1
|
Ferri-Angulo D, Yousefi-Mashouf H, Michel M, McLeer A, Orgéas L, Bailly L, Sohier J. Versatile fiber-reinforced hydrogels to mimic the microstructure and mechanics of human vocal-fold upper layers. Acta Biomater 2023; 172:92-105. [PMID: 37748548 DOI: 10.1016/j.actbio.2023.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Human vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings. Despite their importance, the relationships between the microstructure of vocal folds and their resulting macroscopic properties remain poorly understood. There is a need for versatile models that encompass their structural complexity while mimicking their mechanical features. In this study, we present a candidate model inspired by histological measurements of the upper layers of human vocal folds. Bi-photonic observations were used to quantify the distribution, orientation, width, and volume fraction of collagen and elastin fibers between histological layers. Using established biomaterials, polymer fiber-reinforced hydrogels were developed to replicate the fibrillar network and ground substance of native vocal fold tissue. To achieve this, jet-sprayed poly(ε-caprolactone) fibrillar mats were successfully impregnated with poly(L-lysine) dendrimers/polyethylene glycol hydrogels. The resulting composites exhibited versatile structural, physical and mechanical properties that could be customized through variations in the chemical formulation of their hydrogel matrix, the microstructural architecture of their fibrous networks (i.e., fiber diameter, orientation and volume fraction) and their assembly process. By mimicking the collagen network of the lamina propria with polymer fibers and the elastin/ground substance with the hydrogel composition, we successfully replicated the non-linear, anisotropic, and viscoelastic mechanical behavior of the vocal-fold upper layers, accounting for inter/intra-individual variations. The development of this mimetic model offers promising avenues for a better understanding of the complex mechanisms involved in voice production. STATEMENT OF SIGNIFICANCE: Human vocal folds are outstanding vibrating soft living tissues allowing phonation. Simple physical models that take into account the histological structure of the vocal fold and recapitulate its mechanical features are scarce. As a result, the relations between tissue components, organisation and vibro-mechanical performances still remain an open question. We describe here the development and the characterization of fiber-reinforced hydrogels inspired from the vocal-fold microstructure. These systems are able to reproduce the mechanics of vocal-fold tissues upon realistic cyclic and large strains under various multi-axial loadings, thus providing a mimetic model to further understand the impact of the fibrous network microstructure in phonation.
Collapse
Affiliation(s)
- Daniel Ferri-Angulo
- MATEIS, CNRS, Université de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, UMR5510, 69100 Villeurbanne, France
| | - Hamid Yousefi-Mashouf
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
| | - Margot Michel
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, 69007 Lyon, France
| | - Anne McLeer
- Univ. Grenoble Alpes, CHU Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Laurent Orgéas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
| | - Lucie Bailly
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
| | - Jérôme Sohier
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, 69007 Lyon, France.
| |
Collapse
|
2
|
Axiotakis LG, Enver N, Kennedy EL, Duncan KA, Pitman MJ. Duration of Clinical Response After In-Office Steroid Injection for Vocal Fold Scar. Laryngoscope 2023; 133:2333-2339. [PMID: 36594519 DOI: 10.1002/lary.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To assess the duration of clinical response after in-office vocal fold steroid injection (VFSI) for vocal fold (VF) scar. METHODS Demographic and clinical data for in-office VFSI occurring from 2017 to 2020 were collected. Two Speech-Language Pathologists (SLPs) used perceptual evaluation of voice and functional scales to evaluate blinded voice and laryngovideostroboscopy (LVS) samples collected pre- and post-injection across multiple timepoints. RESULTS Blinded SLP ratings were used for 30 individual VFs undergoing initial injection in 18 patients. Persistent improvement in voice past 6 months was seen in 57% of patients after VFSI. Multiple measures of voice and amplitude, percent vibrating tissue, and closed phase predominance significantly improved at various follow-up timepoints on average. CONCLUSION Accounting for patient heterogeneity and disease progression, in-office VFSI for VF scar is associated with sustained improvement in a subset of patients. Approximately half of patients can expect to experience a lasting improvement in voice. Future studies of larger scale are required to identify patient factors associated with long-term benefit. LEVEL OF EVIDENCE 4 Laryngoscope, 133:2333-2339, 2023.
Collapse
Affiliation(s)
- Lucas G Axiotakis
- Center for Voice and Swallowing, Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Necati Enver
- Center for Voice and Swallowing, Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Evan L Kennedy
- Center for Voice and Swallowing, Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Kimberly A Duncan
- Center for Voice and Swallowing, Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Michael J Pitman
- Center for Voice and Swallowing, Department of Otolaryngology-Head and Neck Surgery, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
3
|
Motie-Shirazi M, Zañartu M, Peterson SD, Mehta DD, Hillman RE, Erath BD. Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic hemilaryngeal vocal fold model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:654. [PMID: 36732229 PMCID: PMC9884154 DOI: 10.1121/10.0016997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Synthetic vocal fold (VF) replicas were used to explore the role of nodule size and stiffness on kinematic, aerodynamic, and acoustic measures of voiced speech production. Emphasis was placed on determining how changes in collision pressure may contribute to the development of phonotrauma. This was performed by adding spherical beads with different sizes and moduli of elasticity at the middle of the medial surface of synthetic silicone VF models, representing nodules of varying size and stiffness. The VF models were incorporated into a hemilaryngeal flow facility. For each case, self-sustained oscillations were investigated at the phonation threshold pressure. It was found that increasing the nodule diameter increased the open quotient, phonation threshold pressure, and phonation threshold flow rate. However, these values did not change considerably as a function of the modulus of elasticity of the nodule. Nevertheless, the ratio of collision pressure to subglottal pressure increased significantly for both increasing nodule size and stiffness. This suggests that over time, both growth in size and fibrosis of nodules will lead to an increasing cycle of compensatory vocal hyperfunction that accelerates phonotrauma.
