1
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
2
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 PMCID: PMC10581591 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
3
|
Hosseini S, Mahmoudi M, Rezaieyazdi Z, Shapouri-Moghaddam A, Hosseinzadeh A, Arab FL, Tabasi NS, Esmaeili SA. Lupus mice derived mesenchymal stromal cells: Beneficial or detrimental on SLE disease outcome. Int Immunopharmacol 2024; 126:111306. [PMID: 38039717 DOI: 10.1016/j.intimp.2023.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies against nuclear genes, deposition of immune complexes, and autoimmune T cells, through which, tissue damage would ultimately occur. Furthermore, loss of immune tolerance and imbalance of Th1/Th2 cells in addition to Th17/Treg are contributed to the pathogenesis of SLE. Mesenchymal stromal cells (MSCs) infusion is a potential therapy for SLE disease. Despite a majority of SLE patients achieving clinical remission after allogeneic MSC infusion from healthy individuals, SLE patients have less benefited from autologous MSC infusion, justifying the probable compromised function of SLE patients-derived MSCs. In this study, we aim to further investigate the potential immunoregulatory mechanisms in which mesenchymal stromal cells derived from pristane-induced lupus mice, following injection into healthy and lupus mice, exert their possible effects on the lupus process. METHOD 40 female Balb/c mice aged 3 weeks were purchased and randomly divided into six groups. First, lupus disease was induced into the lupus groups by intraperitoneal injection of pristane and then the mice were surveyed for 6 months. The body weight, anti-dsDNA autoantibody levels, serum creatinine, and Blood Urea Nitrogen (BUN) levels were measured in two-month intervals. After 6 months, the group of lupus mice was sacrificed, and lupus MSCs were isolated. Two months later, cultured lupus MSCs were intravenously injected into two groups of healthy and lupus mice. After two months, the mice were euthanized and the kidneys of each group were examined histologically by hematoxylin & eosin (H&E) staining and the immunofluorescence method was also performed to evaluate IgG and C3 deposition. The frequency of splenic Th1, Th2, Th17, and Treg cells was measured by flow cytometry. Moreover, the cytokine levels of IFN-γ, IL-4, IL-17, and TGF-β in sera were measured by ELISA method. RESULTS Our results showed that the induction of lupus disease by pristane in Balb/c mice caused the formation of lipogranuloma, increased levels of anti-dsDNA autoantibodies, and impaired renal function in all pristane-induced lupus groups. In addition, the injection of lupus mesenchymal stromal cells (L-MSC) into healthy and lupus mice led to a further rise in anti-dsDNA serum levels, IgG and C3 deposition, and further dysfunction of mice renal tissue. Also, the flow cytometry results implicated that compared to the control groups, splenic Th1, Th2, and Th17 inflammatory cell subtypes and their secreted cytokines (IFN-γ, IL-4, and IL-17) in the sera of healthy and lupus mice were increased after the intake of L-MSC. Additionally, the splenic Treg cells were also significantly increased in the lupus mice receiving L-MSC. However, a decrease in serum levels of TGF-β cytokine was observed in healthy and lupus mice following L-MSC injection. In contrast, the lupus mice receiving healthy mesenchymal stem cells (H-MSC) manifested opposite results. CONCLUSION In a nutshell, our results suggest that although allogeneic MSCs are encouraging candidates for SLE treatment, syngeneic MSCs may not be eligible for treating SLE patients due to their defects in regulating the immune system in addition to their capability in promoting inflammation which would consequently worsen the SLE disease status.
Collapse
Affiliation(s)
- Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Shapouri-Moghaddam
- Department of Immunology, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Hosseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Sadat Tabasi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Zhong X, Chen J, Wen B, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Xiao Z. Potential role of mesenchymal stem cells in T cell aging. J Mol Med (Berl) 2023; 101:1365-1378. [PMID: 37750918 DOI: 10.1007/s00109-023-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Immunosenescence occurs with progressive age. T cell aging is manifested by immunodeficiency and inflammation. The main mechanisms are thymic involution, mitochondrial dysfunction, genetic and epigenetic alterations, loss of protein stability, reduction of T cell receptor (TCR) repertoire, naïve-memory T cell ratio imbalance, T cell senescence, and lack of effector plasticity. Mesenchymal stem cells (MSCs) are thought to hold great potential as anti-aging therapy. However, the role of MCSs in T cell aging remains elusive. This review makes a tentative summary of the potential role of MSCs in the protection against T cell aging. It might provide a new idea to intervene in the aging of the immune system.
Collapse
Affiliation(s)
- Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, People's Hospital of Nanbu County, Nanchong, 637300, China
| | - Jie Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Bo Wen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Afkhami H, Mahmoudvand G, Fakouri A, Shadab A, Mahjoor M, Komeili Movahhed T. New insights in application of mesenchymal stem cells therapy in tumor microenvironment: pros and cons. Front Cell Dev Biol 2023; 11:1255697. [PMID: 37849741 PMCID: PMC10577325 DOI: 10.3389/fcell.2023.1255697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) are widely accepted as a useful tool for cell-based therapy of various diseases including malignancies. The therapeutic effects of MSCs are mainly attributed to their immunomodulatory and immunosuppressive properties. Despite the promising outcomes of MSCs in cancer therapy, a growing body of evidence implies that MSCs also show tumorigenic properties in the tumor microenvironment (TME), which might lead to tumor induction and progression. Owing to the broad-spectrum applications of MSCs, this challenge needs to be tackled so that they can be safely utilized in clinical practice. Herein, we review the diverse activities of MSCs in TME and highlight the potential methods to convert their protumorigenic characteristics into onco-suppressive effects.
Collapse
Affiliation(s)
- Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arshia Fakouri
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
7
|
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10020204. [PMID: 36829698 PMCID: PMC9952306 DOI: 10.3390/bioengineering10020204] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
Collapse
|
8
|
Hoseinzadeh A, Rezaieyazdi Z, Afshari JT, Mahmoudi A, Heydari S, Moradi R, Esmaeili SA, Mahmoudi M. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors' Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev Rep 2023; 19:322-344. [PMID: 36272020 DOI: 10.1007/s12015-022-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE's pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ''smart" immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously. In Brief The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes. The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases. Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis. In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Department of Rheumatology, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran.,Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Moradi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Mashhad University of Medical Sciences, Azadi Square, Kalantari Blvd, Pardi's campusMashhad, Iran.
| |
Collapse
|
9
|
Sakpal D, Gharat S, Momin M. Recent advancements in polymeric nanofibers for ophthalmic drug delivery and ophthalmic tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213124. [PMID: 36148709 DOI: 10.1016/j.bioadv.2022.213124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanofibers due to their unique properties such as high surface-to-volume ratio, porous structure, mechanical strength, flexibility and their resemblance to the extracellular matrix, have been researched extensively in the field of ocular drug delivery and tissue engineering. Further, different modifications considering the formulation and process parameters have been carried out to alter the drug release profile and its interaction with the surrounding biological environment. Electrospinning is the most commonly used technique for preparing nanofibers with industrial scalability. Advanced techniques such as co-axial electrospinning and combined system such as embedding nanoparticles in nanofiber provide an alternative approach to enhance the performance of the scaffold. Electrospun nanofibers offers a matrix like structure for cell regeneration. Nanofibers have been used for ocular delivery of various drugs like antibiotics, anti-inflammatory and various proteins. In addition, lens-coated medical devices provide new insights into the clinical use of nanofibers. Through fabricating the nanofibers researchers have overcome the issues of low bioavailability and compatibility with ocular tissue. Therefore, nanofibers have great potential in ocular drug delivery and tissue engineering and have the capacity to revolutionize these therapeutic areas in the field of ophthalmology. This review is mainly focused on the recent advances in the preparation of nanofibers and their applications in ocular drug delivery and tissue engineering. The authors have attempted to emphasize the processing challenges and future perspectives along with an overview of the safety and toxicity aspects of nanofibers.
Collapse
Affiliation(s)
- Darshana Sakpal
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India; SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India.
| |
Collapse
|
10
|
Li J, Luo M, Li B, Lou Y, Zhu Y, Bai X, Sun B, Lu X, Luo P. Immunomodulatory Activity of Mesenchymal Stem Cells in Lupus Nephritis: Advances and Applications. Front Immunol 2022; 13:843192. [PMID: 35359961 PMCID: PMC8960601 DOI: 10.3389/fimmu.2022.843192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
Lupus nephritis (LN) is a significant cause of various acute and chronic renal diseases, which can eventually lead to end-stage renal disease. The pathogenic mechanisms of LN are characterized by abnormal activation of the immune responses, increased cytokine production, and dysregulation of inflammatory signaling pathways. LN treatment is an important issue in the prevention and treatment of systemic lupus erythematosus. Mesenchymal stem cells (MSCs) have the advantages of immunomodulation, anti-inflammation, and anti-proliferation. These unique properties make MSCs a strong candidate for cell therapy of autoimmune diseases. MSCs can suppress the proliferation of innate and adaptive immune cells, such as natural killer cells (NKs), dendritic cells (DCs), T cells, and B cells. Furthermore, MSCs suppress the functions of various immune cells, such as the cytotoxicity of T cells and NKs, maturation and antibody secretion of B cells, maturation and antigen presentation of DCs, and inhibition of cytokine secretion, such as interleukins (ILs), tumor necrosis factor (TNF), and interferons (IFNs) by a variety of immune cells. MSCs can exert immunomodulatory effects in LN through these immune functions to suppress autoimmunity, improve renal pathology, and restore kidney function in lupus mice and LN patients. Herein, we review the role of immune cells and cytokines in the pathogenesis of LN and the mechanisms involved, as well as the progress of research on the immunomodulatory role of MSCs in LN.
