eosinophil activation. The PI3K pathway in eosinophils may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders.
Collapse
|
36
|
Le Mauff F, Razvi E, Reichhardt C, Sivarajah P, Parsek MR, Howell PL, Sheppard DC. The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun Biol 2022; 5:502. [PMID: 35618750 PMCID: PMC9135694 DOI: 10.1038/s42003-022-03453-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/06/2022] [Indexed: 12/20/2022] Open
Abstract
The genetic capacity to synthesize the biofilm matrix exopolysaccharide Pel is widespread among Gram-negative and Gram-positive bacteria. However, its exact chemical structure has been challenging to determine. Using a Pseudomonas aeruginosa strain engineered to overproduce Pel, improvements to the isolation procedure, and selective hydrolysis with the glycoside hydrolase PelAh, we demonstrate that Pel is a partially de-N-acetylated linear polymer of α-1,4-N-acetylgalactosamine comprised predominantly of dimeric repeats of galactosamine and N-acetylgalactosamine. The structure of the Pel exopolysaccharide from Pseudomonas aeruginosa is fully characterized.
Collapse
Affiliation(s)
- François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Infectious Disease in Global Health Program, McGill University Health Centre, Montreal, QC, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Erum Razvi
- Program in Molecular Medicine, Research Institute The Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Courtney Reichhardt
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Piyanka Sivarajah
- Program in Molecular Medicine, Research Institute The Hospital for Sick Children, Toronto, ON, Canada
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - P Lynne Howell
- Program in Molecular Medicine, Research Institute The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Infectious Disease in Global Health Program, McGill University Health Centre, Montreal, QC, Canada. .,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| |
Collapse
|
37
|
Kerkaert JD, Le Mauff F, Wucher BR, Beattie SR, Vesely EM, Sheppard DC, Nadell CD, Cramer RA. An Alanine Aminotransferase Is Required for Biofilm-Specific Resistance of Aspergillus fumigatus to Echinocandin Treatment. mBio 2022; 13:e0293321. [PMID: 35254131 PMCID: PMC9040767 DOI: 10.1128/mbio.02933-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA, and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment, which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms, and chemical inhibition of alaA by the alanine aminotransferase inhibitor β-chloro-l-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describe a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs. IMPORTANCE Aspergillus fumigatus is a ubiquitous filamentous fungus that causes an array of diseases depending on the immune status of an individual, collectively termed aspergillosis. Antifungal therapy for invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis (CPA) is limited and too often ineffective. This is in part due to A. fumigatus biofilm formation within the infection environment and the resulting emergent properties, particularly increased antifungal resistance. Thus, insights into biofilm formation and mechanisms driving increased antifungal drug resistance are critical for improving existing therapeutic strategies and development of novel antifungals. In this work, we describe an unexpected observation where alanine metabolism, via the alanine aminotransferase AlaA, is required for several aspects of A. fumigatus biofilm physiology, including resistance of A. fumigatus biofilms to the echinocandin class of antifungal drugs. Importantly, we observed that chemical inhibition of alanine aminotransferases is sufficient to increase echinocandin susceptibility and that loss of alaA increases susceptibility to echinocandin treatment in a murine model of IPA. AlaA is the first gene discovered in A. fumigatus that confers resistance to an antifungal drug specifically in a biofilm context.
Collapse
Affiliation(s)
- Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Benjamin R. Wucher
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
38
|
Yoshimi A, Miyazawa K, Kawauchi M, Abe K. Cell Wall Integrity and Its Industrial Applications in Filamentous Fungi. J Fungi (Basel) 2022; 8:435. [PMID: 35628691 PMCID: PMC9148135 DOI: 10.3390/jof8050435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Signal transduction pathways regulating cell wall integrity (CWI) in filamentous fungi have been studied taking into account findings in budding yeast, and much knowledge has been accumulated in recent years. Given that the cell wall is essential for viability in fungi, its architecture has been analyzed in relation to virulence, especially in filamentous fungal pathogens of plants and humans. Although research on CWI signaling in individual fungal species has progressed, an integrated understanding of CWI signaling in diverse fungi has not yet been achieved. For example, the variety of sensor proteins and their functional differences among different fungal species have been described, but the understanding of their general and species-specific biological functions is limited. Our long-term research interest is CWI signaling in filamentous fungi. Here, we outline CWI signaling in these fungi, from sensor proteins required for the recognition of environmental changes to the regulation of cell wall polysaccharide synthesis genes. We discuss the similarities and differences between the functions of CWI signaling factors in filamentous fungi and in budding yeast. We also describe the latest findings on industrial applications, including those derived from studies on CWI signaling: the development of antifungal agents and the development of highly productive strains of filamentous fungi with modified cell surface characteristics by controlling cell wall biogenesis.