Collapse
Affiliation(s)
- Mohsen Motie-Shirazi
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, New York 13699, USA
| | - Matías Zañartu
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Sean D Peterson
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Daryush D Mehta
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Robert E Hillman
- Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Byron D Erath
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, New York 13699, USA
| |
Collapse
|
4
|
Tindell RK, McPhail MJ, Myers CE, Neubauer J, Hintze JM, Lott DG, Holloway JL. Trilayered Hydrogel Scaffold for Vocal Fold Tissue Engineering. Biomacromolecules 2022; 23:4469-4480. [DOI: 10.1021/acs.biomac.1c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Kevin Tindell
- Chemical Engineering; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael J. McPhail
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona 85259-5499, United States
| | - Cheryl E. Myers
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona 85259-5499, United States
| | - Juergen Neubauer
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona 85259-5499, United States
| | - Justin M. Hintze
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona 85259-5499, United States
| | - David G. Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona 85259-5499, United States
- Division of Laryngology, Mayo Clinic Arizona, Phoenix, Arizona 85054, United States
| | - Julianne L. Holloway
- Chemical Engineering; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
Mohammadi S, Ravanbakhsh H, Taheri S, Bao G, Mongeau L. Immunomodulatory Microgels Support Proregenerative Macrophage Activation and Attenuate Fibroblast Collagen Synthesis. Adv Healthc Mater 2022; 11:e2102366. [PMID: 35122412 DOI: 10.1002/adhm.202102366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Indexed: 11/05/2022]
Abstract
Scars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth. Other limitations include invasive delivery procedures and harsh synthesis conditions that are incompatible with drug molecules. Here, hybrid nanocomposite microgels containing interleukin-10 (IL-10) are reported to modulate tissue macrophage phenotype during wound healing. The intercalation of laponite nanoparticles in the polymer network yields microgels with tissue-mimetic elasticity (Young's modulus in the range of 2-6 kPa) and allows the sustained release of IL-10 to promote the differentiation of macrophages toward proregenerative phenotypes. The porous interstitial spaces between microgels promote fibroblast proliferation and fast trafficking (an average speed of ≈14.4 µm h-1 ). The incorporation of hyaluronic acid further enhances macrophage infiltration. The coculture of macrophages and fibroblasts treated with transforming growth factor-beta 1 resulted in a twofold reduction in collagen-I production for microgels releasing IL-10 compared to the IL-10 free group. The new microgels show potential toward regenerative healing by harnessing the antifibrotic behavior of host macrophages.
Collapse
Affiliation(s)
- Sepideh Mohammadi
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Sareh Taheri
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Guangyu Bao
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Luc Mongeau
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
6
|
Gracioso Martins AM, Biehl A, Sze D, Freytes DO. Bioreactors for Vocal Fold Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:182-205. [PMID: 33446061 PMCID: PMC8892964 DOI: 10.1089/ten.teb.2020.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
It is estimated that almost one-third of the United States population will be affected by a vocal fold (VF) disorder during their lifespan. Promising therapies to treat VF injury and scarring are mostly centered on VF tissue engineering strategies such as the injection of engineered biomaterials and cell therapy. VF tissue engineering, however, is a challenging field as the biomechanical properties, structure, and composition of the VF tissue change upon exposure to mechanical stimulation. As a result, the development of long-term VF treatment strategies relies on the characterization of engineered tissues under a controlled mechanical environment. In this review, we highlight the importance of bioreactors as a powerful tool for VF tissue engineering with a focus on the current state of the art of bioreactors designed to mimic phonation in vitro. We discuss the influence of the phonatory environment on the development, function, injury, and healing of the VF tissue and its importance for the development of efficient therapeutic strategies. A concise and comprehensive overview of bioreactor designs, principles, operating parameters, and scalability are presented. An in-depth analysis of VF bioreactor data to date reveals that mechanical stimulation significantly influences cell viability and the expression of proinflammatory and profibrotic genes in vitro. Although the precision and accuracy of bioreactors contribute to generating reliable results, diverse gene expression profiles across the literature suggest that future efforts should focus on the standardization of bioreactor parameters to enable direct comparisons between studies. Impact statement We present a comprehensive review of bioreactors for vocal fold (VF) tissue engineering with a focus on the influence of the phonatory environment on the development, function, injury, and healing of the VFs and the importance of mimicking phonation on engineered VF tissues in vitro. Furthermore, we put forward a strong argument for the continued development of bioreactors in this area with an emphasis on the standardization of bioreactor designs, principles, operating parameters, and oscillatory regimes to enable comparisons between studies.
Collapse
Affiliation(s)
- Ana M. Gracioso Martins
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andreea Biehl
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Daphne Sze
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique. SENSORS 2021; 21:s21092923. [PMID: 33919359 PMCID: PMC8122672 DOI: 10.3390/s21092923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
The voice producing process is a complex interplay between glottal pressure, vocal folds, their elasticity and tension. The material properties of vocal folds are still insufficiently studied, because the determination of material properties in soft tissues is often difficult and connected to extensive experimental setups. To shed light on this less researched area, in this work, a dynamic pipette aspiration technique is utilized to measure the elasticity in a frequency range of 100–1000 Hz. The complex elasticity could be assessed with the phase shift between exciting pressure and tissue movement. The dynamic pipette aspiration setup has been miniaturized with regard to a future in-vivo application. The techniques were applied on 3 different porcine larynges 4 h and 1 d postmortem, in order to investigate the deterioration of the tissue over time and analyze correlation in elasticity values between vocal fold pairs. It was found that vocal fold pairs do have different absolute elasticity values but similar trends. This leads to the assumption that those trends are more important for phonation than having same absolute values.
Collapse
|
8
|
Coburn PT, Herbay AC, Berrini M, Li-Jessen NYK. An in vitro assessment of the response of THP-1 macrophages to varying stiffness of a glycol-chitosan hydrogel for vocal fold tissue engineering applications. J Biomed Mater Res A 2020; 109:1337-1352. [PMID: 33112473 DOI: 10.1002/jbm.a.37125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023]
Abstract
The physical properties of a biomaterial play an essential role in regulating immune and reparative activities within the host tissue. This study aimed to evaluate the immunological impact of material stiffness of a glycol-chitosan hydrogel designed for vocal fold tissue engineering. Hydrogel stiffness was varied via the concentration of glyoxal cross-linker applied. Hydrogel mechanical properties were characterized through atomic force microscopy and shear plate rheometry. Using a transwell setup, macrophages were co-cultured with human vocal fold fibroblasts that were embedded within the hydrogel. Macrophage viability and cytokine secretion were evaluated at 3, 24, and 72 hr of culture. Flow cytometry was applied to evaluate macrophage cell surface markers after 72 hr of cell culture. Results indicated that increasing hydrogel stiffness was associated with increased anti-inflammatory activity compared to relevant controls. In addition, increased anti-inflammatory activity was observed in hydrogel co-cultures. This study highlighted the importance of hydrogel stiffness from an immunological viewpoint when designing novel vocal fold hydrogels.