Collapse
Affiliation(s)
- Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Baichao Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Guan J, Li Y, Lu F, Feng J. Adipose-derived stem cells ameliorate atopic dermatitis by suppressing the IL-17 expression of Th17 cells in an ovalbumin-induced mouse model. Stem Cell Res Ther 2022; 13:98. [PMID: 35255962 PMCID: PMC8900338 DOI: 10.1186/s13287-022-02774-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have therapeutic potential for atopic dermatitis (AD) owing to their immunoregulatory effects. However, the underlying mechanisms associated with the therapeutic efficacy of MSCs on AD are diverse and related to both cell type and delivery method. Objectives This study investigated the therapeutic effect and mechanisms of adipose-derived stem cells (ADSCs) on AD using an ovalbumin (OVA)-induced AD mouse model. Methods AD mice were subcutaneously injected with mouse ADSCs, cortisone, or PBS, and the therapeutic effects were determined by gross and histological examinations and serum IgE levels. Additionally, qPCR, RNA-sequencing analyses of skin samples and co-culture of ADSCs and Th17 cells were conducted to explore the underlying therapeutic mechanisms. Results ADSCs treatment attenuated the AD pathology, decreased the serum IgE levels, and decreased mast cells infiltration in the skin of the model mice. Moreover, tissue levels of IL-4R and Th17-relevant products (IL-17A, CCL20, and MMP12) were suppressed in the ADSC- and cortisone-treated groups. Genomics and bioinformatics analyses demonstrated significant enrichment of inflammation-related pathways in the downregulated genes of the ADSC- and cortisone-treated groups, specifically the IL-17 signaling pathway. Co-culture experiments revealed that ADSCs significantly suppressed the proliferation of Th17 cells and the expression of proinflammatory cytokines (IL-17A and RORγT). Furthermore, expression levels of PD-L1, TGF-β, and PGE2 were significantly upregulated in co-cultured ADSCs relative to those in monocultured ADSCs. Conclusion ADSCs ameliorate OVA-induced AD in mice mainly by downregulating IL-17 secretion of Th17 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02774-7.
Collapse
Affiliation(s)
- Jingyan Guan
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yibao Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Jingwei Feng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
13
|
Meng H, Wei F, Zhou Y, Hu L, Ge Z, Jin J, Wang H, Wu CT. Overexpression of Hepatocyte Growth Factor in Dental Pulp Stem Cells Ameliorates the Severity of Psoriasis by Reducing Inflammatory Responses. Stem Cells Dev 2021; 30:876-889. [PMID: 34155928 DOI: 10.1089/scd.2021.0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Psoriasis is an autoimmune disease still lacking standard treatment, and it has been demonstrated that mesenchymal stem cells (MSCs) are capable of immunoregulation. The underlying mechanism might involve the secretion of soluble cytokines, such as hepatocyte growth factor (HGF). This study aims to investigate the therapeutic effect of HGF-overexpressed dental pulp stem cells (DPSCs) [DPSCs; HGF overexpressed DPSCs (HGF-DPSCs)] on imiquimod-induced psoriasis. DPSCs were isolated and transfected by adenovirus vector carrying HGF gene (Ad-HGF). The immunoregulatry abilities of DPSCs and HGF-DPSCs were investigated by coculture of the MSCs with peripheral blood mononuclear cells (PBMCs) under appropriated stimulation. The psoriatic mice were treated with saline control, DPSCs, or HGF-DPSCs. Then the mice spleens were collected and weighted. The psoriatic skin lesions were analyzed by Hematoxylin/Eosin and immunohistochemical staining for histopathological changes, and quantitative real-time polymerase chain reaction to detect the expression levels of CD4+ T cell-related transcription factors and cytokines. The mice blood serum was measured by MILLIPLEX analysis and enzyme-linked immunosorbent assay to evaluate the expression levels of inflammation cytokines. The coculture experiments showed HGF overexpression enhanced the immunoregulation abilities of DPSCs not by suppressing PBMCs' proliferation, but by downregulating T helper 1 (Th1), Th17 cells, and upregulating regulatory T (Treg) cells. In psoriatic skin lesions, the psoriasis-like erythema, scaling, and thickening were ameliorated; and the expression of cytokeratin 6 (CK6), and cytokeratin 17 (CK17) were downregulated by DPSCs and HGF-DPSCs treatment. HGF overexpression enhanced the decrease of spleen masses; enhanced the downregulation of the expression levels of interferon-gamma (IFN-γ), tumor necrosis factor-α, and interleukin (IL)-17A in the blood serums; enhanced the downregulation of T-box transcription factor 21 (T-bet), IFN-γ, retinoic acid-related orphan receptor-γt (RORγt), IL-17A, IL-17F, IL-23, and upregulation of Foxp3 and IL-10 in the psoriatic skin lesions. Therefore, HGF overexpression enhanced DPSCs' treatment effect on psoriasis mainly by reducing inflammatory responses. These findings might provide new immunoregulation strategies for psoriasis treatment.
Collapse
Affiliation(s)
- Hongfang Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Fen Wei
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Ying Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Capital Medical University School of Stomatology, Beijing, P.R. China
| | - Zhiqiang Ge
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Jide Jin
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Hua Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Chu-Tse Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China.,Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
14
|
Li Y, Wang S, Xiao Y, Liu B, Pang J. Nerve growth factor enhances the therapeutic effect of mesenchymal stem cells on diabetic periodontitis. Exp Ther Med 2021; 22:1013. [PMID: 34373699 DOI: 10.3892/etm.2021.10445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/10/2020] [Indexed: 11/05/2022] Open
Abstract
Patients with diabetes frequently suffer from periodontitis, which progresses rapidly and is difficult to cure. Mesenchymal stem cell (MSC) transplantation may effectively treat periodontitis, but high glucose limits its therapeutic effect in diabetes. Nerve growth factor (NGF) has the functions of cell protection, anti-apoptosis and immune regulation, and may have potential application in diabetic periodontitis. In the present study, flow cytometry indicated that NGF inhibited MSC apoptosis induced by high glucose. Of note, high glucose promoted the transformation of MSCs into the proinflammatory type. NGF inhibited this transformation of MSCs under diabetic conditions and further decreased the proportion of T cells and monocytes/macrophages among lymphocytes. An animal model of diabetic periodontitis was constructed and MSC transplantation was demonstrated to reduce alveolar bone loss caused by diabetes. NGF enhanced the therapeutic effect of MSCs and maintained transplanted MSC survival in periodontal tissue of diabetic mice. Immunohistochemical analysis of periodontal tissues suggested that in the NGF group, infiltration of T cells and macrophages was reduced. Neurotrophic receptor tyrosine kinase 1 was indicated to have a key role in these effects of NGF. In conclusion, NGF may enhance the therapeutic effect of MSCs on diabetic periodontitis by protecting the cells and promoting the transformation of MSCs into the immunosuppressive type.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Suyu Wang
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Yihan Xiao
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| |
Collapse
|
15
|
Sertoli Cells Possess Immunomodulatory Properties and the Ability of Mitochondrial Transfer Similar to Mesenchymal Stromal Cells. Stem Cell Rev Rep 2021; 17:1905-1916. [PMID: 34115315 DOI: 10.1007/s12015-021-10197-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly evident that selecting an optimal source of mesenchymal stromal cells (MSCs) is crucial for the successful outcome of MSC-based therapies. During the search for cells with potent regenerative properties, Sertoli cells (SCs) have been proven to modulate immune response in both in vitro and in vivo models. Based on morphological properties and expression of surface markers, it has been suggested that SCs could be a kind of MSCs, however, this hypothesis has not been fully confirmed. Therefore, we compared several parameters of MSCs and SCs, with the aim to evaluate the therapeutic potential of SCs in regenerative medicine. We showed that SCs successfully underwent osteogenic, chondrogenic and adipogenic differentiation and determined the expression profile of canonical MSC markers on the SC surface. Besides, SCs rescued T helper (Th) cells from undergoing apoptosis, promoted the anti-inflammatory phenotype of these cells, but did not regulate Th cell proliferation. MSCs impaired the Th17-mediated response; on the other hand, SCs suppressed the inflammatory polarisation in general. SCs induced M2 macrophage polarisation more effectively than MSCs. For the first time, we demonstrated here the ability of SCs to transfer mitochondria to immune cells. Our results indicate that SCs are a type of MSCs and modulate the reactivity of the immune system. Therefore, we suggest that SCs are promising candidates for application in regenerative medicine due to their anti-inflammatory and protective effects, especially in the therapies for diseases associated with testicular tissue inflammation.
