1
|
Abstract
The identification of critical genes that encode for regulatory proteins has helped elucidate the molecular mechanisms that govern cell proliferation and malignant transformation. Several approaches to gene therapy for cancer have been described. These include the use of fibroblasts expressing suicide genes, restoration of expression of tumor suppressor genes, cytokine gene therapy, genetic modification of T lymphocytes, and protection of normal hemopoiesis in cancer patients. Clinical trials are underway in all these areas.
Collapse
Affiliation(s)
- Julie Y. Djeu
- Immunology Program at H. Lee Moffitt Cancer Center & Research Institute, Tampa, Fla
| |
Collapse
|
2
|
Freie BW, Dutt P, Clapp DW. Correction of Fanconi Anemia Type C Phenotypic Abnormalities Using a Clinically Suitable Retroviral Vector Infection Protocol. Cell Transplant 2017; 5:385-93. [PMID: 8727007 DOI: 10.1177/096368979600500305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fanconi anemia (FA) is a complex autosomal recessive disease with hematologic manifestations characterized by a progressive hypoplastic anemia, hypersensitivity to clastogenic agents, and an increased incidence of acute myelogenous leukemia. The cDNA that corrects one of four FA complementation subtypes, named Fanconi anemia Type C (FAC) has recently been identified. We constructed a simplified recombinant retrovirus (vMFGFAC) encoding only the FAC cDNA, and tested its ability to correct the FAC defect in a lymphocytic cell line and primary mobilized blood progenitor cells. In addition, the gene transfer efficiency using a clinically applicable gene transfer protocol into normal primitive hematopoietic progenitor cells, high proliferating potential colony forming cells (HPP-CFC), derived from CD34+ purified cord blood cells was examined. The gene transfer efficiency was significantly enhanced when cells were transduced with supernatant while adherent to a 30/35 KD fragment of fibronectin, FN30/35, and was similar to efficiency obtained by coculture with retrovirus packaging cells. Transduction of an FAC deficient lymphoid cell line with vMFGFAC supernatant resulted in an enhanced cell viability, and G-CSF mobilized peripheral blood cells from an FAC-deficient patient transduced with the vMFGFAC virus demonstrated enhanced progenitor cell colony formation. These data indicate that the vMFGFAC virus allows functional complementation of FAC in lymphoblasts and primary hematopoietic progenitors, and that primitive cord blood hematopoietic stem/progenitor cells can be transduced at an efficiency comparable to protocols using cocultivation if adherent to FN 30/35 fragment.
Collapse
Affiliation(s)
- B W Freie
- Herman B Wells Research Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
3
|
Lu L, Ge Y, Li ZH, Freie B, Clapp DW, Broxmeyer HE. CD34+++ Stem/Progenitor Cells Purified from Cryopreserved Normal Cord Blood can be Transduced with High Efficiency by a Retroviral Vector and Expanded Ex Vivo with Stable Integration and Expression of Fanconi Anemia Complementation C Gene. Cell Transplant 2017; 4:493-503. [PMID: 8520833 DOI: 10.1177/096368979500400510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A future possibility for treatment of genetic diseases may be gene therapy using autologous cord blood (CB) stem/progenitor cells. This might require cryopreservation of CB stem/progenitor cells prior to purification, gene transduction, and ex vivo expansion of cells. To address this possibility, nonadherent low density T-lymphocyte depleted (NALT-) cells from fresh or cryopreserved cord blood were sorted for CD34+++ phenotype, transduced with a recombinant retroviral vector encoding Fanconi anemia complementation C (FACC) gene, and cells expanded ex vivo in suspension culture for 7 days with growth factors. The results demonstrate: 1) high recovery of viable cells after thawing; 2) high efficiency purification of CD34+++ cells from NALT- cells prior to and after cryopreservation; 3) high degree of expansion of nucleated cells and immature progenitors from CD34+++ cells before and after cryopreservation; 4) efficient transduction with stable integration and expression of newly introduced genes in cryopreserved and then sorted stem/progenitor cells, as detected prior to and after ex vivo expansion; and 5) high efficiency transduction of single isolated CD34+++ cells obtained from cryopreserved NALT- CB. This information should be of value for future studies evaluating the use of cryopreserved cord blood for gene transfer/gene therapy.
Collapse
Affiliation(s)
- L Lu
- Department of Medicine (Hematology/Oncology), Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
4
|
da Silva CL, Gonçalves R, Porada CD, Ascensão JL, Zanjani ED, Cabral JMS, Almeida-Porada G. Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics. J Cell Physiol 2009; 220:102-11. [PMID: 19277981 DOI: 10.1002/jcp.21736] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human hematopoietic stem/progenitor cells (HSC) isolated based upon specific patterns of CD34 and CD38 expression, despite phenotypically identical, were found to be functionally heterogeneous, raising the possibility that reversible expression of these antigens may occur during cellular activation and/or proliferation. In these studies, we combined PKH67 tracking with CD34/CD38 immunostaining to compare cell division kinetics between human bone marrow (BM) and cord blood (CB)-derived HSC expanded in a serum-free/stromal-based system for 14 days (d), and correlated CD34 and CD38 expression with the cell divisional history. CB cells began dividing 24 h earlier than BM cells, and significantly higher numbers underwent mitosis during the time in culture. By d10, over 55% of the CB-cells reached the ninth generation, whereas BM-cells were mostly distributed between the fifth and seventh generation. By d14, all CB cells had undergone multiple cell divisions, while 0.7-3.8% of BM CD34(+) cells remained quiescent. Furthermore, the percentage of BM cells expressing CD34 decreased from 60.8 +/- 6.3% to 30.6 +/- 6.7% prior to initiating division, suggesting that downmodulation of this antigen occurred before commencement of proliferation. Moreover, with BM, all primitive CD34(+)CD38(-) cells present at the end of culture arose from proliferating CD34(+)CD38(+) cells that downregulated CD38 expression, while in CB, a CD34(+)CD38(-) population was maintained throughout culture. These studies show that BM and CB cells differ significantly in cell division kinetics and expression of CD34 and CD38, and that the inherent modulation of these antigens during ex vivo expansion may lead to erroneous quantification of the stem cell content of the expanded graft.
Collapse
|
5
|
Luzo ACM, Duarte ASS, Salles TSI, Queiroz MLS, Lorand-Metze I, Costa FF, Saad STO. Early proliferation of umbilical cord blood cells from premature neonates. Vox Sang 2007; 93:145-53. [PMID: 17683358 DOI: 10.1111/j.1423-0410.2007.00936.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Human umbilical cord blood (UCB) is an important source of haematopoietic stem cells; however, the behaviour of progenitor cells obtained from premature and full-term neonates is still a controversy subject. Thus, the aim of this study was to evaluate cell cycle parameters and the proliferative capacity of UCB progenitor cells from premature and full-term neonates. MATERIAL AND METHODS Clonogenic assays were performed with methylcellulose, medium supplemented with recombinant stimulating growth factors and the colonies were scored on the seventh day and the 14th day of culture. A cell cycle study was carried out by DNA analysis using flow cytometry and 30 000 events were acquired; p107 and p130 expressions were analysed by Western blotting. RESULTS Cultures obtained from UCB of premature neonates showed an early growth of colony-forming unit (CFU)-burst forming unit erythroid/CFU-granulocyte, erythrocyte, macrophage and megakaryocyte (BFU-E/GEMM), and CFU-granulocyte, macrophage (GM) by the seventh day of culture (P < 0.001). Therefore, the number and morphological characteristics of these colonies were comparable with those obtained from full-term neonates, on the 14th day of culture. At the 14th day, a large amount of CFU-GM was detected in the premature group (P < 0.0032). The premature culture on the 14th day showed fibroblasts and was comparable to those of full-term neonates on the 21st day in terms of number and morphology of the colonies. DNA analysis showed that the number of cells in S-phase was also higher in premature samples when compared to full-term neonates, P < 0.0021 (0 h = 12.8 vs. 2.5%; 16 h = 10.5 vs. 5.9%; 20 h = 13.5 vs. 10.3%; 24 h = 13.8 vs. 9.1%; 48 h = 14.0 vs. 5.4%; 72 h = 20.5 vs. 8.9%; 96 h = 13.8 vs. 7.7%). The Western blotting results demonstrated that p107 and p130 cell cycle protein expressions were higher in premature cells than in full-term cells. CONCLUSION These results suggest that the higher capacity of proliferation and early differentiation of premature UCB might not be related only to the amount of stem/progenitor cells but also to a different timing of cell cycle entry.
Collapse
Affiliation(s)
- A C M Luzo
- Hemocentro and Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CEP 13083-970 Campinas, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Bardenheuer W, Lehmberg K, Rattmann I, Brueckner A, Schneider A, Sorg UR, Seeber S, Moritz T, Flasshove M. Resistance to cytarabine and gemcitabine and in vitro selection of transduced cells after retroviral expression of cytidine deaminase in human hematopoietic progenitor cells. Leukemia 2006; 19:2281-8. [PMID: 16304576 DOI: 10.1038/sj.leu.2403977] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of the detoxifying enzyme cytidine deaminase (CDD) renders normal and leukemic hematopoietic cells resistant to cytarabine (1-beta-D-arabinofuranosylcytosine), and studies on murine cells have suggested transgenic CDD overexpression as a way to reduce the substantial myelotoxicity induced by the deoxycytidine analogs cytarabine and gemcitabine (2',2'-difluorodeoxycytidine). We now have investigated CDD (over-)expression in the human hematopoietic system. Retroviral gene transfer significantly increased the resistance of CDD-transduced cord blood and peripheral blood-derived progenitor cells for doses ranging from 20-100 nM cytarabine and 8-10 nM gemcitabine. Protection was observed for progenitors of erythroid as well as myeloid differentiation, though the degree of protection varied for individual drugs. In addition, significant selection of CDD-transduced cells was obtained after a 4-day culture in 30-100 nM cytarabine. Thus, our data demonstrate that overexpression of CDD cDNA results in significant protection of human progenitors from cytarabine- as well as gemcitabine-induced toxicity, and allows in vitro selection of transduced cells. This strongly argues for a potential therapeutic role of CDD gene transfer in conjunction with dose-intensive cytarabine- or gemcitabine-containing chemotherapy regimen.