Collapse
Affiliation(s)
| | | | - Mattia Berrini
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada
| | - Nicole Y K Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Canada.,Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Lau HK, Rattan S, Fu H, Garcia CG, Barber DM, Kiick KL, Crosby AJ. Micromechanical Properties of Microstructured Elastomeric Hydrogels. Macromol Biosci 2020; 20:e1900360. [DOI: 10.1002/mabi.201900360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and Engineering University of Delaware 201 DuPont Hall Newark DE 19716 USA
| | - Shruti Rattan
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Hongbo Fu
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Cristobal G. Garcia
- Department of Materials Science and Engineering University of Delaware 201 DuPont Hall Newark DE 19716 USA
| | - Dylan M. Barber
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering University of Delaware 201 DuPont Hall Newark DE 19716 USA
- Delaware Biotechnology Institute 15 Innovation Way Newark DE 19711 USA
| | - Alfred J. Crosby
- Polymer Science and Engineering Department University of Massachusetts Amherst 120 Governors Drive Amherst MA 01003 USA
| |
Collapse
|
10
|
Abstract
Airway and other head and neck disorders affect hundreds of thousands of patients each year and most require surgical intervention. Among these, congenital deformity that affects newborns is particularly serious and can be life-threatening. In these cases, reconstructive surgery is resolutive but bears significant limitations, including the donor site morbidity and limited available tissue. In this context, tissue engineering represents a promising alternative approach for the surgical treatment of otolaryngologic disorders. In particular, 3D printing coupled with advanced imaging technologies offers the unique opportunity to reproduce the complex anatomy of native ear, nose, and throat, with its import in terms of functionality as well as aesthetics and the associated patient well-being. In this review, we provide a general overview of the main ear, nose and throat disorders and focus on the most recent scientific literature on 3D printing and bioprinting for their treatment.
Collapse
Affiliation(s)
- Roberto Di Gesù
- Fondazione Ri.MED, Palermo, Italy.,Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Abhinav P Acharya
- Department of Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Ian Jacobs
- Department of Surgery, Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Fondazione Ri.MED, Palermo, Italy.,Department of Pediatrics, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
11
|
Pruett L, Koehn H, Martz T, Churnin I, Ferrante S, Salopek L, Cottler P, Griffin DR, Daniero JJ. Development of a microporous annealed particle hydrogel for long‐term vocal fold augmentation. Laryngoscope 2019; 130:2432-2441. [DOI: 10.1002/lary.28442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Lauren Pruett
- Department of Biomedical Engineering University of Virginia Charlottesville Virginia U.S.A
| | - Heather Koehn
- Department of Otolaryngology–Head and Neck Surgery University of Virginia Charlottesville Virginia U.S.A
| | - Teresa Martz
- School of Medicine University of Virginia Charlottesville Virginia U.S.A
| | - Ian Churnin
- Department of Otolaryngology–Head and Neck Surgery University of Virginia Charlottesville Virginia U.S.A
| | - Sergio Ferrante
- School of Medicine University of Virginia Charlottesville Virginia U.S.A
| | - Lisa Salopek
- Department of Plastic Surgery University of Virginia Charlottesville Virginia U.S.A
| | - Patrick Cottler
- Department of Plastic Surgery University of Virginia Charlottesville Virginia U.S.A
| | - Donald R. Griffin
- Department of Biomedical Engineering University of Virginia Charlottesville Virginia U.S.A
| | - James J. Daniero
- Department of Otolaryngology–Head and Neck Surgery University of Virginia Charlottesville Virginia U.S.A
| |
Collapse
|
12
|
Pöttler M, Fliedner A, Bergmann J, Bui LK, Mühlberger M, Braun C, Graw M, Janko C, Friedrich O, Alexiou C, Lyer S. Magnetic Tissue Engineering of the Vocal Fold Using Superparamagnetic Iron Oxide Nanoparticles. Tissue Eng Part A 2019; 25:1470-1477. [DOI: 10.1089/ten.tea.2019.0009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marina Pöttler
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Fliedner
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Bergmann
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Linh Katrin Bui
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marina Mühlberger
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, Munchen, Germany
| | - Matthias Graw
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, Munchen, Germany
| | - Christina Janko
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Section of Experimental Oncology and Nanomedicine, Head and Neck Surgery, Department of Otorhinolaryngology, Else Kröner-Fresenius-Foundation-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Xu CC, Mau T. A tissue-specific, injectable acellular gel for the treatment of chronic vocal fold scarring. Acta Biomater 2019; 99:141-153. [PMID: 31425889 PMCID: PMC6851489 DOI: 10.1016/j.actbio.2019.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
Gel-based injectable biomaterials have significant potential for treating vocal fold defects such as scarring. An ideal injectable for vocal fold lamina propria restoration should mimic the microenvironment of the lamina propria to induce scarless wound healing and functional tissue regeneration. Most current synthetic or natural injectable biomaterials do not possess the same level of complex, tissue-specific constituents as the natural vocal fold lamina propria. In this study we present a newly-developed injectable gel fabricated from decellularized bovine vocal fold lamina propria. Blyscan assay and mass spectrometry indicated that the vocal fold-specific gel contained a large amount of sulfated glycosaminoglycans and over 250 proteins. Gene Ontology overrepresentation analysis revealed that the proteins in the gel dominantly promote antifibrotic biological process. In vivo study using a rabbit vocal fold injury model showed that the injectable gel significantly reduced collagen density and decreased tissue contraction of the lamina propria in vocal folds with chronic scarring. Furthermore, this acellular gel only elicited minimal humoral immune response after injection. Our findings suggested that the tissue-specific, injectable extracellular matrix gel could be a promising biomaterial for treating vocal fold scarring, even after the formation of mature scar. STATEMENT OF SIGNIFICANCE: Vocal fold lamina propria scarring remains among the foremost therapeutic challenges in the management of patients with voice disorders. Surgical excision of scar may cause secondary scarring and yield inconsistent results. The present study reports an extracellular matrix-derived biomaterial that demonstrated antifibrotic effect on chronic scarring in vocal fold lamina propria. Its injectability minimizes the invasiveness of the delivery procedure and the degree of mucosal violation. In this work we also describe a new methodology which can more accurately identify proteins from the complex mixture of an acellular extracellular matrix gel by excluding interfering peptides produced during the enzymatic digestion in gel fabrication.