Collapse
|
16
|
Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match. Blood Adv 2021; 4:1987-1997. [PMID: 32384543 DOI: 10.1182/bloodadvances.2020001711] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022] Open
Abstract
Culture-adapted bone marrow mesenchymal stromal cells (MSCs) deploy paracrine anti-inflammatory and tissue regenerative functionalities that can be harnessed as a living cell pharmaceutical product. Independent of clinical indication, a near majority of human clinical trials administer MSC IV, often with an allogeneic MSC cell product immediately after thawing from cryostorage. Despite hundreds of studies in a wide assortment of inflammatory, degenerative, and acute tissue injury syndromes, human clinical outcomes often fail to mirror promising rigorously conducted preclinical animal studies. Using a mouse model of toxic colitis, we demonstrate that replication fit MSCs harvested in log phase of growth have substantial impact on colitis clinical and pathologic endpoints when delivered subcutaneously or intraperitoneally, whereas the maximum tolerated IV bolus dosing failed to do so. We also demonstrate that heat-inactivated MSCs lose all therapeutic utility and the observation is mirrored by use of viable MSC administered immediately postthaw from cryostorage. Using luciferase transgenic MSC as donor cells, we demonstrate that transient in vivo engraftment is severely compromised when MSCs are dead or thawed and further demonstrate that MSC redosing is feasible in relapsing colitis, but only syngeneic MSCs lead to sustained improvement of clinical endpoints. These data support the notion that pharmaceutical potency of MSC requires viability and functional fitness. Reciprocally, IV administration of thawed MSC products may be biased against positive clinical outcomes for treatment of colitis and that extravascular administration of syngeneic, fit MSCs allows for effect in a recurrent therapy model.
Collapse
|
17
|
Kossl J, Bohacova P, Hermankova B, Javorkova E, Zajicova A, Holan V. Antiapoptotic Properties of Mesenchymal Stem Cells in a Mouse Model of Corneal Inflammation. Stem Cells Dev 2021; 30:418-427. [PMID: 33607933 DOI: 10.1089/scd.2020.0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a population of adult stem cells that have potent immunoregulatory, anti-inflammatory, and antiapoptotic properties. In addition, they have ability to migrate to the site of inflammation or injury, where they contribute to the regeneration and healing process. For these properties, MSCs have been used as therapeutic cells in several models, including treatment of damages or disorders of the ocular surface. If the damage of the ocular surface is extensive and involves a limbal region where limbal stem cell reside, MSC therapy has been proved as the effective treatment approach. Although the anti-inflammatory properties of MSCs have been well characterized, mechanisms of antiapoptotic action of MSCs are not well recognized. Using a chemically damaged cornea in a mouse model, we showed that the injury decreases expression of the gene for antiapoptotic molecule Bcl-2 and increases the expression of proapoptotic genes Bax and p53. These changes were attenuated by local transplantation of MSCs after corneal damage. The antiapoptotic effect of MSCs was tested in an in vitro model of co-cultivation of corneal explants with MSCs. The apoptosis of corneal cells in the explants was induced by proinflammatory cytokines and was significantly inhibited in the presence of MSCs. The antiapoptotic effect of MSCs was mediated by paracrine action, as confirmed by separation of the explants in inserts or by supernatants from MSCs. In addition, MSCs decreased the expression of genes for the molecules associated with endoplasmic reticulum stress Atf4, Bip, and p21, which are associated with apoptosis. The results show that MSCs inhibit the expression of proapoptotic genes and decrease the number of apoptotic cells in the damaged corneas, and this action might be one of the mechanisms of the therapeutic action of MSCs.
Collapse
Affiliation(s)
- Jan Kossl
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Bohacova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Javorkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Holan
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells 2021; 10:cells10030588. [PMID: 33799995 PMCID: PMC8001847 DOI: 10.3390/cells10030588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Collapse
|
19
|
Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, Luksanapruksa P, Pongpaksupasin P, Khorchai A, Dambua A, Boonchu P, Yodtup C, Uiprasertkul M, Sangkitporn S, Atchaneeyasakul LO. Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther 2021; 12:52. [PMID: 33422139 PMCID: PMC7796606 DOI: 10.1186/s13287-020-02122-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a progressive inherited retinal disease with great interest for finding effective treatment modalities. Stem cell-based therapy is one of the promising candidates. We aimed to investigate the safety, feasibility, and short-term efficacy of intravitreal injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in participants with advanced stage RP. Methods This non-randomized phase I clinical trial enrolled 14 participants, categorized into three groups based on a single dose intravitreal BM-MSC injection of 1 × 106, 5 × 106, or 1 × 107 cells. We evaluated signs of inflammation and other adverse events (AEs). We also assessed the best corrected visual acuity (BCVA), visual field (VF), central subfield thickness (CST), and subjective experiences. Results During the 12-month period, we noticed several mild and transient AEs. Interestingly, we found statistically significant improvements in the BCVA compared to baseline, although they returned to the baseline at 12 months. The VF and CST were stable, indicating no remarkable disease progression. We followed 12 participants beyond the study period, ranging from 1.5 to 7 years, and observed one severe but manageable AE at year 3. Conclusion Intravitreal injection of BM-MSCs appears to be safe and potentially effective. All adverse events during the 12-month period required observation without any intervention. For the long-term follow-up, only one participant needed surgical treatment for a serious adverse event and the vision was restored. An enrollment of larger number of participants with less advanced RP and long-term follow-up is required to evaluate the safety and efficacy of this intervention. Trial registration ClinicalTrials.gov, NCT01531348. Registered on February 10, 2012 Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02122-7.
Collapse
Affiliation(s)
- Aekkachai Tuekprakhon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Siripakorn Sangkitporn
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | | | - Visit Vamvanij
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monchai Ruangchainikom
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panya Luksanapruksa
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phitchapa Pongpaksupasin
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.,Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Areerat Khorchai
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Acharaporn Dambua
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Patcharaporn Boonchu
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Chonlada Yodtup
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Mongkol Uiprasertkul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Sangkitporn
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand.
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
20
|
Sineh Sepehr K, Razavi A, Hassan ZM, Fazel A, Abdollahpour-Alitappeh M, Mossahebi-Mohammadi M, Yekaninejad MS, Farhadihosseinabadi B, Hashemi SM. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue. Cancer Immunol Immunother 2020; 69:1841-1854. [PMID: 32350594 PMCID: PMC11027656 DOI: 10.1007/s00262-020-02567-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs), one of the most important stromal cells in the tumor microenvironment, play a major role in the immunomodulation and development of tumors. In contrast to immunomodulatory effects of bone marrow-derived MSCs, resident MSCs were not well studied in tumor. The aim of this study was to compare the immunomodulatory properties and protein secretion profiles of MSCs isolated from breast tumor (T-MSC) and normal breast adipose tissue (N-MSC). MATERIALS AND METHODS T-MSCs and N-MSCs were isolated by the explant culture method and characterized, and their immunomodulatory function was assessed on peripheral blood lymphocytes (PBLs) by evaluating the effects of MSC conditioned media on the proliferation and induction of some cytokines and regulatory T cells (Tregs) by BrdU assay, ELISA, and flow cytometry. In addition, we compared the secretion of indoleamine 2,3-dioxygenase (IDO), vascular endothelial growth factor (VEGF), matrix metallopeptidase (MMP)-2, MMP-9, and Galectin-1. RESULTS T-MSCs showed a higher secretion of transforming growth factor beta (TGF-β), prostaglandin E2 (PGE2), IDO, and VEGF and lower secretion of MMP-2 and MMP-9 compared with N-MSCs. However, no significant difference was found in the secretion of interferon gamma (IFN-γ), interleukin 10 (IL10), IL4, IL17, and Galectin-1 in T-MSCs and N-MSCs. The immunomodulatory effect of soluble factors on PBLs showed that T-MSCs, in contrast to N-MSCs, stimulate PBL proliferation. Importantly, the ability of T-MSCs to induce IL10, TGF-β, IFN-γ, and PGE2 was higher than that of N-MSCs. In addition, T-MSCs and N-MSCs exhibited no significant difference in Treg induction. CONCLUSION MSCs educated in stage II breast cancer and normal breast adipose tissue, although sharing a similar morphology and immunophenotype, exhibited a clearly different profile in some immunomodulatory functions and protein secretions.
Collapse
Affiliation(s)
- Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Fazel
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Terraza-Aguirre C, Campos-Mora M, Elizondo-Vega R, Contreras-López RA, Luz-Crawford P, Jorgensen C, Djouad F. Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells 2020; 9:cells9071660. [PMID: 32664207 PMCID: PMC7408034 DOI: 10.3390/cells9071660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.
Collapse
Affiliation(s)
- Claudia Terraza-Aguirre
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
| | | | - Roberto Elizondo-Vega
- Facultad de Ciencias Biológicas, Departamento de Biología Celular, Laboratorio de Biología Celular, Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Patricia Luz-Crawford
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago 7620001, Chile;
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- CHU Montpellier, F-34295 Montpellier, France
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| |
Collapse
|
22
|
Gomzikova MO, Aimaletdinov AM, Bondar OV, Starostina IG, Gorshkova NV, Neustroeva OA, Kletukhina SK, Kurbangaleeva SV, Vorobev VV, Garanina EE, Persson JL, Jeyapalan J, Mongan NP, Khaiboullina SF, Rizvanov AA. Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: comparing with extracellular vesicles derived from mesenchymal stem cells. Sci Rep 2020; 10:10740. [PMID: 32612100 PMCID: PMC7330035 DOI: 10.1038/s41598-020-67563-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles derived from mesenchymal stem cells (MSCs) represent a novel approach for regenerative and immunosuppressive therapy. Recently, cytochalasin B-induced microvesicles (CIMVs) were shown to be effective drug delivery mediators. However, little is known about their immunological properties. We propose that the immunophenotype and molecular composition of these vesicles could contribute to the therapeutic efficacy of CIMVs. To address this issue, CIMVs were generated from murine MSC (CIMVs-MSCs) and their cytokine content and surface marker expression determined. For the first time, we show that CIMVs-MSCs retain parental MSCs phenotype (Sca-1+, CD49e+, CD44+, CD45−). Also, CIMVs-MSCs contained a cytokine repertoire reflective of the parental MSCs, including IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40), IL-13, IL-17, CCL2, CCL3, CCL4, CCL5, CCL11, G-CSF, GM-CSF and TNF-α. Next, we evaluated the immune-modulating properties of CIMVs-MSCs in vivo using standard preclinical tests. MSCs and CIMVs-MSCs reduced serum levels of anti-sheep red blood cell antibody and have limited effects on neutrophil and peritoneal macrophage activity. We compared the immunomodulatory effect of MSCs, CIMVs and EVs. We observed no immunosuppression in mice pretreated with natural EVs, whereas MSCs and CIMVs-MSCs suppressed antibody production in vivo. Additionally, we have investigated the biodistribution of CIMVs-MSCs in vivo and demonstrated that CIMVs-MSCs localized in liver, lung, brain, heart, spleen and kidneys 48 h after intravenous injection and can be detected 14 days after subcutaneous and intramuscular injection. Collectively our data demonstrates immunomodulatory efficacy of CIMVs and supports their further preclinical testing as an effective therapeutic delivery modality.