Collapse
Affiliation(s)
- Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; (A.Y.); (M.K.)
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Ken Miyazawa
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Laboratory of Filamentous Mycoses, Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Moriyuki Kawauchi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; (A.Y.); (M.K.)
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
39
|
Miyazawa K, Umeyama T, Hoshino Y, Abe K, Miyazaki Y. Quantitative Monitoring of Mycelial Growth of Aspergillus fumigatus in Liquid Culture by Optical Density. Microbiol Spectr 2022; 10:e0006321. [PMID: 34985327 PMCID: PMC8729762 DOI: 10.1128/spectrum.00063-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023] Open
Abstract
Filamentous fungi form multicellular hyphae, which generally form pellets in liquid shake cultures, during the vegetative growth stage. Because of these characteristics, growth-monitoring methods commonly used in bacteria and yeast have not been applied to filamentous fungi. We have recently revealed that the cell wall polysaccharide α-1,3-glucan and extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae. Here, we tested whether Aspergillus fumigatus shows dispersed growth in liquid media that can be quantitatively monitored, similar to that of yeasts. We constructed a double disruptant mutant of both the primary α-1,3-glucan synthase gene ags1 and the putative GAG synthase gene gtb3 in A. fumigatus AfS35 and found that the hyphae of this mutant were fully dispersed. Although the mutant lost α-1,3-glucan and GAG, its growth and susceptibility to antifungal agents were not different from those of the parental strain. Mycelial weight of the mutant in shake-flask cultures was proportional to optical density for at least 18 h. We were also able to quantify the dose response of hyphal growth to antifungal agents by measuring optical density. Overall, we established a convenient strategy to monitor A. fumigatus hyphal growth. Our method can be directly used for screening for novel antifungals against Aspergillus species. IMPORTANCE Filamentous fungi generally form hyphal pellets in liquid culture. This property prevents filamentous fungi so that we may apply the methods used for unicellular organisms such as yeast and bacteria. In the present study, by using the fungal pathogen Aspergillus fumigatus strain with modified hyphal surface polysaccharides, we succeeded in monitoring the hyphal growth quantitatively by optical density. The principle of this easy measurement by optical density could lead to a novel standard of hyphal quantification such as those that have been used for yeasts and bacteria. Dose response of hyphal growth by antifungal agents could also be monitored. This method could be useful for screening for novel antifungal reagents against Aspergillus species.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
40
|
Peng L, Liu CF, Wu H, Jin H, Deng XY, Zeng LT, Xiao Y, Deng C, Yang ZK. Complete Genome Sequencing and Comparative Analysis of the Clinically-Derived Apiotrichum mycotoxinivorans Strain GMU1709. Front Cell Infect Microbiol 2022; 12:834015. [PMID: 35186802 PMCID: PMC8855340 DOI: 10.3389/fcimb.2022.834015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, Apiotrichum mycotoxinivorans has been recognized globally as a source of opportunistic infections. It is a yeast-like fungus, and its association as an uncommon pulmonary pathogen with cystic fibrosis patients has been previously reported. Immunocompromised patients are at the highest risk of A. mycotoxinivorans infections. Therefore, to investigate the genetic basis for the pathogenicity of A. mycotoxinivorans, we performed whole-genome sequencing and comparative genomic analysis of A. mycotoxinivorans GMU1709 that was isolated from sputum specimens of a pneumonia patient receiving cardiac repair surgery. The assembly of Oxford Nanopore reads from the GMU1709 strain and its subsequent correction using Illumina paired-end reads yielded a high-quality complete genome with a genome size of 30.5 Mb in length, which comprised six chromosomes and one mitochondrion. Subsequently, 8,066 protein-coding genes were predicted based on multiple pieces of evidence, including transcriptomes. Phylogenomic analysis indicated that A. mycotoxinivorans exhibited the closest evolutionary affinity to A. veenhuisii, and both the A. mycotoxinivorans strains and the formerly Trichosporon cutaneum ACCC 20271 strain occupied the same phylogenetic position. Further comparative analysis supported that the ACCC 20271 strain belonged to A. mycotoxinivorans. Comparisons of three A. mycotoxinivorans strains indicated that the differences between clinical and non-clinical strains in pathogenicity and drug resistance may be little or none. Based on the comparisons with strains of other species in the Trichosporonaceae family, we identified potential key genetic factors associated with A. mycotoxinivorans infection or pathogenicity. In addition, we also deduced that A. mycotoxinivorans had great potential to inactivate some antibiotics (e.g., tetracycline), which may affect the efficacy of these drugs in co-infection. In general, our analyses provide a better understanding of the classification and phylogeny of the Trichosporonaceae family, uncover the underlying genetic basis of A. mycotoxinivorans infections and associated drug resistance, and provide clues into potential targets for further research and the therapeutic intervention of infections.