Collapse
Affiliation(s)
- Chet C Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ted Mau
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol 2019; 137:853-869. [DOI: 10.1016/j.ijbiomac.2019.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
15
|
Paired versus two-group experimental design for rheological studies of vocal fold tissues. J Biomech 2019; 83:150-156. [PMID: 30579579 DOI: 10.1016/j.jbiomech.2018.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022]
Abstract
Vibratory function of the vocal folds is largely determined by the rheological properties or viscoelastic shear properties of the vocal fold lamina propria. To date, investigation of the sample size estimation and statistical experimental design for vocal fold rheological studies is nonexistent. The current work provides the closed-form sample size formulas for two major study designs (i.e. paired and two-group designs) in vocal fold research. Our results demonstrated that the paired design could greatly increase the statistical power compared to the two-group design. By comparing the variance of estimated treatment effect, this study also confirms that ignoring within-subject and within-vocal fold correlations during rheological data analysis will likely increase type I errors. Finally, viscoelastic shear properties of intact and scarred rabbit vocal fold lamina propria were measured and used to illustrate theoretical findings in a realistic scenario and project sample size requirement for future studies.
Collapse
|
16
|
Hao Y, Song J, Ravikrishnan A, Dicker KT, Fowler EW, Zerdoum AB, Li Y, Zhang H, Rajasekaran AK, Fox JM, Jia X. Rapid Bioorthogonal Chemistry Enables in Situ Modulation of the Stem Cell Behavior in 3D without External Triggers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26016-26027. [PMID: 30015482 PMCID: PMC6214352 DOI: 10.1021/acsami.8b07632] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chemical modification of engineered microenvironments surrounding living cells represents a means for directing cellular behaviors through cell-matrix interactions. Presented here is a temporally controlled method for modulating the properties of biomimetic, synthetic extracellular matrices (ECM) during live cell culture employing the rapid, bioorthogonal tetrazine ligation with trans-cyclooctene (TCO) dienophiles. This approach is diffusion-controlled, cytocompatible, and does not rely on light, catalysts, or other external triggers. Human bone-marrow-derived mesenchymal stem cells (hMSCs) were initially entrapped in a hydrogel prepared using hyaluronic acid carrying sulfhydryl groups (HA-SH) and a hydrophilic polymer bearing both acrylate and tetrazine groups (POM-AT). Inclusion of a matrix metalloprotease (MMP)-degradable peptidic cross-linker enabled hMSC-mediated remodeling of the synthetic environment. The resultant network displayed dangling tetrazine groups for subsequent conjugation with TCO derivatives. Two days later, the stiffness of the matrix was increased by adding chemically modified HA carrying multiple copies of TCO (HA-TCO) to the hMSC growth media surrounding the cell-laden gel construct. In response, cells developed small processes radially around the cell body without a significant alteration of the overall shape. By contrast, modification of the 3D matrix with a TCO-tagged cell-adhesive motif caused the resident cells to undergo significant actin polymerization, changing from a rounded shape to spindle morphology with long cellular processes. After additional 7 days of culture in the growth media, quantitative analysis showed that, at the mRNA level, RGD tagging upregulated cellular expression of MMP1, but downregulated the expression of collagen I/III and tenascin C. RGD tagging, however, was not sufficient to induce the classic osteoblastic, chondrogenic, adipogenic, or fibroblastic/myofibroblastic differentiation. The modular approach allows facile manipulation of synthetic ECM to modulate cell behavior, thus potentially applicable to the engineering of functional tissues or tissue models.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Anitha Ravikrishnan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kevin T. Dicker
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Aidan B. Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Yi Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | - Joseph M. Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
17
|
Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL. Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 2018; 106:2229-2242. [PMID: 29611890 PMCID: PMC6030450 DOI: 10.1002/jbm.a.36418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/21/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Vocal folds are connective tissues housed in the larynx, which can be subjected to various injuries and traumatic stimuli that lead to aberrant tissue structural alterations and fibrotic-induced biomechanical stiffening observed in patients with voice disorders. Much effort has been devoted to generate soft biomaterials that are injectable directly to sites of injury. To date, materials applied toward these applications have been largely focused on natural extracellular matrix-derived materials such as collagen, fibrin or hyaluronic acid; these approaches have suffered from the fact that materials are not sufficiently robust mechanically nor offer sufficient flexibility to modulate material properties for targeted injection. We have recently developed multiple resilin-inspired elastomeric hydrogels that possess similar mechanical properties as those reported for vocal fold tissues, and that also show promising in vitro cytocompatibility and in vivo biocompatibility. Here we report studies that test the delivery of resilin-based hydrogels through injection to the subcutaneous tissue in a wild-type mice model; histological and genetic expression outcomes were monitored. The rapid kinetics of crosslinking enabled facile injection and ensured the rapid transition of the viscous resilin precursor solution to a solid-like hydrogel in the subcutaneous space in vivo; the materials exhibited storage shear moduli in the range of 1000-2000 Pa when characterized through oscillatory rheology. Histological staining and gene expression profiles suggested minimal inflammatory profiles three weeks after injection, thereby demonstrating the potential suitability for site-specific in vivo injection of these elastomeric materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2229-2242, 2018.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jeanna M. Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Elizabeth E. Levendoski
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Hang K. Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| |
Collapse
|
18
|
Lau HK, Paul A, Sidhu I, Li L, Sabanayagam CR, Parekh SH, Kiick KL. Microstructured Elastomer-PEG Hydrogels via Kinetic Capture of Aqueous Liquid-Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1701010. [PMID: 29938180 PMCID: PMC6010786 DOI: 10.1002/advs.201701010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/22/2018] [Indexed: 05/31/2023]
Abstract
Heterogeneous hydrogels with desired matrix complexity are studied for a variety of biomimetic materials. Despite the range of such microstructured materials described, few methods permit independent control over microstructure and microscale mechanics by precisely controlled, single-step processing methods. Here, a phototriggered crosslinking methodology that traps microstructures in liquid-liquid phase-separated solutions of a highly elastomeric resilin-like polypeptide (RLP) and poly(ethylene glycol) (PEG) is reported. RLP-rich domains of various diameters can be trapped in a PEG continuous phase, with the kinetics of domain maturation dependent on the degree of acrylation. The chemical composition of both hydrogel phases over time is assessed via in situ hyperspectral coherent Raman microscopy, with equilibrium concentrations consistent with the compositions derived from NMR-measured coexistence curves. Atomic force microscopy reveals that the local mechanical properties of the two phases evolve over time, even as the bulk modulus of the material remains constant, showing that the strategy permits control of mechanical properties on micrometer length scales, of relevance in generating mechanically robust materials for a range of applications. As one example, the successful encapsulation, localization, and survival of primary cells are demonstrated and suggest the potential application of phase-separated RLP-PEG hydrogels in regenerative medicine applications.