Collapse
Affiliation(s)
- M O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008. .,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia, 117997.
| | - A M Aimaletdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - O V Bondar
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - I G Starostina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - N V Gorshkova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - O A Neustroeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - S K Kletukhina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - S V Kurbangaleeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - V V Vorobev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - E E Garanina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - J L Persson
- Department of Translational Medicine, Lund University, 205 02, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, 901 87, USA
| | - J Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - N P Mongan
- Department of Translational Medicine, Lund University, 205 02, Malmö, Sweden.,Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave., New York, NY, 10065, USA
| | - S F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008.,Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - A A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008. .,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia, 117997.
| |
Collapse
|
23
|
Mehdipour A, Ebrahimi A, Shiri-Shahsavar MR, Soleimani-Rad J, Roshangar L, Samiei M, Ebrahimi-Kalan A. The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis. Rev Neurosci 2020; 30:857-868. [PMID: 31026226 DOI: 10.1515/revneuro-2018-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | | | - Jafar Soleimani-Rad
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Endodontics Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran,
| |
Collapse
|
24
|
Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin Sci (Lond) 2020; 133:2143-2157. [PMID: 31654074 DOI: 10.1042/cs20190294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
The successful application of mesenchymal stem cells (MSCs) remains a major challenge in stem cell therapy. Currently, several in vitro studies have indicated potentially beneficial interactions of MSCs with immunosuppressive drugs. These interactions can be even more complex in vivo, and it is in this setting that we investigate the effect of MSCs in combination with Cyclosporine A (CsA) on transplantation reaction and allogeneic cell survival. Using an in vivo mouse model, we found that CsA significantly promoted the survival of MSCs in various organs and tissues of the recipients. In addition, compared to treatment with CsA or MSCs alone, the survival of transplanted allogeneic cells was significantly improved after the combined application of MSCs with CsA. We further observed that the combinatory treatment suppressed immune response to the alloantigen challenge and modulated the immune balance by harnessing proinflammatory CD4+T-bet+ and CD4+RORγt+ cell subsets. These changes were accompanied by a significant decrease in IL-17 production along with an elevated level of IL-10. Co-cultivation of purified naive CD4+ cells with peritoneal macrophages isolated from mice treated with MSCs and CsA revealed that MSC-educated macrophages play an important role in the immunomodulatory effect observed on distinct T-cell subpopulations. Taken together, our findings suggest that CsA promotes MSC survival in vivo and that the therapeutic efficacy of the combination of MSCs with CsA is superior to each monotherapy. This combinatory treatment thus represents a promising approach to reducing immunosuppressant dosage while maintaining or even improving the outcome of therapy.
Collapse
|
25
|
Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S. Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology 2020; 28:585-601. [PMID: 31741175 DOI: 10.1007/s10787-019-00661-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease destroying the insulin-producing beta cells. Recently, stem cell therapy has been tested to treat T1D. In the present study, we aim to investigate the effects of intraperitoneal and intravenous infusion of multipotent mesenchymal stem/stromal cells (MSCs) and MSC-conditioned medium (MSC-CM) in an experimental model of diabetes, induced by multiple injections of Streptozotocin (STZ). The adipose tissue-derived MSC and MSC-CM were isolated from C57Bl/6 male mice and characterized. Later, MSC and MSC-CM were injected intraperitoneally or intravenously into mice. The blood glucose, urinary glucose, and body weight were measured, and the percentages of CD4+ CD25+ FOXP3+ T cells as well as the levels of IFN-γ, TGF-β, IL-4, IL-17, and IL-10 were evaluated. Our results showed that both intraperitoneal and intravenous infusions of MSC and MSC-CM could decrease the blood glucose, recover pancreatic islets, and increase the levels of insulin-producing cells. Furthermore, the percentage of CD4+ CD25+ FOXP3+ T cells was increased after intraperitoneal injection of MSC or MSC-CM and intravenous injection of MSCs. After intraperitoneal injection of the MSC and MSC-CM, the levels of inflammatory cytokines reduced, while the levels of anti-inflammatory cytokines increased. Together current data showed that although both intraperitoneal and intravenous administration had beneficial effects on T1D animal model, but intraperitoneal injection of AD-MSC and AD-MSC-CM was more effective than systemic administration.
Collapse
Affiliation(s)
- Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Masalova OV, Lesnova EI, Klimova RR, Momotyuk ED, Kozlov VV, Ivanova AM, Payushina OV, Butorina NN, Zakirova NF, Narovlyansky AN, Pronin AV, Ivanov AV, Kushch AA. Genetically Modified Mouse Mesenchymal Stem Cells Expressing Non-Structural Proteins of Hepatitis C Virus Induce Effective Immune Response. Vaccines (Basel) 2020; 8:62. [PMID: 32024236 PMCID: PMC7158691 DOI: 10.3390/vaccines8010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is one of the major causes of chronic liver disease and leads to cirrhosis and hepatocarcinoma. Despite extensive research, there is still no vaccine against HCV. In order to induce an immune response in DBA/2J mice against HCV, we obtained modified mouse mesenchymal stem cells (mMSCs) simultaneously expressing five nonstructural HCV proteins (NS3-NS5B). The innate immune response to mMSCs was higher than to DNA immunization, with plasmid encoding the same proteins, and to naïve unmodified MSCs. mMSCs triggered strong phagocytic activity, enhanced lymphocyte proliferation, and production of type I and II interferons. The adaptive immune response to mMSCs was also more pronounced than in the case of DNA immunization, as exemplified by a fourfold stronger stimulation of lymphocyte proliferation in response to HCV, a 2.6-fold higher rate of biosynthesis, and a 30-fold higher rate of secretion of IFN-γ, as well as by a 40-fold stronger production of IgG2a antibodies to viral proteins. The immunostimulatory effect of mMSCs was associated with pronounced IL-6 secretion and reduction in the population of myeloid derived suppressor cells (MDSCs). Thus, this is the first example that suggests the feasibility of using mMSCs for the development of an effective anti-HCV vaccine.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Ekaterina D. Momotyuk
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Vyacheslav V. Kozlov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Alla M. Ivanova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Olga V. Payushina
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
| | - Nina N. Butorina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alexander N. Narovlyansky
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Pronin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (E.I.L.); (R.R.K.); (E.D.M.); (V.V.K.); (A.M.I.); (A.N.N.); (A.V.P.); (A.A.K.)
| |
Collapse
|
27
|
Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci 2020; 16:893-903. [PMID: 32071558 PMCID: PMC7019139 DOI: 10.7150/ijbs.39725] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is sensitive to pathogen-induced acute or chronic liver injury, and liver transplantation (LT) is the only effective strategy for end-stage liver diseases. However, the clinical application is limited by a shortage of liver organs, immunological rejection and high cost. Mesenchymal stromal cell (MSC)-based therapy has gradually become a hot topic for promoting liver regeneration and repairing liver injury in various liver diseases, since MSCs are reported to migrate toward injured tissues, undergo hepatogenic differentiation, inhibit inflammatory factor release and enhance the proliferation of liver cells in vivo. MSCs exert immunoregulatory effects through cell-cell contact and the secretion of anti-inflammatory factors to inhibit liver inflammation and promote liver regeneration. In addition, MSCs are reported to effectively inhibit the activation of cells of the innate immune system, including macrophages, natural killer (NK) cells, dendritic cells (DCs), monocytes and other immune cells, and inhibit the activation of cells of the adaptive immune system, including T lymphocytes, B lymphocytes and subsets of T cells or B cells. In the current review, we mainly focus on the potential effects and mechanisms of MSCs in inhibiting the activation of immune cells to attenuate liver injury in models or patients with acute liver failure (ALF), nonalcoholic fatty liver disease (NAFLD), and liver fibrosis and in patients or models after LT. We highlight that MSC transplantation may replace general therapies for eliminating acute or chronic liver injury in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zhongwen Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
28
|
Holan V, Hermankova B, Krulova M, Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World J Stem Cells 2019; 11:957-967. [PMID: 31768222 PMCID: PMC6851013 DOI: 10.4252/wjsc.v11.i11.957] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative disorders, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration or glaucoma, represent the most common causes of loss of vision and blindness. In spite of intensive research, treatment options to prevent, stop or cure these diseases are limited. Newer therapeutic approaches are offered by stem cell-based therapy. To date, various types of stem cells have been evaluated in a range of models. Among them, mesenchymal stem/stromal cells (MSCs) derived from bone marrow or adipose tissue and used as autologous cells have been proposed to have the potential to attenuate the negative manifestations of retinal diseases. MSCs delivered to the vicinity of the diseased retina can exert local anti-inflammatory and repair-promoting/regenerative effects on retinal cells. However, MSCs also produce numerous factors that could have negative impacts on retinal regeneration. The secretory activity of MSCs is strongly influenced by the cytokine environment. Therefore, the interactions among the molecules produced by the diseased retina, cytokines secreted by inflammatory cells and factors produced by MSCs will decide the development and propagation of retinal diseases. Here we discuss the interactions among cytokines and other factors in the environment of the diseased retina treated by MSCs, and we present results supporting immunoregulatory and trophic roles of molecules secreted in the vicinity of the retina during MSC-based therapy.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Barbora Hermankova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Magdalena Krulova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
29
|
Medhat D, Rodríguez CI, Infante A. Immunomodulatory Effects of MSCs in Bone Healing. Int J Mol Sci 2019; 20:ijms20215467. [PMID: 31684035 PMCID: PMC6862454 DOI: 10.3390/ijms20215467] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into multilineage cells, thus making them a significant prospect as a cell source for regenerative therapy; however, the differentiation capacity of MSCs into osteoblasts seems to not be the main mechanism responsible for the benefits associated with human mesenchymal stem cells hMSCs when used in cell therapy approaches. The process of bone fracture restoration starts with an instant inflammatory reaction, as the innate immune system responds with cytokines that enhance and activate many cell types, including MSCs, at the site of the injury. In this review, we address the influence of MSCs on the immune system in fracture repair and osteogenesis. This paradigm offers a means of distinguishing target bone diseases to be treated with MSC therapy to enhance bone repair by targeting the crosstalk between MSCs and the immune system.