Collapse
Affiliation(s)
- Liang Peng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chen-Fei Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong Wu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai Jin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yan Deng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Li-Ting Zeng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Xiao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Kai Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Zhi-Kai Yang,
| |
Collapse
|
41
|
Subroto E, van Neer J, Valdes I, de Cock H. Growth of Aspergillus fumigatus in Biofilms in Comparison to Candida albicans. J Fungi (Basel) 2022; 8:48. [PMID: 35049988 PMCID: PMC8779434 DOI: 10.3390/jof8010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Biofilm formation during infections with the opportunistic pathogen Aspergillus fumigatus can be very problematic in clinical settings, since it provides the fungal cells with a protective environment. Resistance against drug treatments, immune recognition as well as adaptation to the host environment allows fungal survival in the host. The exact molecular mechanisms behind most processes in the formation of biofilms are unclear. In general, the formation of biofilms can be categorized roughly in a few stages; adhesion, conidial germination and development of hyphae, biofilm maturation and cell dispersion. Fungi in biofilms can adapt to the in-host environment. These adaptations can occur on a level of phenotypic plasticity via gene regulation. However, also more substantial genetic changes of the genome can result in increased resistance and adaptation in the host, enhancing the survival chances of fungi in biofilms. Most research has focused on the development of biofilms. However, to tackle developing microbial resistance and adaptation in biofilms, more insight in mechanisms behind genetic adaptations is required to predict which defense mechanisms can be expected. This can be helpful in the development of novel and more targeted antifungal treatments to combat fungal infections.
Collapse
Affiliation(s)
| | | | | | - Hans de Cock
- Molecular Microbiology Laboratory, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.); (J.v.N.); (I.V.)
| |
Collapse
|
42
|
Chakraborty A, Fernando LD, Fang W, Dickwella Widanage MC, Wei P, Jin C, Fontaine T, Latgé JP, Wang T. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat Commun 2021; 12:6346. [PMID: 34732740 PMCID: PMC8566572 DOI: 10.1038/s41467-021-26749-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vast efforts have been devoted to the development of antifungal drugs targeting the cell wall, but the supramolecular architecture of this carbohydrate-rich composite remains insufficiently understood. Here we compare the cell wall structure of a fungal pathogen Aspergillus fumigatus and four mutants depleted of major structural polysaccharides. High-resolution solid-state NMR spectroscopy of intact cells reveals a rigid core formed by chitin, β-1,3-glucan, and α-1,3-glucan, with galactosaminogalactan and galactomannan present in the mobile phase. Gene deletion reshuffles the composition and spatial organization of polysaccharides, with significant changes in their dynamics and water accessibility. The distribution of α-1,3-glucan in chemically isolated and dynamically distinct domains supports its functional diversity. Identification of valines in the alkali-insoluble carbohydrate core suggests a putative function in stabilizing macromolecular complexes. We propose a revised model of cell wall architecture which will improve our understanding of the structural response of fungal pathogens to stresses. The fungal cell wall is a complex structure composed mainly of glucans, chitin and glycoproteins. Here, the authors use solid-state NMR spectroscopy to assess the cell wall architecture of Aspergillus fumigatus, comparing wild-type cells and mutants lacking major structural polysaccharides, with insights into the distinct functions of these components.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | | | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | | | - Pingzhen Wei
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Thierry Fontaine
- Unité de Biologie et pathogénicité fongiques, INRAE, USC2019, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular biology and Biotechnology (IMBBFORTH), University of Crete, Heraklion, Greece.