Collapse
Affiliation(s)
- W Bardenheuer
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Meisel R, Bardenheuer W, Strehblow C, Sorg UR, Elmaagacli A, Seeber S, Flasshove M, Moritz T. Efficient protection from methotrexate toxicity and selection of transduced human hematopoietic cells following gene transfer of dihydrofolate reductase mutants. Exp Hematol 2004; 31:1215-22. [PMID: 14662327 DOI: 10.1016/j.exphem.2003.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE While retrovirally mediated gene transfer of dihydrofolate reductase mutants (mutDHFR) has convincingly been demonstrated to confer methotrexate (MTX) resistance to murine hematopoietic cells, clinical application of this technology will require high efficacy in human cells. Therefore, we investigated retroviral constructs expressing various point mutants of human DHFR for their ability to confer MTX resistance to human clonogenic progenitor cells (CFU-C) and to allow for in vitro selection of transduced CFU-C. METHODS Primary human hematopoietic cells were retrovirally transduced using MMLV- and SFFV/MESV-based vectors expressing DHFR(Ser31), DHFR(Phe22/Ser31), or DHFR(Tyr22/Gly31). MTX resistance of unselected and in vitro-selected CFU-C was determined using MTX-supplemented methylcellulose cultures and gene transfer efficiency was assesed by single-colony PCR analysis. RESULTS While less than 1% mock-transduced CFU-C survived the presence of > or =5 x 10(-8) M MTX, MMLV- and SFFV/MESV-based vectors expressing DHFR(Ser31) significantly protected CFU-C from MTX at doses ranging from 2.5 to 30 x 10(-8) M. Vectors expressing DHFR(Phe22/Ser31) or DHFR(Tyr22/Gly31) were even more protective and MTX-resistant CFU-C were observed up to 1 x 10(-5) M MTX. Three-day suspension cultures in the presence of 10-20 x 10(-8) M MTX resulted in significant selection of mutDHFR-transduced CFU-C. The percentage of CFU-C resistant to 10 x 10(-8) M MTX increased fourfold to 20-fold and provirus-containing CFU-C increased from 27% to 79-100%. CONCLUSION Gene transfer of DHFR using suitable retroviral backbones and DHFR mutants significantly increases MTX resistance of human CFU-C and allows efficient in vitro selection of transduced cells using a short-term selection procedure.
Collapse
Affiliation(s)
- Roland Meisel
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101:2099-114. [PMID: 12511419 DOI: 10.1182/blood-2002-07-2314] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent conceptual and technical improvements have resulted in clinically meaningful levels of gene transfer into repopulating hematopoietic stem cells. At the same time, evidence is accumulating that gene therapy may induce several kinds of unexpected side effects, based on preclinical and clinical data. To assess the therapeutic potential of genetic interventions in hematopoietic cells, it will be important to derive a classification of side effects, to obtain insights into their underlying mechanisms, and to use rigorous statistical approaches in comparing data. We here review side effects related to target cell manipulation; vector production; transgene insertion and expression; selection procedures for transgenic cells; and immune surveillance. We also address some inherent differences between hematopoiesis in the most commonly used animal model, the laboratory mouse, and in humans. It is our intention to emphasize the need for a critical and hypothesis-driven analysis of "transgene toxicology," in order to improve safety, efficiency, and prognosis for the yet small but expanding group of patients that could benefit from gene therapy.
Collapse
Affiliation(s)
- Christopher Baum
- Department of Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Trarbach T, Greifenberg S, Bardenheuer W, Elmaagacli A, Hirche H, Flasshove M, Seeber S, Moritz T. Optimized retroviral transduction protocol for human progenitor cells utilizing fibronectin fragments. Cytotherapy 2003; 2:429-38. [PMID: 12044223 DOI: 10.1080/146532400539378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Retroviral transduction in the presence of fibronectin (FN) fragments has proven an efficient and clinically-applicable procedure for gene transfer into hematopoietic cells. So far, FN-based transduction protocols have been optimized primarily for transduction of stem cells, whereas for several therapeutic applications transduction of clonogenic progenitors (CFU) may be sufficient. METHODS Transduction protocols for CFU were optimized by evaluating the effect of growth factors, timing of retroviral transduction, CD34-selection and heparin, using a neomycin-phosphotransferase (neo(R))-expressing retroviral vector. RESULTS The presence of multiple growth factors during prestimulation and transduction, including the differentiating cytokines G-CSF or GM-CSF, substantially enhanced transduction of CFU. Best results were achieved when 24 h of prestimulation were followed by a 24-48 h transduction period in the presence of the CH-296 FN-fragment and IL-3, IL-11, SCF, erythropoietin (EPO), and GM-CSF. With this proto-col we observed highly efficient transduction of BM-derived CFU (90.7 +/- 8.8 % G 418-resistant colonies), even with retrovirus preparations of moderate infectious titer (5 x 10(4) - 2 x 10(5) CFU/mL). The number of CFU increased on average 2.6-fold (range 1.5-3.8) during the transduction procedure. Selection of CD34(+) cells prior to transduction did not improve transduction efficiency. Heparin, even in concentrations as low as 2.0 microg/mL, significantly inhibited transduction of CFU on FN-fragments. DISCUSSION An optimized protocol for retroviral gene transfer into human clonogenic progenitor cells that allows highly efficient transduction, even with moderate titer retroviral vectors, is presented.
Collapse
Affiliation(s)
- T Trarbach
- Department of Internal Medicine, West German Cancer Center, University of Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Scherr M, Battmer K, Blömer U, Schiedlmeier B, Ganser A, Grez M, Eder M. Lentiviral gene transfer into peripheral blood-derived CD34+ NOD/SCID-repopulating cells. Blood 2002; 99:709-12. [PMID: 11781260 DOI: 10.1182/blood.v99.2.709] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports a lentiviral gene transfer protocol for efficient transduction of adult human peripheral blood (PB)-derived CD34+ NOD/SCID-repopulating cells (SRCs) using vesicular stomatitis virus-G protein (VSV-G)-pseudotyped lentiviruses encoding for enhanced green fluorescence protein (eGFP). Lentiviral stocks were concentrated by anion exchange chromatography, and transduction was performed under serum-free conditions at a multiplicity of infection (MOI) between 3 and 50. Similar transduction efficiencies were achieved in the presence and absence of cytokines. Transduction of PB-derived CD34+ cells at a MOI of 3 resulted in gene transfer efficiencies into SRCs of 9.2% and 12.0% in the absence and presence of cytokines, respectively. Using improved lentiviral vectors, transduction frequency varied between 42.0% (MOI 10) and 36.0% (MOI 50) with multilineage transgene expression within SRC-derived myeloid and lymphoid cells. The protocol described can be adapted for clinical application of lentiviral gene transfer into PB-derived CD34+ cells from adult patients.
Collapse
Affiliation(s)
- Michaela Scherr
- Hannover Medical School, Department Hematology and Oncology, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Pollok KE, van Der Loo JC, Cooper RJ, Hartwell JR, Miles KR, Breese R, Williams EP, Montel A, Seshadri R, Hanenberg H, Williams DA. Differential transduction efficiency of SCID-repopulating cells derived from umbilical cord blood and granulocyte colony-stimulating factor-mobilized peripheral blood. Hum Gene Ther 2001; 12:2095-108. [PMID: 11747599 DOI: 10.1089/10430340152677430] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gene transfer efficiency into nonobese diabetic/severe combined immunodeficient (NOD/SCID)-repopulating cells (SRCs) derived from umbilical cord blood (UCB) (n = 11 NOD/SCID mice) and granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood (MPB) (n = 64 NOD/SCID mice) was compared using a clinically relevant protocol and a retrovirus vector expressing the enhanced green fluorescent protein (EGFP). At 6-9 weeks after transplantation, the frequency of transduced human cells in the bone marrow (BM) (40.5% +/- 2.4% [mean +/- SE]) and spleen (SPL) (36.4% +/- 3.2%) in recipients of UCB cells was significantly higher (p < 0.001) than that observed in the BM (2.2% +/- 1.8%) and SPL (2.0% +/- 2.6%) in recipients of MPB. In subsequent studies, MPB was cultured for 2-8 days in cytokines prior to transduction to determine if longer prestimulation was required for optimal gene transfer. A significant increase in gene transfer into CD45(+) human cells and clonogenic cells derived from MPB SRCs was observed when cells were prestimulated for 6 days compared to 2 days prior to transduction (p = 0.019). However, even after 6 days of prestimulation, transduction was still significantly less than UCB. A substantial discrepancy exists in the ability to introduce genes effectively via retrovirus vectors into SRCs derived from MPB as compared to UCB.
Collapse
Affiliation(s)
- K E Pollok
- Herman B Wells Center for Pediatric Research, Riley Hospital for Children, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carstanjen D, Dutt P, Moritz T. Heparin inhibits retrovirus binding to fibronectin as well as retrovirus gene transfer on fibronectin fragments. J Virol 2001; 75:6218-22. [PMID: 11390626 PMCID: PMC114340 DOI: 10.1128/jvi.75.13.6218-6222.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibronectin fragments have been shown to improve retrovirus gene transfer efficiency by binding retrovirus and target cells. Using a novel virus adhesion assay, we confirmed binding of type C oncoretrovirus vectors to the heparin II domain of fibronectin and demonstrated inhibition of viral binding and gene transfer by heparin.
Collapse
Affiliation(s)
- D Carstanjen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | |
Collapse
|
13
|
Wagner T, Fritsch G, Thalhammer R, Höcker P, Lanzer G, Lechner K, Geissler K. IL-10 increases the number of CFU-GM generated by ex vivo expansion of unmanipulated human MNCs and selected CD34+ cells. Transfusion 2001; 41:659-66. [PMID: 11346703 DOI: 10.1046/j.1537-2995.2001.41050659.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ex vivo expansion strategies with different cytokine combinations are currently used by several groups as a means of increasing the number of HPCs for a variety of special clinical applications. Because there is little information on the potential role of IL-10 in such ex vivo expansion models, the effect of this cytokine on the generation of myeloid progenitor cells in suspension cultures was investigated. STUDY DESIGN AND METHODS On the basis of data from the literature and from new experiments, the combination of SCF and IL-3 at concentrations of 100 ng per mL and 100 U per mL, respectively, was chosen as the standard cocktail. The addition of IL-10 to such cultures resulted in a marked and dose-dependent potentiation of myeloid progenitor cell production. RESULTS Using unmanipulated leukapheresis components from 13 individuals (including lymphoma and cancer patients and normal donors), the expansion multiple of CFU-GM after 14 days as compared with pre-expansion values was 9.54 +/- 2.31 times by SCF/IL-3 and 46.38 +/- 7.37 times by the combination of SCF/IL-3 and 100 ng per mL of IL-10 (p<0.001). IL-10 also potentiated CFU-GM generation from selected CD34 PBMNCs (n = 9) with an expansion of 17.22 +/- 7.04 times versus 45.67 +/- 16.78 times using the SCF/IL-3 and SCF/IL-3/IL-10 combination, respectively (p<0.05). Moreover, expansion-promoting effects of IL-10 were observed in liquid cultures containing MNCs from bone marrow (n = 4) and cord blood (n = 3), but did not reach statistical significance because of the small number of samples. CONCLUSION These results suggest IL-10 as a useful cytokine to optimize progenitor cell-expansion strategies for clinical application.