Collapse
Affiliation(s)
- Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, 48903 Barakaldo, Bizkaia, Spain.
| |
Collapse
|
30
|
Kim SH, Jung J, Cho KJ, Choi JH, Lee HS, Kim GJ, Lee SG. Immunomodulatory Effects of Placenta-derived Mesenchymal Stem Cells on T Cells by Regulation of FoxP3 Expression. Int J Stem Cells 2018; 11:196-204. [PMID: 30343549 PMCID: PMC6285290 DOI: 10.15283/ijsc18031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
The immunomodulatory effects of mesenchymal stem cells (MSCs) are an important mediator of their therapeutic effects in stem cell therapy and regenerative medicine. The regulation mechanism of MSCs is orchestrated by several factors in both intrinsic and extrinsic events. Recent studies have shown that the dynamic expression of cytokines secreted from MSCs control T cell function and maturation by regulating the expression of FoxP3, which figures prominently in T cell differentiation. However, there is no evidence that placenta-derived mesenchymal stem cells (PD-MSCs) have strong immunomodulatory effects on T cell function and maturation via FoxP3 expression. Therefore, we compared the expression of FoxP3 in activated T cells isolated from peripheral blood and co-cultured with PD-MSCs or bone marrow-derived mesenchymal stem cells (BM-MSCs) and analyzed their effect on T cell proliferation and cytokine profiles. Additionally, we verified the immunomodulatory function of PD-MSCs by siRNA-mediated silencing of FoxP3. MSCs, including PD-MSCs and BM-MSCs, promoted differentiation of naive peripheral blood T cells into CD4+CD25+FoxP3+ regulatory T (Treg) cells. Intriguingly, the population of CD4+CD25+FoxP3+ Treg cells co-cultured with PD-MSCs was significantly expanded in comparison to those co-cultured with BM-MSCs or WI38 cells (p<0.05, p<0.001). Dynamic expression patterns of several cytokines, including anti- and pro-inflammatory cytokines and members of the transforming growth factor-beta (TGF-β) family secreted from PD-MSCs according to FoxP3 expression were observed. The results suggest that PD-MSCs have an immunomodulatory effect on T cells by regulating FoxP3 expression.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul,
Korea
- Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon,
Korea
| | - Jieun Jung
- Placenta Research Laboratory, Department of Biomedical Science, CHA University, Seongnam,
Korea
| | - Kyung Jin Cho
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul,
Korea
- Faculty of Health and Environmental Science, College of Health Science, Korea University, Seoul,
Korea
| | - Jong-Ho Choi
- Placenta Research Laboratory, Department of Biomedical Science, CHA University, Seongnam,
Korea
| | - Hyeong Seon Lee
- Department of Biomedical Laboratory Science, Jungwon University, Goesan,
Korea
| | - Gi Jin Kim
- Placenta Research Laboratory, Department of Biomedical Science, CHA University, Seongnam,
Korea
| | - Seung Gwan Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul,
Korea
- Faculty of Health and Environmental Science, College of Health Science, Korea University, Seoul,
Korea
| |
Collapse
|
31
|
Najar M, Fayyad-Kazan H, Faour WH, Merimi M, Sokal EM, Lombard CA, Fahmi H. Immunological modulation following bone marrow-derived mesenchymal stromal cells and Th17 lymphocyte co-cultures. Inflamm Res 2018; 68:203-213. [PMID: 30506263 DOI: 10.1007/s00011-018-1205-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective of the study is to uncover the influence of human bone marrow-derived mesenchymal stem cells (BM-MSCs) on the generation of Th17 lymphocytes in co-cultures of both BM-MSCs and T cells. MATERIALS AND METHODS BM-MSCs, characterized according to the international society for cellular therapy (ISCT) criteria, were co-cultured with T cells isolated from peripheral blood. The expression levels of IL-17 receptor, RORγt and IL-23 receptor were evaluated using flow cytometry. The levels of cytokines involved in Th17 immunomodulation were measured using multiplex assay. TREATMENT Inflammatory primed and non-primed BM-MSCs were co-cultured with either activated or non-activated T cells either at (1/80) and (1/5) ratio respectively. RESULTS MSC/T-cell ratio and inflammation significantly influenced the effect of BM-MSCs on the generation of Th17 lymphocytes. Cocultures of either primed or non-primed BM-MSCs with activated T cells significantly induced IL-17A-expressing lymphocytes. Interestingly, the expression of the transcription factor RORγt was significantly increased when compared to levels in activated T cells. Finally, both cell ratio and priming of BM-MSCs with cytokines substantially influenced the cytokine profile of BM-MSCs and T cells. CONCLUSION Our findings suggest that BM-MSCs significantly modulate the Th17 lymphocyte pathway in a complex manner.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), 900 rue Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Wissam H Faour
- Pharmacology, Gilbert and Rose-Mary Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale and Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Catherine A Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale and Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), 900 rue Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| |
Collapse
|
32
|
Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells from Patients with Amyotrophic Lateral Sclerosis and Healthy Donors. J Neuroimmune Pharmacol 2018; 14:215-225. [PMID: 30242613 DOI: 10.1007/s11481-018-9812-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023]
Abstract
Pathogenesis of amyotrophic lateral sclerosis (ALS) involves several mechanisms resulting in a shift from a neuroprotective to a neurotoxic immune reaction. A promising tool for ALS treatment is represented by mesenchymal stem cells (MSCs), which possess both regenerative potential and immunomodulatory properties. In this study, we aimed to compare the immunomodulatory properties of MSCs isolated from the bone marrow of patients suffering from ALS and healthy donors. Moreover, the influence of proinflammatory cytokines on the immunoregulatory functions of MSCs was also evaluated. We found that MSCs from ALS patients and healthy donors comparably affected mitogen-stimulated peripheral blood mononuclear cells and reduced the percentage of T helper (Th)1, Th17 and CD8+CD25+ lymphocytes. These MSCs also equally increased the percentage of Th2 and CD4+FOXP3+ T lymphocytes. On the other hand, MSCs from ALS patients decreased more strongly the production of tumour necrosis factor-α than MSCs from healthy donors, but this difference was abrogated in the case of MSCs stimulated with cytokines. Significant differences between cytokine-treated MSCs from ALS patients and healthy donors were detected in the effects on the percentage of CD8+CD25+ and CD4+FOXP3+ T lymphocytes. In general, treatment of MSCs with cytokines results in a potentiation of their effects, but in the case of MSCs from ALS patients, it causes stagnation or even restriction of some of their immunomodulatory properties. We conclude that MSCs from ALS patients exert comparable immunomodulatory effects to MSCs from healthy donors, but respond differently to stimulation with proinflammatory cytokines. Graphical Abstract Treatment of mesenchymal stem cells (MSCs) with cytokines results in a potentiation of their effects, but in the case of MSCs from amyotrophic lateral sclerosis (ALS) patients, it causes stagnation (an equal reduction of the percentage of CD8+CD25+ T lymphocytes) or even restriction (no increase of proportion of CD4+FOXP3+ T lymphocytes) of some of their immunomodulatory properties. It means that MSCs from ALS patients exert comparable immunomodulatory effects to MSCs from healthy donors, but respond differently to stimulation with proinflammatory cytokines.