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
43
|
Spt20, a structural subunit of the SAGA complex, regulates biofilm formation, asexual development, and virulence of Aspergillus fumigatus. Appl Environ Microbiol 2021; 88:e0153521. [PMID: 34669434 DOI: 10.1128/aem.01535-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) plays an important role in mediating adhesion, biofilm formation, and virulence in the pathogenic fungus Aspergillus fumigatus. Previous work showed that in A. fumigatus, the Lim-domain binding protein PtaB can form a complex with the sequence-specific transcription factor SomA for regulating GAG biosynthesis, biofilm formation, and asexual development. However, transcriptional co-activators required for biofilm formation in A. fumigatus remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae transcriptional co-activator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a regulator of biofilm formation and asexual development in A. fumigatus. The loss of spt20 caused severe defects in GAG biosynthesis, biofilm formation, conidiation, and virulence of A. fumigatus. RNA-sequence data demonstrated that Spt20 positively regulates the expression of GAG biosynthesis genes uge3 and agd3, developmental regulator medA, and genes involved in the conidiation pathway. Moreover, more than 10 subunits of the SAGA complex (known from yeast) could be immunoprecipitated with Spt20, suggesting that Spt20 acts as a structural subunit of the SAGA complex. Furthermore, distinct modules of SAGA regulate GAG biosynthesis, biofilm formation, and asexual development in A. fumigatus to varying degrees. In summary, the novel biofilm regulator Spt20 is reported, which plays a crucial role in the regulation of fungal asexual development, GAG biosynthesis, and virulence of A. fumigatus. These findings expand knowledge on the regulatory circuits of the SAGA complex relevant for biofilm formation and asexual development of A. fumigatus. IMPORTANCE Eukaryotic transcription is regulated by a large number of proteins, ranging from sequence-specific DNA binding factors to transcriptional co-activators (chromatin regulators and the general transcription machinery) and their regulators. Previous research indicated that the sequence-specific complex SomA/PtaB regulates biofilm formation and asexual development of Aspergillus fumigatus. However, transcriptional co-activators working with sequence-specific transcription factors to regulate A. fumigatus biofilm formation remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a novel regulator of biofilm formation and asexual development of A. fumigatus. Loss of spt20 caused severe defects in galactosaminogalactan (GAG) production, conidiation, and virulence. Moreover, nearly all modules of the SAGA complex were required for biofilm formation and asexual development of A. fumigatus. These results establish the SAGA complex as a transcriptional co-activator required for biofilm formation and asexual development of A. fumigatus.
Collapse
|
44
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
45
|
Mei L, Wang X, Yin Y, Tang G, Wang C. Conservative production of galactosaminogalactan in Metarhizium is responsible for appressorium mucilage production and topical infection of insect hosts. PLoS Pathog 2021; 17:e1009656. [PMID: 34125872 PMCID: PMC8224951 DOI: 10.1371/journal.ppat.1009656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/24/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) has been well characterized in Aspergilli, especially the human pathogen Aspergillus fumigatus. It has been found that a five-gene cluster is responsible for GAG biosynthesis in Aspergilli to mediate fungal adherence, biofilm formation, immunosuppression or induction of host immune defences. Herein, we report the presence of the conserved GAG biosynthetic gene cluster in the insect pathogenic fungus Metarhizium robertsii to mediate either similar or unique biological functions. Deletion of the gene cluster disabled fungal ability to produce GAG on germ tubes, mycelia and appressoria. Relative to the wild type strain, null mutant was impaired in topical infection but not injection of insect hosts. We found that GAG production by Metarhizium is partially acetylated and could mediate fungal adherence to hydrophobic insect cuticles, biofilm formation, and penetration of insect cuticles. In particular, it was first confirmed that this exopolymer is responsible for the formation of appressorium mucilage, the essential extracellular matrix formed along with the infection structure differentiation to mediate cell attachment and expression of cuticle degrading enzymes. In contrast to its production during A. fumigatus invasive growth, GAG is not produced on the Metarhizium cells harvested from insect hemocoels; however, the polymer can glue germ tubes into aggregates to form mycelium pellets in liquid culture. The results of this study unravel the biosynthesis and unique function of GAG in a fungal system apart from the aspergilli species.