Collapse
Affiliation(s)
- T Wagner
- Department of Blood Group Serology and Transfusion Medicine, University Clinics of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Interest in cord blood stem cells was raised because of the possibility, now realised, of their use in clinical transplantation. The availability of only limited numbers of stem cells in cord blood compared to bone marrow or peripheral blood apheresis after cell mobilisation, led to experimental approaches that first aimed to characterise and then manipulate the stem cells present in cord blood. Their phenotypical and functional characteristics are not identical to those of stem cells in the bone marrow or those cells mobilised into the circulation. The cells selected for phenotype plus Go status show the higher capacity to generate progenitor cells in vitro and will offer the opportunity for mechanistic studies of stem cell self-renewal and proliferation. Another important field of exploration is to investigate the capacity of stem cells in cord blood for differentiation to tissues other than haemopoietic and to establish whether haemopoietic and non-haemopoietic lineages originate in truly multipotential cells or in cells coexisting in cord blood, which have already been limited to differentiation into specific tissue.
Collapse
Affiliation(s)
- E A de Wynter
- Molecular Medicine Unit, St James University Hospital, Leeds, UK.
| | | |
Collapse
|
15
|
Hacein-Bey S, Gross F, Nusbaum P, Hue C, Hamel Y, Fischer A, Cavazzana-Calvo M. Optimization of retroviral gene transfer protocol to maintain the lymphoid potential of progenitor cells. Hum Gene Ther 2001; 12:291-301. [PMID: 11177565 DOI: 10.1089/10430340150218422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have attempted to improve retrovirus-mediated gene transfer efficacy into hematopoietic progenitor cells (HPCs) without causing them to lose their lymphoid potential. Highly purified CD34(+) cells on CH-296 fibronectin fragments have been transduced with three different cytokine combinations. Murine CD2 was used as a marker gene. Transgene expression was assayed by FACS analysis shortly after transduction of CD34(+) cells and after long-term culture (LTC) extended by differentiation of various lymphoid lineages: NK cells, B cells, and dendritic cells. Compared with the historical cytokine mix, i.e., SCF (stem cell factor) + IL-3 (interleukin 3) + IL-6, the combination SCF + FL (Flt-3 ligand) + M-GDF (megakaryocyte growth and differentiation factor) + IL-3 significantly improved the total number of viable cells and CD34(+) cells after transduction and the long term-cultured progenitors after 6 weeks. In addition, the combination of SCF + FL + M-GDF + IL-3 maintained more efficiently the lymphoid potential of the progeny of transduced long term-cultured CD34(+) cells, as attested by the significantly higher number of CD56(+), CD19(+), and CD1a(+) cells recovered when FL and M-GDF were added to SCF + IL-3. Thus, even though additional improvements may still be needed in transduction of HPCs, these conditions were adopted for a clinical trial of gene therapy for X-linked severe combined immunodeficiency.
Collapse
Affiliation(s)
- S Hacein-Bey
- Unité Inserm U429, Laboratoire de Thérapie Génique, Hôpital Necker, 75743 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hughes VC. Cord Blood Transplantation: Hallmarks of the 20th Century. Lab Med 2000. [DOI: 10.1309/46w4-d2tv-2gev-hq50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
17
|
Smith FO, Thomson BG. Umbilical cord blood collection, banking, and transplantation: current status and issues relevant to perinatal caregivers. Birth 2000; 27:127-35. [PMID: 11251491 DOI: 10.1046/j.1523-536x.2000.00127.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As a result of recent media coverage of cord blood transplantation, expectant parents increasingly ask perinatal caregivers about the possibility of collecting and saving their newborn child's umbilical cord blood. Umbilical cord blood has been used as a source of hematopoeitic stem cells for the treatment of human disease since 1988. As a result of these initial successes, cord blood collection, banking, and transplantation has become increasingly used worldwide, giving rise to several controversies. We have reviewed the current status of the indications for cord blood collection, the methods of collection, and safety issues related to the cyropreservation of cord blood units. In addition, the clinical success of cord blood transplants from related and unrelated donors is detailed. We have examined the major issues concerning cord blood transplantation as it exists in the year 2000 to provide insight into this exciting area of clinical investigation.
Collapse
Affiliation(s)
- F O Smith
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
18
|
Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, Kelly M, Naldini L, Dick JE. Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 2000; 1:566-73. [PMID: 10933981 DOI: 10.1006/mthe.2000.0077] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The major limitations of Moloney murine leukemia virus (MoMLV)-based vectors for human stem cell applications, particularly those requiring bone marrow (BM) stem cells, include their requirement for mitosis and retroviral receptor expression. New vectors based upon lentiviruses such as HIV-1 exhibit properties that may circumvent these problems. We report that novel third-generation, self-inactivating lentiviral vectors, expressing enhanced green fluorescent protein (EGFP) and pseudotyped with vesicular stomatitis virus G glycoprotein (VSV-G), can efficiently transduce primitive human repopulating cells derived from human BM and cord blood (CB) tested by the SCID-repopulating cell (SRC) assay. Highly purified CD34+ CD38- CB or BM cells were efficiently transduced (4-69%) and stably expressed in EGFP for 40 days in culture following infection for only 24 h without fibronectin, polybrene, or cytokines. Nonobese diabetic/severe combined immune-deficient (NOD/SCID) mice transplanted with transduced cells from either CB or BM donors were well engrafted, demonstrating maintenance of SRC during the infection procedure. Serially obtained femoral BM samples indicated that the proportion of EGFP+ cells within both myeloid and lymphoid lineages was maintained or even increased over time, averaging 42.3 +/- 6.6% for BM donors and 23.3 +/- 7.2% for CB at 12 weeks. Thus, the third-generation lentivectors readily transduce human CB and BM stem cells, under minimal conditions of ex vivo culture, where MoMLV-based vectors are ineffective. Since CB is inappropriate for most therapeutic applications, the efficient maintenance and transduction of BM-derived SRC during the short infection procedure are notable advantages of lentivectors.
Collapse
Affiliation(s)
- G Guenechea
- Hospital for Sick Children and Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fasouliotis SJ, Schenker JG. Human umbilical cord blood banking and transplantation: a state of the art. Eur J Obstet Gynecol Reprod Biol 2000; 90:13-25. [PMID: 10767505 DOI: 10.1016/s0301-2115(99)00214-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human umbilical cord blood has proven to be a feasible alternative source of hematopoietic stem cells for pediatric and some adult patients with major hematologic disorders. This has promoted the establishment of cord blood banks for use in unrelated transplants worldwide. The banking of umbilical cord blood offers many advantages: absence of donor risk, absence of donor attrition, immediate availability, and the ability to expand available donor pools in targeted ethnic and racial minorities currently underrepresented in all bone marrow registries. Preliminary clinical experience suggests that, due to the immunological immaturity of cord blood cells, graft versus host disease might be lower than when using bone marrow from adult donors and HLA restrictions might be less stringent. Techniques to improve the efficacy of blood banks are currently under investigation. Closed cord blood collection methods have proven to be superior to open in reducing the risk of microbial contamination. Efficient banking requires volume reduction of cord blood units without significant loss of progenitor cells, in order to decrease storage space and cost, and this may be achieved by using the separation techniques. Cryopreservation and thawing techniques have been established and do not seem to affect the viability and progenitor cell recovery or the feasibility of CD34(+) selection and ex vivo expansion. Nevertheless, many scientific, ethical, and social questions have arisen in connection with cord blood banking that need to be addressed.
Collapse
Affiliation(s)
- S J Fasouliotis
- Department of Obstetrics and Gynecology, Hebrew University, Hadassah Medical Center, P.O. Box 12000, Jerusalem, Israel
| | | |
Collapse
|
20
|
Verhasselt B, Naessens E, De Smedt M, Plum J. Efficiency of transgenic T cell generation from gene-marked cultured human CD34+ cord blood cells is determined by their maturity and the cytokines present in the culture medium. Gene Ther 2000; 7:830-6. [PMID: 10845720 DOI: 10.1038/sj.gt.3301176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Success of gene therapy for diseases affecting the T cell lineage depends on the thymic repopulation by genetically engineered hematopoietic progenitor cells (HPC). Although it has been shown that retrovirally transduced HPC can repopulate the thymus, little information is available on the effect of the culture protocol. Moreover, for expansion of the number of HPC, cytokine supplemented culture is needed. Here, we transduced purified human umbilical cord blood (CB) CD34+ cells in cultures supplemented with various combinations of the cytokines thrombopoietin (TPO), stem cell factor (SCF), flt3/flk-2 ligand (FL), interleukin-3 (IL-3) and IL-6, and investigated thymus-repopulating ability of gene-marked HPC in vitro. Irrespective of the cytokine cocktail used, transduced CD34+CD38- CB cells, expressing the marker green fluorescent protein (GFP) encoded by the MFG-GFP retrovirus, have both superior proliferative and thymus-repopulating potential compared with transduced CD34+CD38+ CB cells. Effectively transduced GFP+CD34+CD38- HPC, cultured for 3 or 17 days, more readily generated T cells than GFP- HPC from the same culture. The reverse was true in the case of CD34+CD38+ HPC cultures. Finally, our results indicate that the number of GFP+ T cell progenitors actually increased during culture of CD34+CD38- HPC, in a magnitude that is determined by the cytokine cocktail used during culture.