Collapse
|
33
|
Dai R, Yu Y, Yan G, Hou X, Ni Y, Shi G. Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model. BMC Pulm Med 2018; 18:131. [PMID: 30089474 PMCID: PMC6083609 DOI: 10.1186/s12890-018-0701-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/31/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Adipose-derived mesenchymal stem cell (ASCs) exerts immunomodulatory roles in asthma. However, the underlying mechanism remains unclear. The present study aimed to explore the effects and mechanisms of ASCs on chronic asthma using an ovalbumin (OVA)-sensitized asthmatic mouse model. METHODS Murine ASCs (mASCs) were isolated from male Balb/c mice and identified by the expression of surface markers using flow cytometry. The OVA-sensitized asthmatic mouse model was established and then animals were treated with the mASCs through intratracheal delivery. The therapy effects were assessed by measuring airway responsiveness, performing immuohistochemical analysis, and examining bronchoalveolar lavage fluid (BALF). Additionally, the expression of inflammatory cytokines and lgE was detected by CHIP and ELISA, respectively. The mRNA levels of serum indices were detected using qRT-PCR. RESULTS The mASCs grew by adherence with fibroblast-like morphology, and showed the positive expression of CD90, CD44, and CD29 as well as the negative expression of CD45 and CD34, indicating that the mASCs were successfully isolated. Administering mASCs to asthmatic model animals through intratracheal delivery reduced airway responsiveness, the number of lymphocytes (P < 0.01) and the expression of lgE (P < 0.01), IL-1β (P < 0.05), IL-4 (P < 0.001), and IL-17F (P < 0.001), as well as increased the serum levels of IL-10 and Foxp3, and the percentage of CD4 + CD25 + Foxp3+ Tregs in the spleen, and reduced the expression of IL-17 (P < 0.05) and RORγ. CONCLUSIONS Intratracheal administration of mASCs alleviated airway inflammation, improved airway remodeling, and relieved airway hyperresponsiveness in an OVA-sensitized asthma model, which might be associated with the restoration of Th1/Th2 cell balance by mASCs.
Collapse
Affiliation(s)
- Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Youchao Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Guofeng Yan
- School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Xiaoxia Hou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, NO.197, Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
34
|
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol 2018; 10:a022202. [PMID: 28507020 PMCID: PMC5932590 DOI: 10.1101/cshperspect.a022202] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Collapse
Affiliation(s)
- Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Taylor Nicholas Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
35
|
Mesenchymal stem cells therapy protects fetuses from resorption and induces Th2 type cytokines profile in abortion prone mouse model. Transpl Immunol 2018; 47:26-31. [DOI: 10.1016/j.trim.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022]
|
36
|
He X, Zhang Y, Zhu A, Zeng K, Zhang X, Gong L, Peng Y, Lai K, Qu S. Suppression of interleukin 17 contributes to the immunomodulatory effects of adipose-derived stem cells in a murine model of systemic lupus erythematosus. Immunol Res 2017; 64:1157-1167. [PMID: 27617336 DOI: 10.1007/s12026-016-8866-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to roles in immunoregulation and low immunogenicity, mesenchymal stem cells have been suggested to be potent regulators of the immune response and may represent promising treatments for autoimmune disease. Adipose-derived stem cells (ADSCs), stromal cells derived from adipose tissue, were investigated with allogeneic ADSCs in B6.MRL/lpr mice, a murine model of systemic lupus erythematosus (SLE). We intravenously injected allogeneic ADSCs into SLE mice after disease onset and report that ADSCs reduced anti-ds DNA antibodies in serum and proteinuria in SLE mice. Also, ADSCs decreased IL-17 and IL-6 expression in serum of SLE mice. ADSCs alleviated renal damage and inflammatory cell infiltration and edema of the renal interstitium. Furthermore, ADSCs significantly downregulated renal IL-17 and CD68 expression, suggesting that ADSCs suppressed renal inflammation. ADSCs also decreased IL-17 mRNA expression and increased Foxp3, ROR-γt and miR-23b mRNA expression in renal tissue in SLE mice. ADSCs reduced renal protein expression of TAB 2 and IKK-α in SLE mice. Thus, ADSCs may be a novel potential therapy for treating SLE.
Collapse
Affiliation(s)
- Xiaoliang He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, People's Republic of China
| | - Yunlong Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, People's Republic of China
| | - Ai Zhu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Li Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yusheng Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Kuan Lai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Shaogang Qu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China. .,Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, People's Republic of China.
| |
Collapse
|
37
|
Javorkova E, Vackova J, Hajkova M, Hermankova B, Zajicova A, Holan V, Krulova M. The effect of clinically relevant doses of immunosuppressive drugs on human mesenchymal stem cells. Biomed Pharmacother 2017; 97:402-411. [PMID: 29091890 DOI: 10.1016/j.biopha.2017.10.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022] Open
Abstract
Immunosuppressive drugs are used to suppress graft rejection after transplantation and for the treatment of various diseases. The main limitations of their use in clinical settings are severe side effects, therefore alternative approaches are desirable. In this respect, mesenchymal stem cells (MSCs) possess a regenerative and immunomodulatory capacity that has generated considerable interest for their use in cell-based therapy. Currently, MSCs are tested in many clinical trials, including the treatment of diseases which require simultaneous immunosuppressive treatment. Since the molecular targets of immunosuppressive drugs are also present in MSCs, we investigated whether immunosuppressive drugs interact with the activity of MSCs. Human MSCs isolated from the bone marrow (BM) or adipose tissue (AT) were cultured in the presence of clinical doses of five widely used immunosuppressive drugs (cyclosporine A, mycophenolate mofetil, rapamycin, prednisone and dexamethasone), and the influence of these drugs on several factors related to the immunosuppressive properties of MSCs, including the expression of immunomodulatory enzymes, various growth factors, cytokines, chemokines, adhesion molecules and proapoptotic ligands, was assessed. Glucocorticoids, especially dexamethasone, showed the most prominent effects on both types of MSCs and suppressed the expression of the majority of the factors that were tested. A significant increase of hepatocyte growth factor production in AT-MSCs and of indoleamine 2,3-dioxygenase expression in both types of MSCs were the only exceptions. In conclusion, clinically relevant doses of inhibitors of calcineurin, mTOR and IMPDH and glucocorticoids interfere with MSC functions, but do not restrain their immunosuppressive properties. These findings should be taken into account before preparing immunosuppressive strategies combining the use of immunosuppressive drugs and MSCs.
Collapse
Affiliation(s)
- Eliska Javorkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Julie Vackova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic.
| | - Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Barbora Hermankova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Alena Zajicova
- Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Vladimir Holan
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| |
Collapse
|
38
|
Hermankova B, Kossl J, Javorkova E, Bohacova P, Hajkova M, Zajicova A, Krulova M, Holan V. The Identification of Interferon-γ as a Key Supportive Factor for Retinal Differentiation of Murine Mesenchymal Stem Cells. Stem Cells Dev 2017; 26:1399-1408. [PMID: 28728472 DOI: 10.1089/scd.2017.0111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinal disorders represent the main cause of decreased quality of vision and even blindness worldwide. The loss of retinal cells causes irreversible damage of the retina, and there are currently no effective treatment protocols for most retinal degenerative diseases. A promising approach for the treatment of retinal disorders is represented by stem cell-based therapy. The perspective candidates are mesenchymal stem cells (MSCs), which can differentiate into multiple cell types and produce a number of trophic and growth factors. In this study, we show the potential of murine bone marrow-derived MSCs to differentiate into cells expressing retinal markers and we identify the key supportive role of interferon-γ (IFN-γ) in the differentiation process. MSCs were cultured for 7 days with retinal extract and supernatant from T-cell mitogen concanavalin A-stimulated splenocytes, simulating the inflammatory site of retinal damage. MSCs cultured in such conditions differentiated to the cells expressing retinal cell markers such as rhodopsin, S antigen, retinaldehyde-binding protein, calbindin 2, recoverin, and retinal pigment epithelium 65. To identify a supportive molecule in the supernatants from activated spleen cells, MSCs were cultured with retinal extract in the presence of various T-cell cytokines. The expression of retinal markers was enhanced only in the presence of IFN-γ, and the supportive role of spleen cell supernatants was abrogated with the neutralization antibody anti-IFN-γ. In addition, differentiated MSCs were able to express a number of neurotrophic factors, which are important for retinal regeneration. Taken together, the results show that MSCs can differentiate into cells expressing retinal markers and that this differentiation process is supported by IFN-γ.
Collapse
Affiliation(s)
- Barbora Hermankova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Jan Kossl
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Eliska Javorkova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Pavla Bohacova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Michaela Hajkova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Alena Zajicova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Krulova
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| | - Vladimir Holan
- 1 Department of Transplantation Immunology, Institute of Experimental Medicine , Czech Academy of Sciences, Prague, Czech Republic .,2 Department of Cell Biology, Faculty of Science, Charles University , Prague, Czech Republic
| |
Collapse
|
39
|
Miyagawa I, Nakayamada S, Nakano K, Yamagata K, Sakata K, Yamaoka K, Tanaka Y. Induction of Regulatory T Cells and Its Regulation with Insulin-like Growth Factor/Insulin-like Growth Factor Binding Protein-4 by Human Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:1616-1625. [PMID: 28724578 DOI: 10.4049/jimmunol.1600230] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
Human mesenchymal stem cells (MSCs) are multipotent and exert anti-inflammatory effects, but the underlying mechanism remains to be elucidated. In the current study, we investigated the regulatory mechanism of regulatory T cell (Treg) induction through the growth factors released by human MSCs. Human naive CD4+ T cells were stimulated with anti-CD3/28 Abs and cocultured with human MSC culture supernatant for 48 h. The proliferation and cytokine production of CD4+ T cells and surface molecule expression on CD4+ T cells were evaluated. The proliferation of anti-CD3/28 Abs-stimulated CD4+ T cells was suppressed by the addition of human MSC culture supernatant; in addition, the production of IL-10 and IL-4 increased. The human MSC culture supernatant induced CD4+FOXP3+ Tregs that expressed CD25, CTLA-4, glucocorticoid-induced TNFR-related protein, insulin-like growth factor (IGF)-1R, and IGF-2R, showing antiproliferative activity against CD4+ T cells. In addition, the induction of Tregs by human MSC culture supernatant was enhanced by the addition of IGF and suppressed by the inhibition of IGF-1R. In contrast, a significant amount of IGF binding protein (IGFBP)-4, an inhibitor of IGF action, was detected in the human MSC culture supernatant. After neutralization of IGFBP-4 in the human MSC culture supernatant by anti-IGFBP-4 Ab, Treg numbers increased significantly. Thus, our results raise the possibility that human MSC actions also involve a negative-regulatory mechanism that suppresses Treg proliferation by releasing IGFBP-4. The results of this study suggest that regulation of IGF may be important for treatments using human MSCs.