Collapse
Affiliation(s)
- Lijuan Mei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xuewen Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yin
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
The Transcription Factor SomA Synchronously Regulates Biofilm Formation and Cell Wall Homeostasis in Aspergillus fumigatus. mBio 2020; 11:mBio.02329-20. [PMID: 33173002 PMCID: PMC7667024 DOI: 10.1128/mbio.02329-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell wall is essential for fungal viability and is absent from human hosts; thus, drugs disrupting cell wall biosynthesis have gained more attention. Caspofungin is a member of a new class of clinically approved echinocandin drugs to treat invasive aspergillosis by blocking β-1,3-glucan synthase, thus damaging the fungal cell wall. Here, we demonstrate that caspofungin and other cell wall stressors can induce galactosaminogalactan (GAG)-dependent biofilm formation in the human pathogen Aspergillus fumigatus. We further identified SomA as a master transcription factor playing a dual role in both biofilm formation and cell wall homeostasis. SomA plays this dual role by direct binding to a conserved motif upstream of GAG biosynthetic genes and genes involved in cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Collectively, these findings reveal a transcriptional control pathway that integrates biofilm formation and cell wall homeostasis and suggest SomA as an attractive target for antifungal drug development. Polysaccharides are key components of both the fungal cell wall and biofilm matrix. Despite having distinct assembly and regulation pathways, matrix exopolysaccharide and cell wall polysaccharides share common substrates and intermediates in their biosynthetic pathways. It is not clear, however, if the biosynthetic pathways governing the production of these polysaccharides are cooperatively regulated. Here, we demonstrate that cell wall stress promotes production of the exopolysaccharide galactosaminogalactan (GAG)-depend biofilm formation in the major fungal pathogen of humans Aspergillus fumigatus and that the transcription factor SomA plays a crucial role in mediating this process. A core set of SomA target genes were identified by transcriptome sequencing and chromatin immunoprecipitation coupled to sequencing (ChIP-Seq). We identified a novel SomA-binding site in the promoter regions of GAG biosynthetic genes agd3 and ega3, as well as its regulators medA and stuA. Strikingly, this SomA-binding site was also found in the upstream regions of genes encoding the cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Thus, SomA plays a direct regulation of both GAG and cell wall polysaccharide biosynthesis. Consistent with these findings, SomA is required for the maintenance of normal cell wall architecture and compositions in addition to its function in biofilm development. Moreover, SomA was found to globally regulate glucose uptake and utilization, as well as amino sugar and nucleotide sugar metabolism, which provides precursors for polysaccharide synthesis. Collectively, our work provides insight into fungal adaptive mechanisms in response to cell wall stress where biofilm formation and cell wall homeostasis were synchronously regulated.
Collapse
|
47
|
Deshmukh H, Speth C, Sheppard DC, Neurauter M, Würzner R, Lass-Flörl C, Rambach G. Aspergillus-Derived Galactosaminogalactan Triggers Complement Activation on Human Platelets. Front Immunol 2020; 11:550827. [PMID: 33123129 PMCID: PMC7573070 DOI: 10.3389/fimmu.2020.550827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Invasive fungal infections caused by Aspergillus (A.) and Mucorales species still represent life-threatening diseases in immunocompromised individuals, and deeper knowledge about fungal interactions with elements of innate immunity, such as complement and platelets, appears essential for optimized therapy. Previous studies showed that galactosaminogalactan secreted by A. fumigatus and A. flavus is deposited on platelets, thereby inducing their activation. Since the altered platelet surface is a putative trigger for complement activation, we aimed to study the interplay of platelets with complement in the presence of fungal GAG. Culture supernatants (SN) of A. fumigatus and A. flavus both induced not only GAG deposition but also subsequent deposition of complement C3 fragments on the platelet surface. The SN of a Δuge3 mutant of A. fumigatus, which is unable to synthesize GAG, did not induce complement deposition on platelets, nor did the SN of other Aspergillus species and all tested Mucorales. Detailed analysis revealed that GAG deposition itself triggered the complement cascade rather than the GAG-induced phosphatidylserine exposure. The lectin pathway of complement could be shown to be crucially involved in this process. GAG-induced complement activation on the platelet surface was revealed to trigger processes that might contribute to the pathogenesis of invasive aspergillosis by A. fumigatus or A. flavus. Both pro-inflammatory anaphylatoxins C3a and C5a arose when platelets were incubated with SN of these fungal species; these processes might favor excessive inflammation after fungal infection. Furthermore, platelets were stimulated to shed microparticles, which are also known to harbor pro-inflammatory and pro-coagulant properties. Not only did early processes of the complement cascade proceed on platelets, but also the formation of the terminal complement C5b-9 complex was detected on platelets after incubation with fungal SN. Subsequently, reduced viability of the platelets could be shown, which might contribute to the lowered platelet numbers found in infected patients. In summary, fungal GAG initiates an interplay between complement and platelets that can be supposed to contribute to excessive inflammation, thrombocytopenia, and thrombosis, which are important hallmarks of fatal invasive mycoses.