Collapse
Affiliation(s)
- B Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, University of Ghent, University Hospital of Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Lu L, Wang LS, Cooper RJ, Liu HJ, Turner K, Weich N, Broxmeyer HE. Suppressive effects of TNF-alpha, TGF-beta1, and chemokines on megakaryocytic colony formation in CD34+ cells derived from umbilical cord blood compared with mobilized peripheral blood and bone marrow. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:195-204. [PMID: 10813532 DOI: 10.1089/152581600319405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD34+ cells from human umbilical cord blood (CB) were isolated and investigated for megakaryocytic (MK) colony formation in response to recombinant human (rh) stimulatory and suppressive cytokines and compared with their counterparts in normal BM and G-CSF-mobilized peripheral blood (mPBL). First, we observed that IL-11 by itself at any dosage had no stimulator activity on MK colony formation derived from CD34+ cells in CB, mPBL, and BM. IL-3, steel factor (SLF), or thrombopoietin (Tpo) alone stimulated numbers of colony-forming unit-megakaryocyte (CFU-MK) in a dose-dependent fashion. Maximum growth of MK progenitor cells was noted in the presence of a combination of cytokines: IL-11, IL-3, SLF, and Tpo. The frequency of CFU-MK in CB and mPBL was significantly greater than that in BM, and the size of colonies in CB and mPBL was significantly greater than that in BM, and the size of colonies was larger as well. In addition, an increased number of big mixed colonies containing MK were observed in CB and mPBL. In the presence of IL-11, IL-3, SLF, and Tpo, CFU-MK derived from CB, mPBL, and BM was suppressed by tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta1 (TGF-beta1). CFU-MK derived from normal BM was inhibited by some chemokines evaluated, whereas CFU-MK derived from CB was suppressed only by platelet factor-4 (PF-4), IFN-inducible protein-10 (IP-10), Exodus-1, Exodus-2, and Exodus-3, but to a lesser degree. In CB, unlike granulocyte-macrophage (CFU-GM), erythroid (BFU-E), high-proliferative potential (HPP-CFC), or multipotential (CFU-GEMM) progenitors, at least a subpopulation of MK progenitors are in S-phase. Therefore, CB MK progenitors respond to the suppressive effects of some members of the chemokine family. Similar results were noted for burst-forming unit-MK (BFU-MK). Our results indicate that CB and mPBL are rich sources of MK progenitors and that MK progenitors in CB are responsive to the suppressive effects of TNF-alpha and TGF-beta1 and some members of the chemokine family.
Collapse
Affiliation(s)
- L Lu
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202-5254, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hennemann B, Chuo JY, Schley PD, Lambie K, Humphries RK, Eaves CJ. High-efficiency retroviral transduction of mammalian cells on positively charged surfaces. Hum Gene Ther 2000; 11:43-51. [PMID: 10646638 DOI: 10.1089/10430340050016148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The efficiency of retroviruses as transducing agents has been appreciated for many years, particularly for hematopoietic cell targets for which alternative strategies applicable to adherent cells are not effective. Advances in vector design, pseudotyping, and infection conditions have eliminated the need to cocultivate the target cells with virus-producing cells. Nevertheless, improvements are still needed for many applications, including those with a therapeutic or clinical cell-tracking objective. In this study we show that more positively charged surfaces, including those designed for the culture of anchorage-dependent cells, allow measurable levels of adhesion by different pseudotypes of retroviruses, which can result in increased gene transfer efficiencies to a variety of target cells including normal primary human hematopoietic cells as well as human leukemic cell lines and rat and murine fibroblasts. In the experiments with primary human cells, equal aliquots of enriched CD34+ cord blood cells were first stimulated for 2 days with cytokines (Flt3 ligand, Steel factor, IL-3, IL-6, and G-CSF) and then exposed for 4 days to a green fluorescent protein (GFP)- and Neo(r)-encoding retrovirus produced in PG13 cells. Both the final yield (approximately 300% relative to initial numbers), and the proportion (approximately 60%) of transduced CD34+ cells, colony-forming cells, and long-term culture-initiating cells were the same for cells infected either in tissue culture dishes or in fibronectin-coated petri dishes. Similar proportions (approximately 10%) and absolute yields of GFP+ human cells were also found in multilineage engrafted NOD/SCID mice assessed 6 to 8 weeks after being transplanted with these two types of transduced, but unselected, cells. These findings suggest a new and simpler approach for achieving high gene transfer efficiencies to hematopoietic cells.
Collapse
Affiliation(s)
- B Hennemann
- British Columbia Cancer Agency and Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Poznansky MC, La Vecchio J, Silva-Arietta S, Porter-Brooks J, Brody K, Olszak IT, Adams GB, Ramstedt U, Marasco WA, Scadden DT. Inhibition of human immunodeficiency virus replication and growth advantage of CD4+ T cells and monocytes derived from CD34+ cells transduced with an intracellular antibody directed against human immunodeficiency virus type 1 Tat. Hum Gene Ther 1999; 10:2505-14. [PMID: 10543615 DOI: 10.1089/10430349950016843] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current clinical gene therapy protocols for the treatment of human immunodeficiency virus type 1 (HIV-1) infection involve the ex vivo transduction and expansion of CD4+ T cells derived from HIV-positive patients at a late stage in their disease (CD4+ cell count <400 cells/mm3). We examined the efficiency of transduction and transgene expression in adult bone marrow (BM)- and umbilical cord blood (UCB)-derived CD34+ cells induced to differentiate into T cells and monocytes in vitro with an MuLV-based vector encoding the neomycin resistance gene and an intracellular antibody directed against the Tat protein of HIV-1 (sFvtat1-Ckappa). The expression of the marker gene and the effects of antiviral construct on subsequent challenge with monocytotropic and T cell-tropic HIV-1 isolates were monitored in vitro in purified T cells and monocytes generated in culture from the transduced CD34+ cells. Transduction efficiencies of CD34+ cells ranged between 22 and 27%. Differentiation of CD34+ cells into T cells or monocytes was not significantly altered by the transduction process. HIV-1 replication in monocytes and CD4+ T cells derived from CD34+ cells transduced with the intracellular antibody gene was significantly reduced in comparison with the degree of HIV replication seen in monocytes and CD4+ T cells derived from CD34+ cells transduced with the neomycin resistance gene alone. Further, T cells and monocytes derived from CD34+ cells transduced with the intracellular antibody gene were demonstrated to express the sFvtat1-Ckappa transgene by RT-PCR and had a selective growth advantage in cultures that had been challenged with HIV-1. These data demonstrate that sFvtat1-Ckappa inhibits HIV-1 replication in T cells and monocytes developing from CD34+ cells and supports the continuing development of a stem cell gene therapy for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- M C Poznansky
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, Boston 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pollok KE, van der Loo JC, Cooper RJ, Kennedy L, Williams DA. Costimulation of transduced T lymphocytes via T cell receptor-CD3 complex and CD28 leads to increased transcription of integrated retrovirus. Hum Gene Ther 1999; 10:2221-36. [PMID: 10498253 DOI: 10.1089/10430349950017202] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Primary human T lymphocytes were transduced at high efficiency with the Moloney murine leukemia virus (Mo-MuLV) vector, LNC-mB7-1, in which an internal cytomegalovirus (CMV) promoter drives expression of the murine B7-1 cDNA. Compared with transduced T cells expanded in IL-2 or reactivated with soluble antibodies to CD3 or CD28, transgene expression was significantly increased after activation on immobilized anti-CD3 antibodies (CD3i) or by simultaneous activation on immobilized anti-CD3 and anti-CD28 antibodies (CD3i/CD28i). A similar pattern of transgene expression was observed in T cells transduced with Mo-MuLV LNC-EGFP. Proviral copy number was maintained in LNC-mB7-1-transduced T cells expanded in IL-2 or reactivated on CD3i/CD28i. Substantial increases in LNC-mB7-1 steady state mRNA in reactivated T lymphocytes, compared with those maintained in IL-2, correlated with increased transcription of the LNC-mB7-1 proviral DNA. Furthermore, T cells transduced with the Mo-MuLV ZIPPGK-mADA, in which the mADA cDNA is driven by an internal human phosphoglycerate kinase (PGK) promoter, showed increases in steady state ZIPPGK-mADA RNA on reactivation. High levels of transgene expression were evident irrespective of cell cycle position in both CD4+ and CD8+ lymphocytes. After reactivation, increases in LNC-mB7-1 mRNA were observed in the presence of the protein synthesis inhibitor cycloheximide, indicating that proteins involved in upregulating transgene expression preexisted in transduced lymphocytes. Induction of transgene expression on CD3i/CD28i showed a dose-dependent decrease in transgene expression when incubated with selective protein kinase inhibitors. These data provide new insights into the mechanisms governing transgene expression driven by Mo-MuLV constructs containing internal promoters in transduced primary T lymphocytes.
Collapse
Affiliation(s)
- K E Pollok
- Section of Pediatric Hematology/Oncology, Herman B Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
25
|
Amado RG, Mitsuyasu RT, Symonds G, Rosenblatt JD, Zack J, Sun LQ, Miller M, Ely J, Gerlach W. A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme. Hum Gene Ther 1999; 10:2255-70. [PMID: 10498256 DOI: 10.1089/10430349950017239] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- R G Amado
- Department of Medicine and UCLA AIDS Institute, Los Angeles, CA 90095-1678, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Medin JA, Takenaka T, Carpentier S, Garcia V, Basile JP, Segui B, Andrieu-Abadie N, Auge N, Salvayre R, Levade T. Retrovirus-mediated correction of the metabolic defect in cultured Farber disease cells. Hum Gene Ther 1999; 10:1321-9. [PMID: 10365663 DOI: 10.1089/10430349950018003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Farber disease is a rare severe lysosomal storage disorder due to a deficient activity of the enzyme acid ceramidase (AC). Patients have granulomas along with lipid-laden macrophages that accumulate in a number of tissues, leading to multiple diverse clinical symptoms. There is no therapy for the disorder and most patients succumb to the disease in early childhood. The severity of the disease progression seems to correlate with the amount of the accumulated ceramide substrate. Since the cDNA for human AC has been elucidated we sought to establish if genetic transfer of this sequence would lead to enzymatic and, especially, functional correction of the catabolic defect in Farber patient cells. To do this, a novel amphotropic recombinant retrovirus was constructed that engineers transfer of the human AC cDNA. On infection of patient fibroblasts, AC enzyme activity in cell extracts was completely restored. Further, substrate-loading assays of intact living cells showed a fully normalized catabolism of lysosomal ceramide. Lastly, as reported for some other corrected enzymatic defects of lysosomes, metabolic cooperativity was seen, in that functionally corrected patient fibroblasts secreted AC that was taken up through the mannose 6-phosphate receptor and used by uncorrected fibroblasts as well as recipient Farber lymphoblastoid cells. This overall transduction and uptake scenario for Farber disease allows future treatment of this severe disorder to be envisioned using gene transfer approaches.