Collapse
Affiliation(s)
- Ippei Miyagawa
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Shingo Nakayamada
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazuhisa Nakano
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kaoru Yamagata
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kei Sakata
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.,Mitsubishi Tanabe Pharma, Yokohama, Kanagawa 227-0033, Japan; and
| | - Kunihiro Yamaoka
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| |
Collapse
|
40
|
Hasby Saad MA, Hasby EA. Trichinella Spiralis Impact on Mesenchymal Stem Cells: Immunohistochemical Study by Image Analyzer in Murine Model. Exp Mol Pathol 2017; 102:396-407. [PMID: 28456661 DOI: 10.1016/j.yexmp.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 02/08/2023]
Abstract
This study aims to elucidate whether Trichinella spiralis infection or its crude antigen administration can stimulate recruitment of CD105+ve/CD45-ve cells that could represent MSCs in intestine and skeletal muscle of experimental BALB/c albino mice compared to healthy control mice. Studied mice were divided into: 20 healthy control, 20 with orally induced T. spiralis infection, 20 received adult worm crude antigen orally and 20 received larval crude antigen intramuscular. According to specific timing schedule, mice were sacrificed and tissue sections were examined for CD105 and CD45 immunohistochemical expression using image J image analyzing software, to compare different study groups. T. spiralis infection induced a significant increase in density of CD105+ve/CD45-ve cells that could represent MSCs in both intestinal and muscle sections, similarly the intramuscular injected larval crude antigen caused more infiltration of such cells in muscles compared to muscle sections from healthy control mice. However, no significant difference was noticed in intestinal sections after oral adult crude antigen administration compared to healthy control mice. So, injected T. spiralis crude antigen might be a successful stimulant to MSCs attraction and recruitment in tissues nearby injection site. This could be beneficial for cell regeneration and tissue repair in case of presence of a disease induced damage.
Collapse
Affiliation(s)
| | - Eiman A Hasby
- Pathology Department, Tanta Faculty of Medicine, Egypt.
| |
Collapse
|
41
|
Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. CELL JOURNAL 2016; 19:1-10. [PMID: 28367411 PMCID: PMC5241505 DOI: 10.22074/cellj.2016.4867] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/07/2016] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) lesions that can lead to severe physical or cognitive disability as well as neurological defects. Although the etiology and pathogenesis of MS remains unclear, the present documents illustrate that the cause of MS is multifactorial and include genetic predisposition together with environmental factors such as exposure to infectious agents, vitamin deficiencies, and smoking. These agents are able to trigger a cascade of events in the immune system which lead to neuronal cell death accompanied by nerve demyelination and neuronal dysfunction. Conventional therapies for MS are based on the use of anti-inflammatory and immunomodulatory drugs, but these treatments are not able to stop the destruction of nerve tissue. Thus, other strategies such as stem cell transplantation have been proposed for the treatment of MS. Overall, it is important that neurologists be aware of current information regarding the pathogenesis, etiology, diagnostic criteria, and treatment of MS. Thus, this issue has been discussed according to recent available information.
Collapse
Affiliation(s)
- Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Nikzad
- Jesus Son of Mary Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Hajkova M, Hermankova B, Javorkova E, Bohacova P, Zajicova A, Holan V, Krulova M. Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations. Stem Cell Rev Rep 2016; 13:104-115. [DOI: 10.1007/s12015-016-9703-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Tang J, Yang R, Lv L, Yao A, Pu L, Yin A, Li X, Yu Y, Nyberg SL, Wang X. Transforming growth factor-β-Expressing Mesenchymal Stem Cells Induce Local Tolerance in a Rat Liver Transplantation Model of Acute Rejection. Stem Cells 2016; 34:2681-2692. [PMID: 27333806 DOI: 10.1002/stem.2437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/09/2016] [Accepted: 05/28/2016] [Indexed: 01/07/2023]
Abstract
Acute rejection is commonly encountered for long-term survival in liver transplant (LT) recipients and may impact their long-term survival if rejection is severe or recurrent. The aim of this study is to examine the therapeutic potential of transforming growth factor (TGF-β)-overexpressing mesenchymal stem cells (MSCs) in inducing a local immunosuppression in liver grafts after transplantation. MSCs were transduced with a lentiviral vector expressing the human TGF-β1 gene; TGF-β1-overexpressing MSCs (designated as TGF/MSCs) were then transfused into the liver grafts via the portal vein of a rat LT model of acute rejection. Rejection severity was assessed by clinical and histologic analysis. The immunity suppression effects and mechanism of TGF/MSCs were tested, focusing on their ability to induce generation of regulatory T cells (Tregs) in the liver grafts. Our findings demonstrate that transfusion of TGF/MSCs prevented rejection, reduced mortality, and improved survival of rats after LT. The therapeutic effects were associated with the immunosuppressive effects of MSCs and TGF-β1. Their reciprocal effects on Tregs induction and function resulted in more CD4 + Foxp3 + Helios- induced Tregs, fewer Th17 cells, and improved immunosuppressive effects in local liver grafts. Thus, TGF/MSCs can induce a local immunosuppressive effect in liver grafts after transplantation. The immunomodulatory activity of TGF-β1 modified MSCs may be a gateway to new therapeutic approaches to prevent organ rejection in clinical transplantation. Stem Cells 2016;34:2681-2692.
Collapse
Affiliation(s)
- Jincao Tang
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Digestive Medical Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Renjie Yang
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ling Lv
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Aihua Yao
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Liyong Pu
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Aihong Yin
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Xiangcheng Li
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Yue Yu
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| | - Scott L Nyberg
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xuehao Wang
- Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing, Jiangsu Province, China
| |
Collapse
|
44
|
Karaöz E, Çetinalp Demircan P, Erman G, Güngörürler E, Eker Sarıboyacı A. Comparative Analyses of Immunosuppressive Characteristics of Bone-Marrow, Wharton's Jelly, and Adipose Tissue-Derived Human Mesenchymal Stem Cells. Turk J Haematol 2016; 34:213-225. [PMID: 27610554 PMCID: PMC5544040 DOI: 10.4274/tjh.2016.0171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: Mesenchymal stem cells (MSCs), which possess immunosuppressive characteristics on induced T-cells, were shown to be applicable in prevention and treatment of graft-versus-host disease. However, knowledge of effective cell sources is still limited. In this study, MSCs from different human tissues, i.e. bone marrow (BM), Wharton’s jelly (WJ), and adipose tissue, were isolated, and the immune suppression of stimulated T cells was analyzed comparatively. Materials and Methods: MSCs were co-cultured with phytohemagglutinin-induced T-cells with co-culture techniques with and without cell-to-cell contact. After co-culture for 24 and 96 h, the proliferation rate of T cells was estimated by carboxyfluorescein succinimidyl ester and apoptosis by annexin V/PI methods. Both T cells and MSCs were analyzed with respect to gene expressions by real-time polymerase chain reaction and their specific protein levels by ELISA. Results: The results showed that all three MSC lines significantly suppressed T-cell proliferation; BM-MSCs were most effective. Similarly, T-cell apoptosis was induced most strongly by BM-MSCs in indirect culture. In T cells, the genes in NFkB and tumor necrosis factor pathways were silenced and the caspase pathway was induced after co-culture. These results were confirmed with the measurement of protein levels, like transforming growth factor β1, IL-6, interferon-γ, interleukin (IL)-2, and tumor necrosis factor-α. Additionally, IL-17A was detected in high levels in WJ-MSC co-cultures. We showed that IL-17A-producing Tregs are the key mediators in the treatment of graft-versus-host disease. Conclusion: BM-MSCs, which have been used in clinical applications for a while, showed the greatest immunosuppressive effect compared to other MSCs. However, a promising cell source could also be WJ, which is also effective in suppression with fewer ethical concerns. We described the molecular mechanism of WJ-MSCs in allogenic transplants for the first time.
Collapse
Affiliation(s)
- Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research and Manufacturing, İstanbul, Turkey
| | | | | | | | | |
Collapse
|
45
|
Linard C, Strup-Perrot C, Lacave-Lapalun JV, Benderitter M. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model. J Leukoc Biol 2016; 100:569-580. [PMID: 26992430 DOI: 10.1189/jlb.3a0915-393r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling.