Collapse
Affiliation(s)
- Hang Kuen Lau
- Department of Materials Science and EngineeringUniversity of Delaware201 DuPont HallNewarkDE19716USA
| | - Alexandra Paul
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSE‐412 96Sweden
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Ishnoor Sidhu
- Department of Biological SciencesUniversity of DelawareNewarkDE19716USA
| | - Linqing Li
- Department of Materials Science and EngineeringUniversity of Delaware201 DuPont HallNewarkDE19716USA
| | | | - Sapun H. Parekh
- Department of Molecular SpectroscopyMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kristi L. Kiick
- Department of Materials Science and EngineeringUniversity of Delaware201 DuPont HallNewarkDE19716USA
- Delaware Biotechnology Institute15 Innovation WayNewarkDE19711USA
| |
Collapse
|
19
|
Kim D, Lee S, Lim JY, Kwon S. Characteristics and Responses of Human Vocal Fold Cells in a Vibrational Culture Model. Laryngoscope 2018; 128:E258-E264. [PMID: 29392734 DOI: 10.1002/lary.27113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/05/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES/HYPOTHESIS This study was conducted to provide a vibrational culture model to investigate the effects of mechanical environments on cellular functions, and elucidate physiological characteristics of two different types of cells in vocal folds under static and vibrational conditions. STUDY DESIGN In vitro study of human vocal fold fibroblasts (hVFFs) and human macula flava stellate cells (hMF-SCs). METHODS hVFFs and hMF-SCs were exposed to a 2-second-on/2-second-off, 205 Hz vibration regime for 4 hours by using a vibrational culture model. We compared cell morphology, cell viability, and gene expression in extracellular matrix-related components, growth factors, and differentiation markers under static and vibratory conditions. RESULTS hVFFs and hMF-SCs differed in their morphologies and gene expression levels under static condition. The applied vibration did not induce changes in morphology and viability of either cell type. However, gene expression levels changed in both cell types in response to vibration; in particular, hMF-SCs exhibited a more sensitive response to vibration than that shown by hVFFs. CONCLUSIONS The vibrational culture model developed in this study enabled us to investigate the effects of the applied vibration on two types of vocal fold resident cells. As a result, we could demonstrate that hVFFs and hMF-SCs exhibited distinctively different characteristics under vibrational conditions. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E258-E264, 2018.
Collapse
Affiliation(s)
- Dongjoo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Songyi Lee
- Department of Otorhinolaryngology, Inha University College of Medicine, Incheon, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Inha University College of Medicine, Incheon, South Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
20
|
Pöttler M, Fliedner A, Schreiber E, Janko C, Friedrich RP, Bohr C, Döllinger M, Alexiou C, Dürr S. Impact of Superparamagnetic Iron Oxide Nanoparticles on Vocal Fold Fibroblasts: Cell Behavior and Cellular Iron Kinetics. NANOSCALE RESEARCH LETTERS 2017; 12:284. [PMID: 28431461 PMCID: PMC5398974 DOI: 10.1186/s11671-017-2045-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/04/2017] [Indexed: 05/10/2023]
Abstract
PURPOSE The voice is the most important instrument of communication. Tissue defects in the vocal fold (VF) area lead to serious reduction in quality of life, but thus far, no satisfactory VF implant exists. Therefore, we aim to establish a functional VF implant in a rabbit model by magnetic tissue engineering (MTE) using superparamagnetic iron oxide nanoparticles (SPION). Hence, iron quantification over time as well as cell behavior studies upon SPION treatment are of great importance. METHODS Rabbit VF fibroblasts (VFF) were treated with different concentrations of SPIONs (20, 40, and 80 μg/cm2), and iron content was examined for up to 40 days using microwave plasma-atom emission spectroscopy. The effects of SPION treatment on VFF (adhesion, spreading, and migration), which are important for the formation of 3D structures, were tested. RESULTS Cellular SPION quantification revealed that there was no residual iron remaining in VFFs after 40 days. SPIONs had a dose-dependent effect on cell adhesion, with good tolerability observed up to 20 μg/cm2. Migration and spreading were not significantly influenced by SPION treatment up to 80 μg/cm2. DISCUSSION AND CONCLUSION To develop 3D structures, cell behavior should not be affected by SPION uptake. After 40 days, cells were free of iron as a result of metabolism or rarefication during cell division. Cell functions including adhesion, spreading, and migration were proven to be intact in a dose-dependent manner after SPION treatment, suggesting a safe usage of MTE for voice rehabilitation. Our results thus constitute a solid basis for a successful transfer of this technique into 3D constructs, in order to provide an individual and personalized human VF implant in the future.
Collapse
Affiliation(s)
- Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, Else Kröner Fresenius Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Anna Fliedner
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, Else Kröner Fresenius Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, Else Kröner Fresenius Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, Else Kröner Fresenius Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Ralf Philipp Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, Else Kröner Fresenius Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christopher Bohr
- Department of Otorhinolaryngology, Head and Neck Surgery, Division of Phoniatrics and Pediatric Audiology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Döllinger
- Department of Otorhinolaryngology, Head and Neck Surgery, Division of Phoniatrics and Pediatric Audiology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, Else Kröner Fresenius Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Stephan Dürr
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine, Else Kröner Fresenius Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Division of Phoniatrics and Pediatric Audiology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
21
|
Xu CC, Chan RW, Sun H, Zhan X. A mixed-effects model approach for the statistical analysis of vocal fold viscoelastic shear properties. J Mech Behav Biomed Mater 2017; 75:477-485. [PMID: 28823902 PMCID: PMC6486179 DOI: 10.1016/j.jmbbm.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 11/26/2022]
Abstract
A mixed-effects model approach was introduced in this study for the statistical analysis of rheological data of vocal fold tissues, in order to account for the data correlation caused by multiple measurements of each tissue sample across the test frequency range. Such data correlation had often been overlooked in previous studies in the past decades. The viscoelastic shear properties of the vocal fold lamina propria of two commonly used laryngeal research animal species (i.e. rabbit, porcine) were measured by a linear, controlled-strain simple-shear rheometer. Along with published canine and human rheological data, the vocal fold viscoelastic shear moduli of these animal species were compared to those of human over a frequency range of 1-250Hz using the mixed-effects models. Our results indicated that tissues of the rabbit, canine and porcine vocal fold lamina propria were significantly stiffer and more viscous than those of human. Mixed-effects models were shown to be able to more accurately analyze rheological data generated from repeated measurements.