Collapse
Affiliation(s)
- J A Medin
- Department of Medicine, University of Illinois at Chicago, 60607-7173, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Orlic D, Girard LJ, Anderson SM, Barrette S, Broxmeyer HE, Bodine DM. Amphotropic retrovirus transduction of hematopoietic stem cells. Ann N Y Acad Sci 1999; 872:115-23; discussion 123-4. [PMID: 10372116 DOI: 10.1111/j.1749-6632.1999.tb08458.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mice treated with cytokines for 5 days have large numbers of hematopoietic stem cells (HSCs) in their peripheral blood and bone marrow at 1 and 14 days after the last injection. We fractionated the HSCs from the bone marrow of these mice using elutriation at flow rates of 25, 30 and 35 ml/min. The subpopulations of HSCs from cytokine-treated mice show a 3- to 8-fold higher level of mRNA encoding the amphotropic retrovirus receptor (amphoR) compared with the corresponding HSC subpopulation from untreated mouse bone marrow. In an earlier study with mouse HSCs we showed a direct correlation between high levels of amphoR mRNA and efficient retrovirus transduction. We have now utilized our gene transfer protocol to assay amphotropic retrovirus transduction efficiency using HSCs from the bone marrow of mice treated with granulocyte-colony stimulating factor/stem cell factor (G-CSF/SCF). To extend these findings to a more clinically relevant protocol we analyzed the amphoR mRNA levels in HSCs from human cord blood and adult bone marrow. The amphoR mRNA level in HSCs from human bone marrow and fresh cord blood was detectable at an extremely low level compared with the HSC population in cryopreserved cord blood samples. The 12- to 22-fold increase in amphoR mRNA in HSCs from cryopreserved cord blood renders these HSCs likely candidates for high efficiency, gene transfer.
Collapse
Affiliation(s)
- D Orlic
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
28
|
Srour EF, Abonour R, Cornetta K, Traycoff CM. Ex vivo expansion of hematopoietic stem and progenitor cells: are we there yet? JOURNAL OF HEMATOTHERAPY 1999; 8:93-102. [PMID: 10349904 DOI: 10.1089/106161299320370] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ex vivo expansion of hematopoietic stem and progenitor cells is a very ambitious idea that would have major implications in the areas of stem cell transplantation and somatic gene therapy. However, successful ex vivo expansion has evaded and frustrated scientists for a number of years. The goal of ex vivo expansion is to induce cell division and proliferation of stem cells while maintaining their primary functional characteristic, namely, their ability to engraft and sustain long-term hematopoiesis. Only when a balance between these two requirements is reached can ex vivo expansion of stem cells be considered successful. Establishing such a balance has not been easy. However, many lessons have been learned along the way, and today we have a more profound understanding of the potential obstacles facing ex vivo expansion than we did only a few years ago. In this review, we discuss these obstacles and evaluate the current status of ex vivo expansion of stem and progenitor cells both from the perspective of basic stem cell biology and from the viewpoint of clinical utility of these cells in transplantation.
Collapse
Affiliation(s)
- E F Srour
- Indiana Elks Cancer Research Center, Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5121, USA
| | | | | | | |
Collapse
|
29
|
Winkler A, Kiem HP, Shields LE, Sun QH, Andrews RG. Gene transfer into fetal baboon hematopoietic progenitor cells. Hum Gene Ther 1999; 10:667-77. [PMID: 10094210 DOI: 10.1089/10430349950018742] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We studied hematopoietic progenitors from fetal baboon blood, marrow, and liver at four time points (125, 140, 160, and 175 days) during the third trimester (gestation approximately 180 days) to determine if fetal baboons might be an appropriate model for in utero gene therapy of hematopoietic stem cells (HSCs). Cells were studied for expression of CD34, CD33, CD38, and HLA-DR, for progenitor content in colony-forming cell assays, and for susceptibility of CD34+ progenitors to retrovirus-mediated gene transfer. Throughout the third trimester, the frequency of CD34+ progenitors in blood and marrow appears to remain unchanged at approximately 0.6 and 5.0%, respectively. In liver, progenitors progressively decrease to undetectable levels by day 175. The proportion of fetal baboon bone marrow and liver CD34+ cells expressing CD38 and HLA-DR appears to increase with increasing fetal age, similar to changes reported for human cord blood CD34+ cells. In fetal baboon blood the proportion of CD34+ cells expressing CD33 appears to decrease with increasing gestational age, also similar to changes reported for human cord blood cells. Progenitors from human cord blood and baboon fetal tissues were similarly susceptible to transduction by the gibbon ape leukemia pseudotyped retroviral vector LAPSN(PG13) containing the genes for human placental alkaline phosphatase (AP) and the bacterial neomycin phosphotransferase (neo). Fetal baboon and human hematopoietic progenitor cells undergo similar phenotypic changes during the third trimester of fetal development and are similarly susceptible to retrovirus-mediated gene transfer. The fetal baboon may be a model in which approaches to mobilization and gene transfer into fetal HSCs can be studied.
Collapse
Affiliation(s)
- A Winkler
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
30
|
Yoshikawa Y, Ikebuchi K, Ohkawara J, Hirayama F, Yamaguchi M, Sato N, Mori KJ, Kasai M, Sekiguchi S. A clonal culture assay for human cord blood lymphohematopoietic progenitors. Hum Immunol 1999; 60:75-82. [PMID: 9952030 DOI: 10.1016/s0198-8859(98)00094-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We describe a two-step clonal culture assay system for human lymphohematopoietic progenitors present in umbilical cord blood which are capable of differentiation along both myeloid and B-lymphoid lineages. Human cord blood CD34+ cells were plated in methylcellulose in the presence of stem cell factor (SCF), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-7, and the murine stroma cell line, MS-5. The growing primary colonies were individually examined for their potentials to differentiate along both myeloid and B-lymphoid lineages by reculturing aliquots of the primary colonies in methylcellulose culture containing IL-3, G-CSF and erythropoietin (Epo), and on a monolayer of MS-5 in the presence of SCF and G-CSF. Approximately 10-15% of the primary colonies generated various combinations of myeloid cells and CD19+ sIgM+ cells. Subsequent studies using micromanipulated single CD34+ cells unequivocally demonstrated the clonal origin of the lymphohematopoietic progenitors. This culture system should prove valuable for elucidation of the mechanisms regulating early stages of human lymphohematopoiesis.
Collapse
Affiliation(s)
- Y Yoshikawa
- Hokkaido Red Cross Blood Center, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bunnell BA, Kluge KA, Lee-Lin SQ, Byrne ER, Orlic D, Metzger ME, Agricola BA, Wersto RP, Bodine DM, Morgan RA, Donahue RE. Transplantation of transduced nonhuman primate CD34+ cells using a gibbon ape leukemia virus vector: restricted expression of the gibbon ape leukemia virus receptor to a subset of CD34+ cells. Gene Ther 1999; 6:48-56. [PMID: 10341875 DOI: 10.1038/sj.gt.3300808] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transduction efficiencies of immunoselected rhesus macaque (Macaca mulatta) CD34+ cells and colony-forming progenitor cells based on polymerase chain reaction (PCR) analysis were comparable for an amphotropic Moloney murine leukemia virus (MLV) retroviral vector and a retroviral vector derived from the gibbon ape leukemia virus (GaLV) packaging cell line, PG13. On performing autologous transplantation studies using immunoselected CD34+ cells transduced with the GaLV envelope (env) retroviral vector, less than 1% of peripheral blood (PB) contained provirus. This was true whether bone marrow (BM) or cytokine-mobilized PB immunoselected CD34+ cells were reinfused. This level of marking was evident in two animals whose platelet counts never fell below 50,000/microliter and whose leukocyte counts had recovered by days 8 and 10 after having received 1.7 x 10(7) or greater of cytokine-mobilized CD34+ PB cells/kg. Reverse transcriptase(RT)-PCR analysis of CD34+ subsets for both the GaLV and amphotropic receptor were performed. The expression of the GaLV receptor was determined to be restricted to CD34+ Thy-1+ cells, and both CD34+ CD38+ and CD34+ CD38dim cells, while the amphotropic receptor was present on all CD34+ cell subsets examined. Our findings suggest that, in rhesus macaques, PG13-derived retroviral vectors may only be able to transduce a subset of CD34+ cells as only CD34+ Thy-1+ cells express the GaLV receptor.
Collapse
Affiliation(s)
- B A Bunnell
- Clinical Gene Therapy Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gene Therapy for Severe Combined Immunodeficiencies. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Ye ZQ, Qiu P, Burkholder JK, Turner J, Culp J, Roberts T, Shahidi NT, Yang NS. Cytokine transgene expression and promoter usage in primary CD34+ cells using particle-mediated gene delivery. Hum Gene Ther 1998; 9:2197-205. [PMID: 9794204 DOI: 10.1089/hum.1998.9.15-2197] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Induction or short-term transgenic expression of specific cytokines, growth factors, or other candidate therapeutic genes in hematopoietic progenitor or stem cells is potentially applicable to gene therapy for cancer. In this study, we explored the application of a gene gun technique, as an alternative to viral vectors, for ex vivo gene transfer into and transient gene expression in highly enriched CD34+ cells derived from human umbilical cord blood. Twenty-four hours posttransfection, 32.6 to 1500 pg/l x 10(6) CD34+ cells of transient gene expression was routinely obtained for specific cytokine and reporter genes. Transgene expression at the single-cell level was revealed by X-Gal staining of lacZ cDNA-transfected CD34+ cells. Expression of four candidate therapeutic genes, namely human granulocyte-macrophage colony-stimulating factor, tumor necrosis factor alpha, interleukin 2, and interferon gamma, was detectable for 4 to 7 days in CD34+ cells. A human elongation factor 1alpha promoter/intron 1 transcription unit was identified as a strong cellular promoter for CD34+ cells, exhibiting strength similar to that of the commonly employed cytomegalovirus immediate-early promoter. These results suggest that the nonviral, gene gun technique offers an efficient alternative approach for transient transgenic studies of hematopoietic cells and may provide new possibilities for certain cancer gene therapy strategies using CD34+ cells.