Collapse
Affiliation(s)
- Hemalata Deshmukh
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Magdalena Neurauter
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| |
Collapse
|
48
|
Lin CJ, Hou YH, Chen YL. The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus. Med Mycol 2020; 58:248-259. [PMID: 31100153 DOI: 10.1093/mmy/myz043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023] Open
Abstract
Histone modifications play a crucial role in eukaryotic gene regulation. The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex controls histone acetylation, with Gcn5 (GcnE) acting as the acetyltransferase. In the Aspergillus species, GcnE has been shown to regulate asexual development and secondary metabolism. Apart from this, GcnE is required for pathogenicity in plant fungal pathogen A. flavus; however, the role of GcnE in the pathogenicity of human pathogenic fungus A. fumigatus is unknown. In this study, we uncovered the key roles of GcnE in A. fumigatus conidiation, stress responses, and biofilm formation. We observed that deletion of gcnE resulted in aberrant conidiation in which conidiophores displayed abnormal phialide formation. In addition, the ΔgcnE mutant grew slightly faster under limited nitrogen sources (1 mM of ammonium or nitrate) compared to the wild type. The ΔgcnE mutant exhibited increased susceptibility to cell wall-perturbing agents, H2O2 and menadione but enhanced tolerance to LiCl. Furthermore, we showed that GcnE is involved in biofilm formation, and overexpression of adherence-related genes such as somA or uge3 partially rescued biofilm formation defects in the ΔgcnE mutant background. Interestingly, GcnE was not required for virulence in a neutropenic murine model of invasive aspergillosis. These results suggest that GcnE is critical for conidiation and biofilm formation but not virulence in A. fumigatus.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Yi-Hsuan Hou
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
49
|
Miyazawa K, Yoshimi A, Abe K. The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species. Fungal Biol Biotechnol 2020; 7:10. [PMID: 32626592 PMCID: PMC7329490 DOI: 10.1186/s40694-020-00101-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are widely used for production of enzymes and chemicals, and are industrially cultivated both in liquid and solid cultures. Submerged culture is often used as liquid culture for filamentous fungi. In submerged culture, filamentous fungi show diverse macromorphology such as hyphal pellets and dispersed hyphae depending on culture conditions and genetic backgrounds of fungal strains. Although the macromorphology greatly affects the productivity of submerged cultures, the specific cellular components needed for hyphal aggregation after conidial germination have not been characterized. Recently we reported that the primary cell wall polysaccharide α-1,3-glucan and the extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae, and that a strain deficient in both α-1,3-glucan and GAG shows dispersed hyphae in liquid culture. In this review, we summarize our current understanding of the contribution of chemical properties of α-1,3-glucan and GAG to hyphal aggregation. Various ascomycetes and basidiomycetes have α-1,3-glucan synthase gene(s). In addition, some Pezizomycotina fungi, including species used in the fermentation industry, also have GAG biosynthetic genes. We also review here the known mechanisms of biosynthesis of α-1,3-glucan and GAG. Regulation of the biosynthesis of the two polysaccharides could be a potential way of controlling formation of hyphal pellets.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan.,ABE-project, New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579 Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai, 980-8572 Japan
| |
Collapse
|
50
|
Chung KY, Brown JCS. Biology and function of exo-polysaccharides from human fungal pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:1-11. [PMID: 33042730 DOI: 10.1007/s40588-020-00137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings. Recent findings This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients. Summary Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.
Collapse
Affiliation(s)
- Krystal Y Chung
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|