Collapse
Affiliation(s)
- Chet C Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Roger W Chan
- Department of Speech Language Pathology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Han Sun
- Department of Quantitative Health Sciences, the Cleveland Clinic Foundation, Cleveland, OH, 44195, USA; Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaowei Zhan
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
22
|
Erndt-Marino JD, Jimenez-Vergara AC, Diaz-Rodriguez P, Kulwatno J, Diaz-Quiroz JF, Thibeault S, Hahn MS. In vitro evaluation of a basic fibroblast growth factor-containing hydrogel toward vocal fold lamina propria scar treatment. J Biomed Mater Res B Appl Biomater 2017; 106:1258-1267. [PMID: 28580765 DOI: 10.1002/jbm.b.33936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/11/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022]
Abstract
Scarring of the vocal fold lamina propria can lead to debilitating voice disorders that can significantly impair quality of life. The reduced pliability of the scar tissue-which diminishes proper vocal fold vibratory efficiency-results in part from abnormal extracellular matrix (ECM) deposition by vocal fold fibroblasts (VFF) that have taken on a fibrotic phenotype. To address this issue, bioactive materials containing cytokines and/or growth factors may provide a platform to transition fibrotic VFF within the scarred tissue toward an anti-fibrotic phenotype, thereby improving the quality of ECM within the scar tissue. However, for such an approach to be most effective, the acute host response resulting from biomaterial insertion/injection likely also needs to be considered. The goal of the present work was to evaluate the anti-fibrotic and anti-inflammatory capacity of an injectable hydrogel containing tethered basic fibroblast growth factor (bFGF) in the dual context of scar and biomaterial-induced acute inflammation. An in vitro co-culture system was utilized containing both activated, fibrotic VFF and activated, pro-inflammatory macrophages (MΦ) within a 3D poly(ethylene glycol) diacrylate (PEGDA) hydrogel containing tethered bFGF. Following 72 h of culture, alterations in VFF and macrophage phenotype were evaluated relative to mono-culture and co-culture controls. In our co-culture system, bFGF reduced the production of fibrotic markers collagen type I, α smooth muscle actin, and biglycan by activated VFF and promoted wound-healing/anti-inflammatory marker expression in activated MΦ. Cumulatively, these data indicate that bFGF-containing hydrogels warrant further investigation for the treatment of vocal fold lamina propria scar. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1258-1267, 2018.
Collapse
Affiliation(s)
- Josh D Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | | | - Jonathan Kulwatno
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | | | - Susan Thibeault
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
23
|
Walimbe T, Panitch A, Sivasankar PM. A Review of Hyaluronic Acid and Hyaluronic Acid-based Hydrogels for Vocal Fold Tissue Engineering. J Voice 2017; 31:416-423. [PMID: 28262503 DOI: 10.1016/j.jvoice.2016.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
Vocal fold scarring is a common cause of dysphonia. Current treatments involving vocal fold augmentation do not yield satisfactory outcomes in the long term. Tissue engineering and regenerative medicine offer an attractive treatment option for vocal fold scarring, with the aim to restore the native extracellular matrix microenvironment and biomechanical properties of the vocal folds by inhibiting progression of scarring and thus leading to restoration of normal vocal function. Hyaluronic acid is a bioactive glycosaminoglycan responsible for maintaining optimum viscoelastic properties of the vocal folds and hence is widely targeted in tissue engineering applications. This review covers advances in hyaluronic acid-based vocal fold tissue engineering and regeneration strategies.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Weldon School of Biomedical Engineering, West Lafayette, Indiana
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, West Lafayette, Indiana; Department of Biomedical Engineering, University of California, Davis, California
| | - Preeti M Sivasankar
- Weldon School of Biomedical Engineering, West Lafayette, Indiana; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
24
|
Walimbe T, Panitch A, Sivasankar MP. An in vitro scaffold-free epithelial-fibroblast coculture model for the larynx. Laryngoscope 2016; 127:E185-E192. [PMID: 27859361 DOI: 10.1002/lary.26388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/02/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES/HYPOTHESIS Physiologically relevant, well-characterized in vitro vocal fold coculture models are needed to test the effects of various challenges and therapeutics on vocal fold physiology. We characterize a healthy state coculture model, created by using bronchial/tracheal epithelial cells and immortalized vocal fold fibroblasts. We also demonstrate that this model can be induced into a fibroplastic state to overexpress stress fibers using TGFβ1. STUDY DESIGN In vitro. METHODS Cell metabolic activity of immortalized human vocal fold fibroblasts incubated in different medium combinations was confirmed with an MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide) assay. Fibroblasts were grown to confluence, and primary bronchial/tracheal epithelial cells suspended in coculture medium were seeded directly over the base layer of the fibroblasts. Cells were treated with transforming growth factor β1 (TGFβ1) to induce myofibroblast formation. Cell shape and position were confirmed by live cell tracking, fibrosis was confirmed by probing for α smooth muscle actin (αSMA), and phenotype was confirmed by immunostaining for vimentin and E-cadherin. RESULTS Fibroblasts retain metabolic activity in coculture epithelial medium. Live cell imaging revealed a layer of epithelial cells atop fibroblasts. αSMA expression was enhanced in TGFβ1-treated cells, confirming that both cell types maintained a healthy phenotype in coculture, and can be induced into overexpressing stress fibers. Vimentin and E-cadherin immunostaining show that cells retain phenotype in coculture. CONCLUSIONS These data lay effective groundwork for a functional coculture model that retains the reproducibility necessary to serve as a viable diagnostic and therapeutic screening platform. LEVEL OF EVIDENCE NA Laryngoscope, 127:E185-E192, 2017.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, U.S.A
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, U.S.A
| | - M Preeti Sivasankar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, U.S.A.,Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, U.S.A
| |
Collapse
|
25
|
Li L, Stiadle JM, Lau HK, Zerdoum AB, Jia X, Thibeault SL, Kiick KL. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 2016; 108:91-110. [PMID: 27619243 PMCID: PMC5035639 DOI: 10.1016/j.biomaterials.2016.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023]
Abstract