Collapse
Affiliation(s)
- Z Q Ye
- Department of Pediatrics, University of Wisconsin-Madison, 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Travers JB, Murphy RC, Johnson CA, Pei Y, Morin SM, Clay KL, Barber LA, Hood AF, Morelli JG, Williams DA. Identification and pharmacological characterization of platelet-activating factor and related 1-palmitoyl species in human inflammatory blistering diseases. Prostaglandins Other Lipid Mediat 1998; 56:305-24. [PMID: 9990675 DOI: 10.1016/s0090-6980(98)00060-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Through its pro-inflammatory effects on leukocytes, endothelial cells, and keratinocytes, the lipid mediator platelet-activating factor (PAF) has been implicated in cutaneous inflammation. Although the 1-alkyl PAF species has been considered historically the most abundant and important ligand for the PAF receptor (PAF-R), other putative ligands for this receptor have been described including 1-acyl analogs of sn-2 acetyl glycerophosphocholines. Previous bioassays have demonstrated a PAF-like activity in lesions of the autoimmune blistering disease bullous pemphigoid. To assess the actual sn-2 acetyl glycerophosphocholine species that result in this PAF agonistic activity, we measured PAF and related sn-2 acetyl GPCs in fresh blister fluid samples from bullous pemphigoid and noninflammatory (suction-induced) bullae by mass spectrometry. We report the presence of 1-hexadecyl as well as the 1-acyl PAF analog 1-palmitoyl-2-acetyl glycerophosphocholine (PAPC) in inflammatory blister fluid samples. Because PAPC is the most abundant sn-2 acetyl glycerophosphocholine species found in all samples examined, the pharmacological effects of this species with respect to the PAF-R were determined using a model system created by transduction of a PAF-R-negative epidermoid cell line with the PAF-R. Radioligand binding and intracellular calcium mobilization studies indicated that PAPC is approximately 100x less potent than PAF. Though a weak agonist, PAPC could induce PAF biosynthesis and PAF-R desensitization. Finally, intradermal injections of PAF and PAPC into the ventral ears of rats demonstrated that PAPC was 100x less potent in vivo. These studies suggest possible involvement of PAF and related species in inflammatory bullous diseases.
Collapse
Affiliation(s)
- J B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis 46202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ahuja SS, Mummidi S, Malech HL, Ahuja SK. Human Dendritic Cell (DC)-Based Anti-Infective Therapy: Engineering DCs to Secrete Functional IFN-γ and IL-12. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.2.868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
An imbalance in the Th1- and Th2-type cytokine responses may allow certain microbes to modify the host response to favor their own persistence. We now show that infection/pulsing of human CD34+ peripheral blood hemopoietic progenitor cell-derived dendritic cells (DCs) with Leishmania donovani promastigotes, Histoplasma capsulatum, and Mycobacterium kansasii impairs the constitutive production of IL-12 from these cells. Thus, strategies aimed at modulating a dysregulated Th1/Th2 response to infection would be of great interest. To both augment the host immune response and deliver potent immunomodulatory cytokines such as IL-12 and IFN-γ, our goal is to develop a therapeutic strategy using genetically modified, microbial Ag-pulsed DCs. Toward developing such immunotherapies, we used retrovirus-mediated somatic gene transfer techniques to engineer human DCs to secrete biologically active IL-12 and IFN-γ. DCs pulsed with microbial antigens (e.g., leishmania and histoplasma Ags) were capable of inducing proliferative responses in autologous CD4+ lymphocytes. CD4+ lymphocytes cocultured with IL-12-transduced autologous DCs had enhanced Ag-specific proliferative responses compared with CD4+ lymphocytes cocultured with nontransduced or IFN-γ- transduced DCs. In this cell culture model system we demonstrate that IL-12 has a negative effect on IL-4 secretion that is independent of its ability to induce IFN-γ secretion. Taken together, these results indicate that IL-12-transduced DCs may be specifically suited in inducing or down-modulating Ag-specific Th1 or Th2 responses, respectively, and thus may be useful as adjunctive therapy in those intracellular infections in which a dominant Th1 response is critical for the resolution of infection.
Collapse
Affiliation(s)
- Seema S. Ahuja
- *University of Texas Health Science Center, San Antonio, TX 78284; and
| | - Srinivas Mummidi
- *University of Texas Health Science Center, San Antonio, TX 78284; and
| | - Harry L. Malech
- †Laboratory of Host Defenses, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892
| | - Sunil K. Ahuja
- *University of Texas Health Science Center, San Antonio, TX 78284; and
| |
Collapse
|
36
|
Marandin A, Dubart A, Pflumio F, Cosset FL, Cordette V, Chapel-Fernandes S, Coulombel L, Vainchenker W, Louache F. Retrovirus-mediated gene transfer into human CD34+38low primitive cells capable of reconstituting long-term cultures in vitro and nonobese diabetic-severe combined immunodeficiency mice in vivo. Hum Gene Ther 1998; 9:1497-511. [PMID: 9681421 DOI: 10.1089/hum.1998.9.10-1497] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Factors that may improve retroviral transduction of primitive human hematopoietic cells were studied using MFG-based vectors containing a LacZ gene and produced either by a murine (psi-Crip) or a human (Tasaf) cell line. Cord blood (CB) or bone marrow (BM) CD34+ cells were stimulated and transduced in the presence of three cytokines (interleukin 3 [IL-3], IL-6, and stem cell factor [SCF; c-Kit Ligand]). In the supernatant infection protocol, hematopoietic progenitor cells as measured by X-Gal staining of colony-forming unit cells (CFU-Cs) were transduced more effectively with Tasaf (20%) than with psi-Crip (8%). In contrast, there was no difference between these two cell lines in a coculture protocol. However, gene transfer into more primitive CD34+CD38- subsets and in LTC-IC-derived colonies was low. The use of a large number of cytokines including FLT3-L and PEG-rhMGDF increased the transduction efficiency into CD34+CD38(-)-derived CFU-Cs (35% by PCR) or LTC-ICs (10%). A virus pseudotyped with gibbon ape leukemia virus (GALV) envelope further improved gene transfer to 60 and 48% for LacZ+ CFU-C- and LTC-IC-derived colonies, respectively. These conditions of transduction allowed multilineage engraftment of primitive cord blood cells in NOD-SCID mice. Moreover, 10% (at least) of the human hematopoietic cells recovered from the marrow of these immunodeficient animals were transduced. These data suggest that the efficiency of transduction of human hematopoietic primitive cells can be significantly improved by judicious combinations of recombinant cytokines and high retroviral titers.
Collapse
Affiliation(s)
- A Marandin
- INSERM U 362, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mayani H, Lansdorp PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998; 16:153-65. [PMID: 9617891 DOI: 10.1002/stem.160153] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reported in 1989, studies by Broxmeyer, Gluckman, and colleagues demonstrated that umbilical cord blood (UCB) is a rich source of hematopoietic stem/progenitor cells (HSPC) and that UCB could be used in clinical settings for hematopoietic cell transplantation. Since then, a great interest has been generated on the biological characterization of these cells. Over the last nine years, several groups have focused on the study of UCB HSPC, addressing different aspects, such as the frequency of these cells in UCB, the identification of different HSPC subsets based on their immunophenotype, their ability to respond to hematopoietic cytokines, the factors that control their proliferation and expansion potentials, and their capacity to reconstitute hematopoiesis in animal models. Most of these studies have shown that significant functional differences exist between HSPC from UCB and adult bone marrow (i.e., the former possess higher proliferation and expansion potential than the latter). It is also noteworthy that genetic manipulation of UCB HSPC has been achieved by several groups and that genetically modified UCB cells have already been used in the clinic. In spite of the significant advances in the characterization of these cells, we are still in the process of trying to fully understand their biology, both at the cellular and the molecular levels. In the present article, we describe and discuss what is currently known about the biology of UCB HSPC.
Collapse
Affiliation(s)
- H Mayani
- Oncological Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | | |
Collapse
|
38
|
Pollok KE, Hanenberg H, Noblitt TW, Schroeder WL, Kato I, Emanuel D, Williams DA. High-efficiency gene transfer into normal and adenosine deaminase-deficient T lymphocytes is mediated by transduction on recombinant fibronectin fragments. J Virol 1998; 72:4882-92. [PMID: 9573255 PMCID: PMC110042 DOI: 10.1128/jvi.72.6.4882-4892.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary human T lymphocytes are powerful targets for genetic modification, although the use of these targets in human gene therapy protocols has been hampered by low levels of transduction. We have shown previously that significant increases in the transduction of hematopoietic stem and progenitor cells with retroviral vectors can be obtained by the colocalization of the retrovirus and target cells on specific fibronectin (FN) adhesion domains (H. Hanenberg, X. L. Xiao, D. Dilloo, K. Hashino, I. Kato, and D. A. Williams, Nat. Med. 2:876-882, 1996). We studied the transfer of genes into primary T lymphocytes by using FN-assisted retroviral gene transfer. Activated T lymphocytes were infected for three consecutive days on the recombinant FN fragment CH-296 with a retroviral vector encoding the murine B7-1 protein. Transduced lymphocytes were analyzed for murine B7-1 expression, and it was found that under optimal conditions, 80 to 89% of the CD3+ lymphocytes were transduced. Gene transfer was predominantly augmented by the interaction between VLA-4 on the T lymphocytes and the FN adhesion site CS-1. Adenosine deaminase (ADA)-deficient primary T lymphocytes transduced on CH-296 with a retrovirus encoding murine ADA (mADA) exhibited levels of mADA activity severalfold higher than the levels of the endogenous human ADA protein observed in normal human T lymphocytes. Strikingly, the long-term expression of the transgene was dependent on the activation status of the lymphocytes. This approach will have important applications in human gene therapy protocols targeting primary T lymphocytes.
Collapse
Affiliation(s)
- K E Pollok
- Section of Pediatric Hematology/Oncology, Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana 46202-5525, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Davis BR, Saitta FP, Bauer G, Bunnell BA, Morgan RA, Schwartz DH. Targeted transduction of CD34+ cells by transdominant negative Rev-expressing retrovirus yields partial anti-HIV protection of progeny macrophages. Hum Gene Ther 1998; 9:1197-207. [PMID: 9625259 DOI: 10.1089/hum.1998.9.8-1197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Congenitally acquired HIV infection may be uniquely suited to treatment via genetic engineering of CD34+ hematopoietic stem/progenitor cells. However, current technologies yield only a small percentage of mature cells that carry the inserted genes, and expression is frequently suppressed. Since clinical trials employing these methodologies have been proposed for anti-HIV gene therapy of HIV-infected children, we wished to assess, by in vitro modeling, the expected limits of transduction efficiency, expression, and antiviral activity using currently available methods. We measured retrovirus-mediated transduction in cord blood progenitors and their in vitro-derived progeny macrophages by Mo-MuLV vectors expressing a transdominant negative Rev (RevTD). CFU-GM transduction efficiency ranged from 7 to 85%, with an average of 28%. Semiquantitative DNA PCR demonstrated < or =100 vector sequence copies per 1000 cells in monocyte/macrophage cultures, which were grown without selection to better model in vivo conditions. When challenged with the macrophagetropic HIV-1BaL isolate, cultured macrophages from mock-transduced CFU-GM colonies supported infection in eight of eight experimental cultures, control LXSN-transduced progenitors supported infection in six of eight cultures, while macrophages derived from RevTD-transduced CFU-GM colonies supported infection in four of eight cultures. Although these results support the ability of neo(r) retroviral vectors containing RevTD to inhibit HIV replication, they indicate that further optimization of transduction efficiency and sustained expression will be required for effective anti-HIV protection in vivo.