Collapse
Affiliation(s)
- Christine Linard
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Carine Strup-Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| |
Collapse
|
46
|
Mesenchymal Stromal Cells from Osteoarthritic Synovium Are a Distinct Population Compared to Their Bone-Marrow Counterparts regarding Surface Marker Distribution and Immunomodulation of Allogeneic CD4+ T-Cell Cultures. Stem Cells Int 2016; 2016:6579463. [PMID: 27516777 PMCID: PMC4969547 DOI: 10.1155/2016/6579463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 01/15/2023] Open
Abstract
Introduction. The participation of an inflammatory joint milieu has been described in osteoarthritis (OA) pathogenesis. Mesenchymal stromal cells (MSCs) play an important role in modulating inflammatory processes. Based on previous studies in an allogeneic T-cell coculture model, we aimed at further determining the role of synovial MSCs in OA pathogenesis. Methods. Bone-marrow (BM) and synovial membrane (SM) MSCs from hip joints of late stage OA patients and CD4+ T-cells from healthy donors were analysed regarding surface marker expression before and after coculture. Proliferation upon CD3/CD28 stimulation and cytokine analyses were compared between MSCs. Results. SM-MSCs differed from BM-MSCs in several surface markers and their osteogenic differentiation potential. Cocultures of both MSCs with CD4+ T-cells resulted in recruitment of CD45RA+ FoxP3+ regulatory T-cells. Upon stimulation, only SM-MSCs suppressed CD4+ T-cell proliferation, while both SM-MSCs and BM-MSCs modified cytokine profiles through suppressing IL-2 and TNF-α as well as increasing IL-6 secretion. Conclusions. Synovial MSCs from OA joints are a unique fraction that can be distinguished from their bone-marrow derived counterparts. Their unique ability to suppress CD3/CD28 induced CD4+ T-cell proliferation makes them a potential target for future therapeutic approaches.
Collapse
|
47
|
Rozenberg A, Rezk A, Boivin MN, Darlington PJ, Nyirenda M, Li R, Jalili F, Winer R, Artsy EA, Uccelli A, Reese JS, Planchon SM, Cohen JA, Bar-Or A. Human Mesenchymal Stem Cells Impact Th17 and Th1 Responses Through a Prostaglandin E2 and Myeloid-Dependent Mechanism. Stem Cells Transl Med 2016; 5:1506-1514. [PMID: 27400792 PMCID: PMC5070498 DOI: 10.5966/sctm.2015-0243] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/02/2016] [Indexed: 12/13/2022] Open
Abstract
: Human mesenchymal stem cells (hMSCs) are being increasingly pursued as potential therapies for immune-mediated conditions, including multiple sclerosis. Although they can suppress human Th1 responses, they reportedly can reciprocally enhance human Th17 responses. Here, we investigated the mechanisms underlying the capacity of hMSCs to modulate human Th1 and Th17 responses. Human adult bone marrow-derived MSCs were isolated, and their purity and differentiation capacity were confirmed. Human venous peripheral blood mononuclear cells (PBMC) were activated, alone, together with hMSC, or in the presence of hMSC-derived supernatants (sups). Cytokine expression by CD4+ T-cell subsets (intracellular staining by fluorescence-activated cell sorting) and secreted cytokines (enzyme-linked immunosorbent assay) were then quantified. The contribution of prostaglandin E2 (PGE2) as well as of myeloid cells to the hMSC-mediated regulation of T-cell responses was investigated by selective depletion of PGE2 from the hMSC sups (anti-PGE2 beads) and by the selective removal of CD14+ cells from the PBMC (magnetic-activated cell sorting separation). Human MSC-secreted products could reciprocally induce interleukin-17 expression while decreasing interferon-γ expression by human CD4+ T cells, both in coculture and through soluble products. Pre-exposure of hMSCs to IL-1β accentuated their capacity to reciprocally regulate Th1 and Th17 responses. Human MSCs secreted high levels of PGE2, which correlated with their capacity to regulate the T-cell responses. Selective removal of PGE2 from the hMSC supernatants abrogated the impact of hMSC on the T cells. Selective removal of CD14+ cells from the PBMCs also limited the capacity of hMSC-secreted PGE2 to affect T-cell responses. Our discovery of a novel PGE2-dependent and myeloid cell-mediated mechanism by which human MSCs can reciprocally induce human Th17 while suppressing Th1 responses has implications for the use of, as well as monitoring of, MSCs as a potential therapeutic for patients with multiple sclerosis and other immune-mediated diseases. SIGNIFICANCE Although animal studies have generated a growing interest in the anti-inflammatory potential of mesenchymal stem cells (MSCs) for the treatment of autoimmune diseases, MSCs possess the capacity to both limit and promote immune responses. Yet relatively little is known about human-MSC modulation of human disease-implicated T-cell responses, or the mechanisms underlying such modulation. The current study reveals a novel prostaglandin E2-dependent and myeloid cell-mediated mechanism by which human MSCs can reciprocally regulate human Th17 and Th1 responses, with implications for the use of MSCs as a potential therapeutic for patients with multiple sclerosis and other immune-mediated diseases.
Collapse
Affiliation(s)
- Ayal Rozenberg
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Neuroimmunology Unit, Rambam Medical Center, Haifa, Israel
| | - Ayman Rezk
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Marie-Noëlle Boivin
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Peter J Darlington
- Department of Exercise Science, Concordia University, Montreal, Quebec, Canada
| | - Mukanthu Nyirenda
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rui Li
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Farzaneh Jalili
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Raz Winer
- Neuroimmunology Unit, Rambam Medical Center, Haifa, Israel
| | - Elinor A Artsy
- American Medical Students Program, Technion Institute of Technology, Haifa, Israel
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genova, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Jane S Reese
- National Center for Regenerative Medicine, Case Western Reserve University, and University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Sarah M Planchon
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amit Bar-Or
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Experimental Therapeutics Program, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Abstract
INTRODUCTION Advances in immuno-modulatory therapies, including anti-TNF-α therapies, have greatly increased the chance to achieve long-term remission of inflammatory bowel disease (IBD) patients. However, as the importance of mucosal healing has been demonstrated in a number of clinical studies, new cell-based therapies that can regenerate and fully restore the intestinal mucosal functions are currently under development. AREA COVERED In this review, we feature the recent challenges of cell-based therapies that are applied to the treatment of IBD. In particular, we will focus on hematopoietic stem cells (HSC), mesenchymal stem cells (MSCs) and intestinal stem cells (ISCs) as the candidate source for cell-based therapy targeted to treat IBD. The current status, as well as the expected advantages and disadvantages of those transplantations will be summarized and discussed. EXPERT OPINION Transplantation of HSC, MSC and ISC may have different levels of potential in their ability to exert an immunomodulatory or pro-regenerative effect. Combined cell therapies, such as co-transplantation of MSC and ISC, may provide improved therapeutic outcome compared to transplantation of a single cell population. Those cell-based therapies may not only improve the disease activity or tissue regeneration, but may also have the potential to decrease the risk of developing colitis-associated cancers.
Collapse
Affiliation(s)
- Ryuichi Okamoto
- a Center for Stem Cell and Regenerative Medicine , Tokyo Medical and Dental University , Tokyo , Japan
| | - Mamoru Watanabe
- b Department of Gastroenterology and Hepatology, Graduate School , Tokyo Medical and Dental University , Tokyo , Japan
| |
Collapse
|
49
|
Wu CC, Liu FL, Sytwu HK, Tsai CY, Chang DM. CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells for treating collagen-induced arthritis in mice. Stem Cell Res Ther 2016; 7:23. [PMID: 26841872 PMCID: PMC4741021 DOI: 10.1186/s13287-016-0285-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/03/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
Background The characteristics and therapeutic potential of subtypes of mesenchymal stem cells (MSCs) are largely unknown. In this study, CD146+ and CD146– MSCs were separated from human umbilical cords, and their effects on regulatory T cells (Tregs), Th17 cells, chondrogenesis, and osteogenesis were investigated. Methods Flow cytometry was used to quantify IL-6 and TGF-β1 expressed on CD146+ and CD146– MSCs. The therapeutic potential of both subpopulations was determined by measuring the clinical score and joint histology after intra-articular (IA) transfer of the cells into mice with collagen-induced arthritis (CIA). Results Compared with CD146– MSCs, CD146+ MSCs expressed less IL-6 and had a significantly greater effect on chondrogenesis. After T lymphocyte activation, Th17 cells were activated when exposed to CD146– cells but not when exposed to CD146+ cells both in vitro and in vivo. IA injection of CD146+ MSCs attenuated the progression of CIA. Immunohistochemistry showed that only HLA-A+ CD146+ cells were detected in the cartilage of CIA mice. These cells may help preserve proteoglycan expression. Conclusions This study suggests that CD146+ cells have greater potency than CD146– cells for cartilage protection and can suppress Th17 cell activation. These data suggest a potential therapeutic application for CD146+ cells in treating inflammatory arthritis.
Collapse
Affiliation(s)
- Cheng-Chi Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 114, Taiwan, Republic of China. .,Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District., Taipei, 112, Taiwan, Republic of China.
| | - Fei-Lan Liu
- Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District., Taipei, 112, Taiwan, Republic of China.
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 114, Taiwan, Republic of China.
| | - Chang-Youh Tsai
- Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District., Taipei, 112, Taiwan, Republic of China.
| | - Deh-Ming Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 114, Taiwan, Republic of China. .,Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District., Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
50
|
Hermankova B, Zajicova A, Javorkova E, Chudickova M, Trosan P, Hajkova M, Krulova M, Holan V. Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-γ-treated mesenchymal stem cells. Immunobiology 2016; 221:129-36. [DOI: 10.1016/j.imbio.2015.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022]
|