Vocal folds are soft laryngeal connective tissues with distinct layered structures and complex multicomponent matrix compositions that endow phonatory and respiratory functions. This delicate tissue is easily damaged by various environmental factors and pathological conditions, altering vocal biomechanics and causing debilitating vocal disorders that detrimentally affect the daily lives of suffering individuals. Modern techniques and advanced knowledge of regenerative medicine have led to a deeper understanding of the microstructure, microphysiology, and micropathophysiology of vocal fold tissues. State-of-the-art materials ranging from extracecullar-matrix (ECM)-derived biomaterials to synthetic polymer scaffolds have been proposed for the prevention and treatment of voice disorders including vocal fold scarring and fibrosis. This review intends to provide a thorough overview of current achievements in the field of vocal fold tissue engineering, including the fabrication of injectable biomaterials to mimic in vitro cell microenvironments, novel designs of bioreactors that capture in vivo tissue biomechanics, and establishment of various animal models to characterize the in vivo biocompatibility of these materials. The combination of polymeric scaffolds, cell transplantation, biomechanical stimulation, and delivery of antifibrotic growth factors will lead to successful restoration of functional vocal folds and improved vocal recovery in animal models, facilitating the application of these materials and related methodologies in clinical practice.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jeanna M Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Hang K Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
26
|
Zhang Z. Mechanics of human voice production and control. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2614. [PMID: 27794319 PMCID: PMC5412481 DOI: 10.1121/1.4964509] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As the primary means of communication, voice plays an important role in daily life. Voice also conveys personal information such as social status, personal traits, and the emotional state of the speaker. Mechanically, voice production involves complex fluid-structure interaction within the glottis and its control by laryngeal muscle activation. An important goal of voice research is to establish a causal theory linking voice physiology and biomechanics to how speakers use and control voice to communicate meaning and personal information. Establishing such a causal theory has important implications for clinical voice management, voice training, and many speech technology applications. This paper provides a review of voice physiology and biomechanics, the physics of vocal fold vibration and sound production, and laryngeal muscular control of the fundamental frequency of voice, vocal intensity, and voice quality. Current efforts to develop mechanical and computational models of voice production are also critically reviewed. Finally, issues and future challenges in developing a causal theory of voice production and perception are discussed.
Collapse
Affiliation(s)
- Zhaoyan Zhang
- Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 Rehabilitation Center, 1000 Veteran Avenue, Los Angeles, California 90095-1794, USA
| |
Collapse
|
27
|
Choi JW, Kim YS, Park JK, Song EH, Park JH, Kim MS, Shin YS, Kim CH. Controlled Release of Hepatocyte Growth Factor from MPEG-b-(PCL-ran-PLLA) Diblock Copolymer for Improved Vocal Fold Regeneration. Macromol Biosci 2016; 17. [PMID: 27648819 DOI: 10.1002/mabi.201600163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/07/2016] [Indexed: 01/21/2023]
Abstract
An in situ-forming gel system comprised of diblock copolymer formed from polyethylene glycol (PEG) and polycaprolactone (PCL) {MPEG-b-(PCL-ran-PLLA)} could be used in controlled drug delivery for tissue remodeling. The purpose of this study is to demonstrate favorable vocal folds (VF) regeneration by using MPEG-b-(PCL-ran-PLLA) diblock copolymers (C97L3; CL/LA ratio 97:3) incorporating hepatocyte growth factor (HGF). Gradual release of HGF from C97L3 is detected and biochemical properties of released HGF are maintained. A scar is made with microscissors on both VFs in 32 rabbits, followed by injection of HGF-only, C97L3-only, or HGF-C97L3 composite gel in the left side VF, while the right side VF is left untreated. In vivo fluorescence live imaging system demonstrates that C97L3 enables the sustained release of injected HGF in the scarred VF for 12 weeks. The histological analysis shows increased glycosaminoglycan including hyaluronic acid accumulation and decreased collagen deposition. Videokymographic analysis shows more favorable vibrations of HGF-C97L3 treated VF mucosa, compared to other treatment groups. In conclusion, the controlled HGF release helps to regulate extracellular matrix synthesis, and leads to the eventual functional improvement of the scarred VF.
Collapse
Affiliation(s)
- Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, 16499 Suwon, Korea
| | - Yeon Soo Kim
- Department of Otolaryngology, School of Medicine, Ajou University, 16499 Suwon, Korea
| | - Ju Kyeong Park
- Department of Otolaryngology, School of Medicine, Ajou University, 16499 Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, 16499 Suwon, Korea
| | - Eun Hye Song
- Department of Otolaryngology, School of Medicine, Ajou University, 16499 Suwon, Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, 16499 Suwon, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 16499 Suwon, Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, 16499 Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, 16499 Suwon, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, 16499 Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, 16499 Suwon, Korea
| |
Collapse
|
28
|
Lau HK, Li L, Jurusik AK, Sabanayagam CR, Kiick KL. Aqueous Liquid–Liquid Phase Separation of Resilin-Like Polypeptide/Polyethylene Glycol Solutions for the Formation of Microstructured Hydrogels. ACS Biomater Sci Eng 2016; 3:757-766. [DOI: 10.1021/acsbiomaterials.6b00076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hang Kuen Lau
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
| | - Linqing Li
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
| | - Anna K. Jurusik
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
| | | | - Kristi L. Kiick
- Department
of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark Delaware 19716, United States
- Department
of Biomedical Engineering, University of Delaware, 150 Academy
Street, Newark Delaware 19176, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark Delaware 19711, United States
| |
Collapse
|
29
|
Kim D, Lim JY, Kwon S. Development of Vibrational Culture Model Mimicking Vocal Fold Tissues. Ann Biomed Eng 2016; 44:3136-3143. [PMID: 26951463 DOI: 10.1007/s10439-016-1587-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
The vocal folds (VFs) are connective tissues with complex matrix structures that provide the required mechanical properties for voice generation. VF injury leads to changes in tissue structure and properties, resulting in reduced voice quality. However, injury-induced biochemical changes and repair in scarred VF tissues have not been well characterized to date. To treat scarred VFs, it is essential to understand how physiological characteristics of VFs tissue change in response to external perturbation. In this study, we designed a simple vibrational culture model to mimic vibratory microenvironments observed in vivo. This model consists of a flexible culture plate, three linear actuators, a stereo splitter, and a function generator. Human vocal fold fibroblast (hVFF) monolayers were established on the flexible membrane, to which normal phonatory vibrations were delivered from linear actuators and a function generator. The hVFF monolayers were exposed to the vibrational stresses at a frequency of 205 Hz for 2, 6, and 10 h with maximum displacement of 47.1 μm, followed by a 6 h rest. We then observed the changes in cell morphology, cell viability, and gene expression related to extracellular matrix components. In our dynamic culture device mimicking normal phonatory frequencies, cell proliferation increased and expression of hyaluronic acid synthase 2 was downregulated in response to vibrational stresses. The results presented herein will be useful for evaluating cellular responses following VF injuries in the presence or absence of vibrational stresses.