Collapse
Affiliation(s)
- B R Davis
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
40
|
Identification of Human and Mouse Hematopoietic Stem Cell Populations Expressing High Levels of mRNA Encoding Retrovirus Receptors. Blood 1998. [DOI: 10.1182/blood.v91.9.3247.3247_3247_3254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One obstacle to retrovirus-mediated gene therapy for human hematopoietic disorders is the low efficiency of gene transfer into pluripotent hematopoietic stem cells (HSC). We have previously shown a direct correlation between retrovirus receptor mRNA levels in mouse HSC and the efficiency with which they are transduced. In the present study, we assayed retrovirus receptor mRNA levels in a variety of mouse and human HSC populations to identify HSC which may be more competent for retrovirus transduction. The highest levels of amphotropic retrovirus receptor (amphoR) mRNA were found in cryopreserved human cord blood HSC. The level of amphoR mRNA in Lin−CD34+ CD38− cells isolated from frozen cord blood was 12-fold higher than the level in fresh cord blood Lin− CD34+ CD38− cells. In mice, the level of amphoR mRNA in HSC from the bone marrow (BM) of mice treated with stem cell factor and granulocyte-colony stimulating factor was 2.8- to 7.8-fold higher than in HSC from the BM of untreated mice. These findings suggest that HSC from frozen cord blood and cytokine-mobilized BM may be superior targets for amphotropic retrovirus transduction compared with HSC from untreated adult BM.
Collapse
|
41
|
Abstract
Recent studies have shown efficient gene transfer to primitive progenitors in human cord blood (CB) when the cells are incubated in retrovirus-containing supernatants on fibronectin-coated dishes. We have now used this approach to achieve efficient gene transfer to human CB cells with the capacity to regenerate lymphoid and myeloid progeny in nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. CD34+ cell-enriched populations were first cultured for 3 days in serum-free medium containing interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor, Flt3-ligand, and Steel factor followed by two 24-hour incubations with a MSCV-NEO virus-containing medium obtained under either serum-free or serum-replete conditions. The presence of serum during the latter 2 days made no consistent difference to the total number of cells, colony-forming cells (CFC), or long-term culture-initiating cells (LTC-IC) recovered at the end of the 5-day culture period, and the cells infected under either condition regenerated similar numbers of human CD34+ (myeloid) CFC and human CD19+ (B lymphoid) cells for up to 20 weeks in NOD/SCID recipients. However, the presence of serum increased the viral titer in the producer cell-conditioned medium and this was correlated with a twofold to threefold higher efficiency of gene transfer to all progenitor types. With the higher titer viral supernatant, 17% ± 3% and 17% ± 8%, G418-resistant in vivo repopulating cells and LTC-IC were obtained. As expected, the proportion of NEO + repopulating cells determined by polymerase chain reaction analysis of in vivo generated CFC was even higher (32% ± 10%). There was no correlation between the frequency of gene transfer to LTC-IC and colony-forming unit–granulocyte-macrophage (CFU-GM), or to NOD/SCID repopulating cells and CFU-GM (r2 = 0.16 and 0.17, respectively), whereas values for LTC-IC and NOD/SCID repopulating cells were highly and significantly correlated (r2 = 0.85). These findings provide further evidence of a close relationship between human LTC-IC and NOD/SCID repopulating cells (assessed using a ≥ 6-week CFC output endpoint) and indicate the predictive value of gene transfer measurements to such LTC-IC for the design of clinical gene therapy protocols.
Collapse
|
42
|
Identification of Human and Mouse Hematopoietic Stem Cell Populations Expressing High Levels of mRNA Encoding Retrovirus Receptors. Blood 1998. [DOI: 10.1182/blood.v91.9.3247] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractOne obstacle to retrovirus-mediated gene therapy for human hematopoietic disorders is the low efficiency of gene transfer into pluripotent hematopoietic stem cells (HSC). We have previously shown a direct correlation between retrovirus receptor mRNA levels in mouse HSC and the efficiency with which they are transduced. In the present study, we assayed retrovirus receptor mRNA levels in a variety of mouse and human HSC populations to identify HSC which may be more competent for retrovirus transduction. The highest levels of amphotropic retrovirus receptor (amphoR) mRNA were found in cryopreserved human cord blood HSC. The level of amphoR mRNA in Lin−CD34+ CD38− cells isolated from frozen cord blood was 12-fold higher than the level in fresh cord blood Lin− CD34+ CD38− cells. In mice, the level of amphoR mRNA in HSC from the bone marrow (BM) of mice treated with stem cell factor and granulocyte-colony stimulating factor was 2.8- to 7.8-fold higher than in HSC from the BM of untreated mice. These findings suggest that HSC from frozen cord blood and cytokine-mobilized BM may be superior targets for amphotropic retrovirus transduction compared with HSC from untreated adult BM.
Collapse
|
43
|
Efficient Retroviral-Mediated Gene Transfer to Human Cord Blood Stem Cells With In Vivo Repopulating Potential. Blood 1998. [DOI: 10.1182/blood.v91.9.3487] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent studies have shown efficient gene transfer to primitive progenitors in human cord blood (CB) when the cells are incubated in retrovirus-containing supernatants on fibronectin-coated dishes. We have now used this approach to achieve efficient gene transfer to human CB cells with the capacity to regenerate lymphoid and myeloid progeny in nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. CD34+ cell-enriched populations were first cultured for 3 days in serum-free medium containing interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor, Flt3-ligand, and Steel factor followed by two 24-hour incubations with a MSCV-NEO virus-containing medium obtained under either serum-free or serum-replete conditions. The presence of serum during the latter 2 days made no consistent difference to the total number of cells, colony-forming cells (CFC), or long-term culture-initiating cells (LTC-IC) recovered at the end of the 5-day culture period, and the cells infected under either condition regenerated similar numbers of human CD34+ (myeloid) CFC and human CD19+ (B lymphoid) cells for up to 20 weeks in NOD/SCID recipients. However, the presence of serum increased the viral titer in the producer cell-conditioned medium and this was correlated with a twofold to threefold higher efficiency of gene transfer to all progenitor types. With the higher titer viral supernatant, 17% ± 3% and 17% ± 8%, G418-resistant in vivo repopulating cells and LTC-IC were obtained. As expected, the proportion of NEO + repopulating cells determined by polymerase chain reaction analysis of in vivo generated CFC was even higher (32% ± 10%). There was no correlation between the frequency of gene transfer to LTC-IC and colony-forming unit–granulocyte-macrophage (CFU-GM), or to NOD/SCID repopulating cells and CFU-GM (r2 = 0.16 and 0.17, respectively), whereas values for LTC-IC and NOD/SCID repopulating cells were highly and significantly correlated (r2 = 0.85). These findings provide further evidence of a close relationship between human LTC-IC and NOD/SCID repopulating cells (assessed using a ≥ 6-week CFC output endpoint) and indicate the predictive value of gene transfer measurements to such LTC-IC for the design of clinical gene therapy protocols.
Collapse
|
44
|
Cohen-Haguenauer O, Restrepo LM, Masset M, Bayer J, Dal Cortivo L, Marolleau JP, Benbunan M, Boiron M, Marty M. Efficient transduction of hemopoietic CD34+ progenitors of human origin using an original retroviral vector derived from Fr-MuLV-FB29: in vitro assessment. Hum Gene Ther 1998; 9:207-16. [PMID: 9472780 DOI: 10.1089/hum.1998.9.2-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A novel retroviral vector has been designed based on a Friend-murine leukemia virus (Fr-MuLV) FB29 strain. The latter has been selected according to characteristics of pathogenicity in mice where it induces a disease of the haemopoietic system affecting all lineages. Higher infectivity has also been demonstrated as compared to other strains. In accordance with these findings, the amphotropic producer clone used in this study carrying along the neomycine resistance gene (FOCH-Neo), harbors viral titers over 10(7) cfu/ml. To investigate the potential of genetically engineering hematopoietic precursors, CD34+ progenitors were selected from cord blood, bone marrow, and peripheral blood mobilized stem cells (patients + solid tumors) and transduced with FOCH-Neo. High transduction rates were achieved using virus supernatant and minimal doses of hematopoietic growth factors during pretransduction and transduction steps. A polymerase chain reaction (PCR) assay investigating the presence of both neomycin-encoding and viral vector sequences tested positive in 45-90% of granulocyte-macrophage colony-forming units (CFU-GM) generating cells (bone marrow and peripheral blood derived cells) following transduction. An average of 35% colonies showed resistance to G418. Such levels of transduction proved reproducible using only supernatants harboring over 10(7) cfu/ml. In those experiments where long-term in vitro cultures could be maintained over 5 weeks (all cord blood and 5 among 23 PBSC), efficient transduction of long-term culture initiating cell (LTC-IC) hematopoietic progenitors was demonstrated on the basis of both resistance to G418 and virus integration. In the latter case, the PCR assay tested positive in as much as 35-60% of late unselected CFU-colonies. This novel retroviral vector harbors interesting features toward genetic modification of hematopoietic progenitors.
Collapse
Affiliation(s)
- O Cohen-Haguenauer
- Département d'Oncologie Médicale, Hôpital Saint-Louis, Institut d'Hématologie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Movassagh M, Desmyter C, Baillou C, Chapel-Fernandes S, Guigon M, Klatzmann D, Lemoine FM. High-level gene transfer to cord blood progenitors using gibbon ape leukemia virus pseudotype retroviral vectors and an improved clinically applicable protocol. Hum Gene Ther 1998; 9:225-34. [PMID: 9472782 DOI: 10.1089/hum.1998.9.2-225] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The best methods for transducing hematopoietic progenitor cells usually involve either direct co-cultivation with virus-producing cells or human stromal supportive cells. However, these methods cannot be safely or easily applied to clinical use. Therefore, we aimed at improving retrovirus-mediated gene transfer into hematopoietic progenitors derived from cord blood CD34+ cells using viral supernatant to levels achieved at least with direct co-cultivation and under conditions that are suitable for clinical applications. In a first set of experiments, CD34+ cells were infected with supernatant containing amphotropic retroviral particles carrying the nls-lacZ reporter gene and the effects of centrifugation, cell adhesion to fibronectin, and Polybrene on the transduction of both clonogenic progenitors (CFC) and long-term culture initiating cells (LTC-IC) were studied. Transduction efficiency was evaluated on the percentage and total number of progenitors expressing the beta-galactosidase activity. Results show that a 48-hr infection of CD34+ cells with viral supernatant combining centrifugation at 1000 x g for 3 hr followed by adhesion to fibronectin allows transduction levels for both CFC and LTC-IC to be reached that are as good as using direct co-cultivation. In a second set of experiments, CD34+ cells were infected using this optimized protocol with pseudotyped retroviral particles carrying the gibbon ape leukemia virus (GALV) envelope protein. Under these conditions, between 50 and 100% of CFC and LTC-IC were transduced. Thus, we have developed a protocol capable of highly transducing cord blood progenitors under conditions suitable for a therapeutical use.
Collapse
Affiliation(s)
- M Movassagh
- Biologie et Thérapie des Pathologies Immunitaires, ERS CNRS 107 C.E.R.V.I., CHU Pitié Salpétrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Retrovirally Transduced CD34++ Human Cord Blood Cells Generate T Cells Expressing High Levels of the Retroviral Encoded Green Fluorescent Protein Marker In Vitro. Blood 1998. [DOI: 10.1182/blood.v91.2.431] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Human umbilical cord blood (UCB) hematopoietic stem cells (HSC) receive increased attention as a possible target for gene-transfer in gene therapy trials. Diseases affecting the lymphoid lineage, as adenosine deaminase (ADA) deficiency and acquired immunodeficiency syndrome (AIDS) could be cured by gene therapy. However, the T-cell progenitor potential of these HSC after gene-transfer is largely unknown and was up to now not testable in vitro. We show here that highly purified CD34++ Lineage marker-negative (CD34++Lin−) UCB cells generate T, natural killer (NK), and dendritic cells in a severe combined immunodeficient mouse fetal thymus organ culture (FTOC). CD34++Lin− and CD34++CD38−Lin− UCB cells express the retroviral encoded marker gene Green Fluorescent Protein (GFP) after in vitro transduction with MFG-GFP retroviral supernatant. Transduced cells were still capable of generating T, NK, and dendritic cells in the FTOC, all expressing high levels of GFP under control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat promotor. We thus present an in vitro assay for thymic T-cell development out of transduced UCB HSC, using GFP as a marker gene.
Collapse
|
47
|
Retrovirally Transduced CD34++ Human Cord Blood Cells Generate T Cells Expressing High Levels of the Retroviral Encoded Green Fluorescent Protein Marker In Vitro. Blood 1998. [DOI: 10.1182/blood.v91.2.431.431_431_440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human umbilical cord blood (UCB) hematopoietic stem cells (HSC) receive increased attention as a possible target for gene-transfer in gene therapy trials. Diseases affecting the lymphoid lineage, as adenosine deaminase (ADA) deficiency and acquired immunodeficiency syndrome (AIDS) could be cured by gene therapy. However, the T-cell progenitor potential of these HSC after gene-transfer is largely unknown and was up to now not testable in vitro. We show here that highly purified CD34++ Lineage marker-negative (CD34++Lin−) UCB cells generate T, natural killer (NK), and dendritic cells in a severe combined immunodeficient mouse fetal thymus organ culture (FTOC). CD34++Lin− and CD34++CD38−Lin− UCB cells express the retroviral encoded marker gene Green Fluorescent Protein (GFP) after in vitro transduction with MFG-GFP retroviral supernatant. Transduced cells were still capable of generating T, NK, and dendritic cells in the FTOC, all expressing high levels of GFP under control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat promotor. We thus present an in vitro assay for thymic T-cell development out of transduced UCB HSC, using GFP as a marker gene.
Collapse
|
48
|
Flasshove M, Banerjee D, Leonard JP, Mineishi S, Li MX, Bertino JR, Moore MA. Retroviral transduction of human CD34+ umbilical cord blood progenitor cells with a mutated dihydrofolate reductase cDNA. Hum Gene Ther 1998; 9:63-71. [PMID: 9458243 DOI: 10.1089/hum.1998.9.1-63] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood cells (UCB) have become a major target population for experimental and clinical studies using transfer of genes involved in inborn enzymatic diseases. Cord blood contains hematopoietic progenitor cells at a high frequency, and expanding these cells ex vivo generates sufficient numbers of hematopoietic precursors for transplantation into adults, e.g., as supportive treatment. As clinical reports about retroviral transduction into UCB cells have not been as encouraging as the first preclinical data, we have established a retroviral transduction system that allows expansion and selection of hematopoietic progenitor cells from UCB. CD34-enriched UCB cells were transduced with a retroviral vector encoding a mutated dihydrofolate reductase cDNA that confers MTX resistance. We observed increased resistance to MTX in transduced granulocyte macrophage-colony forming units (CFU-GM) after co-culture of CD34+ UCB cells with the virus-producing cell line, or after incubation with virus-containing supernatant. The supernatant-based transduction protocol included a prestimulation with recombinant interleukin-1 (rhIL-1), rhkit-ligand, and rhIL-3 to increase the percentage of cells in S phase to greater than 50%. Using this protocol we measured a 72-fold expansion of CFU-GM and a 2.5-fold selective advantage of transduced versus nontransduced progenitor cells after exposure to low-dose methotrexate in liquid culture. Polymerase chain reaction analysis revealed integration of proviral DNA into the majority of transduced colonies before and after ex vivo expansion. The retroviral vector and transduction protocol reported here provides an experimental system for selection and expansion of retrovirally transduced progenitor/stem cells from UCB that may help improve the efficiency of current clinical gene therapy strategies.
Collapse
Affiliation(s)
- M Flasshove
- James Ewing Laboratory of Developmental Hematopoiesis of the Cell Biology and Genetics Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Asch J, Weinberg RS, Mueller L, Galperin Y, Kiang L, Jolly D, Isola LM. Retroviral gene transfer into cord blood stem/progenitor cells using purified vector stocks. Am J Hematol 1998; 57:16-23. [PMID: 9423811 DOI: 10.1002/(sici)1096-8652(199801)57:1<16::aid-ajh3>3.0.co;2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cord blood (CB) progenitor/stem cells (P/SC) are ideal targets for early gene therapy in individuals prenatally diagnosed with genetic disorders. Most retroviral transduction protocols were developed using adult peripheral blood stem cells (PBSC) and bone marrow (BM). Less is known about retroviral transduction of CB P/SC. We examined how timing, multiplicity of infection (MOI), and polycations in the transduction media affect transduction efficiency. Rates of transduction were determined in recently isolated CD34+ enriched CB cells and in colonies derived after various times in liquid cultures (LC). CB mononuclear cells (MNC) were separated by ficoll-hypaque centrifugation and enriched for CD34+ cells. Purity was assessed by flow cytometry. Transduction were performed with clinical-grade retroviral stocks at MOIs of 1-20. Transduction was performed with fetal bovine serum (FBS) or autologous plasma, IL-3, GM-CSF, IL-6, and SCF. The retroviral vector contained LacZ and neomycin resistance (neo) reporter genes. Transduction was determined by X-gal stain and by PCR amplification of the reporter genes. No drug selection was used. Twenty-five experiments were done. CB volumes ranged from 35-150 ml. MNC and CD34+ cell counts ranges were: 0.14-840 x 10(6) and 0.1-4.2 x 10(6), respectively. Transduction efficiency in liquid cultures ranged from 4-63%. Higher rates were seen using MOI > or = 10, 2 microg/ml polybrene, and 10% autologous CB plasma. In colonies, transduction rates were 63 to 72% by PCR and 32% by X-gal staining. In LTC-IC derived colonies, transduction was 7% by PCR. Short incubations of CD34+ CB cells with purified retroviral stocks, polybrene, and autologous sera result in high transduction rates of committed progenitors and moderately low efficiencies of transduction of LTC-IC in the absence of drug selection.
Collapse
Affiliation(s)
- J Asch
- Department of Pediatrics, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hanenberg H, Hashino K, Konishi H, Hock RA, Kato I, Williams DA. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum Gene Ther 1997; 8:2193-206. [PMID: 9449373 DOI: 10.1089/hum.1997.8.18-2193] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Efficient retroviral gene transfer into hematopoietic stem and progenitor cells can be achieved by co-localizing retrovirus and target cells on specific adhesion domains of recombinant fibronectin (FN) fragments. In this paper, we further optimize this technology for human CD34+ cells. Investigating the role of cytokine prestimulation in retrovirus-mediated gene transfer on plates coated with the recombinant FN CH-296 revealed that prestimulation of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (PB) CD34+ cells was essential to achieve efficient gene transfer into clonogenic cells. The highest gene transfer occurred by prestimulating PB CD34+ cells for 40 hr with a combination of stem cell factor (SCF), G-CSF, and megakaryocyte growth and development factor (MGDF) prior to retroviral infection on CH-296. Surprisingly, a prolonged simultaneous exposure of primary CD34+ PB cells to retrovirus and cytokines in the presence of CH-296 lowered the gene transfer efficiency. Gene transfer into cytokine prestimulated CD34+ bone marrow (BM) cells was not influenced by increasing the coating concentrations of a recombinant FN fragment, CH-296, nor was it adversely influenced by increasing the number of CD34+ target cells, suggesting that the amount of retroviral particles present in the supernatant was not a limiting factor for transduction of CD34+ BM cells on CH-296-coated plates. The polycation Polybrene was not required for efficient transduction of hematopoietic cells in the presence of CH-296. Furthermore, we demonstrated that repeated exposure of CH-296 to retrovirus containing supernatant, called preloading, can be employed to concentrate the amount of retroviral particles bound to CH-296. These findings establish a simple and short clinically applicable transduction protocol that targets up to 68% of BM or G-CSF-mobilized PB CD34+ cells and is capable of genetically modifying up to 17% of CD34+CD38-/dim PB cells.
Collapse
Affiliation(s)
- H Hanenberg
- Herman B Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis 46202-5225, USA
| | | | | | | | | | | |
Collapse
|