Collapse
Affiliation(s)
- Dongjoo Kim
- Department of Biological Engineering, Inha University, 100 Inharo Nam-gu, Incheon, 22212, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, 100 Inharo Nam-gu, Incheon, 22212, South Korea.
| |
Collapse
|
30
|
Li L, Mahara A, Tong Z, Levenson EA, McGann CL, Jia X, Yamaoka T, Kiick KL. Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications. Adv Healthc Mater 2016; 5:266-75. [PMID: 26632334 PMCID: PMC4754112 DOI: 10.1002/adhm.201500411] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Indexed: 12/22/2022]
Abstract
The outstanding elasticity, excellent resilience at high-frequency, and hydrophilic capacity of natural resilin have motivated investigations of recombinant resilin-based biomaterials as a new class of bio-elastomers in the engineering of mechanically active tissues. Accordingly, here the comprehensive characterization of modular resilin-like polypeptide (RLP) hydrogels is presented and their suitability as a novel biomaterial for in vivo applications is introduced. Oscillatory rheology confirmed that a full suite of the RLPs can be rapidly cross-linked upon addition of the tris(hydroxymethyl phosphine) cross-linker, achieving similar in situ shear storage moduli (20 k ± 3.5 Pa) across various material compositions. Uniaxial stress relaxation tensile testing of hydrated RLP hydrogels under cyclic loading and unloading showed negligible stress reduction and hysteresis, superior reversible extensibility, and high resilience with Young's moduli of 30 ± 7.4 kPa. RLP hydrogels containing MMP-sensitive domains are susceptible to enzymatic degradation by matrix metalloproteinase-1 (MMP-1). Cell culture studies revealed that RLP-based hydrogels supported the attachment and spreading (2D) of human mesenchymal stem cells and did not activate cultured macrophages. Subcutaneous transplantation of RLP hydrogels in a rat model, which to our knowledge is the first such reported in vivo analysis of RLP-based hydrogels, illustrated that these materials do not elicit a significant inflammatory response, suggesting their potential as materials for tissue engineering applications with targets of mechanically demanding tissues such as vocal fold and cardiovascular tissues.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Zhixiang Tong
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Eric A Levenson
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher L McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai Suita, Osaka, 565-8565, Japan
| | - Kristi L Kiick
- Department of Materials Science and Engineering, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
31
|
Fishman JM, Long J, Gugatschka M, De Coppi P, Hirano S, Hertegard S, Thibeault SL, Birchall MA. Stem cell approaches for vocal fold regeneration. Laryngoscope 2016; 126:1865-70. [PMID: 26774977 DOI: 10.1002/lary.25820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS Current interventions in the management of vocal fold (VF) dysfunction focus on conservative and surgical approaches. However, the complex structure and precise biomechanical properties of the human VF mean that these strategies have their limitations in clinical practice and in some cases offer inadequate levels of success. Regenerative medicine is an exciting development in this field and has the potential to further enhance VF recovery beyond conventional treatments. Our aim in this review is to discuss advances in the field of regenerative medicine; that is, advances in the process of replacing, engineering, or regenerating the VF through utilization of stem cells, with the intention of restoring normal VF structure and function. DATA SOURCES English literature (1946-2015) review. METHODS We conducted a systematic review of MEDLINE for cases and studies of VF tissue engineering utilizing stem cells. RESULTS The three main approaches by which regenerative medicine is currently applied to VF regeneration include cell therapy, scaffold development, and utilization of growth factors. CONCLUSION Exciting advances have been made in stem cell biology in recent years, including use of induced pluripotent stem cells. We expect such advances to be translated into the field in the forthcoming years. Laryngoscope, 126:1865-1870, 2016.
Collapse
Affiliation(s)
- Jonathan M Fishman
- UCL Institute of Child Health, London, United Kingdom.,UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| | - Jenny Long
- UCL Institute of Child Health, London, United Kingdom
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital Graz, Medical University Graz, Graz, Austria
| | | | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Stellan Hertegard
- Department of Otorhinolaryngology, Karolinska Institutet Clintec, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, U.S.A
| | - Martin A Birchall
- UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| |
Collapse
|
32
|
Tse JR, Zhang Z, Long JL. Effects of vocal fold epithelium removal on vibration in an excised human larynx model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:EL60-4. [PMID: 26233062 PMCID: PMC4506294 DOI: 10.1121/1.4922765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study investigated the impact of selective epithelial injury on phonation in an excised human larynx apparatus. With intact epithelium, the vocal folds exhibited a symmetrical vibration pattern with complete glottal closure during vibration. The epithelium was then enzymatically removed from one, then both vocal folds, which led to left-right asymmetric vibration and a decreased closed quotient. Although the mechanisms underlying these vibratory changes are unclear, these results demonstrate that some component of an intact surface layer may play an important role in achieving normal symmetric vibration and glottal closure.
Collapse
Affiliation(s)
- Justin R Tse
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CHS Room 62-132, 650 Charles Young Drive, Los Angeles, California 90095, USA , ,
| | - Zhaoyan Zhang
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CHS Room 62-132, 650 Charles Young Drive, Los Angeles, California 90095, USA , ,
| | - Jennifer L Long
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CHS Room 62-132, 650 Charles Young Drive, Los Angeles, California 90095, USA , ,
| |
Collapse
|
33
|
Branco A, Todorovic Fabro A, Gonçalves TM, Garcia Martins RH. Alterations in extracellular matrix composition in the aging larynx. Otolaryngol Head Neck Surg 2015; 152:302-7. [PMID: 25645525 DOI: 10.1177/0194599814562727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study by immunohistochemistry the alterations of collagens I, III, IV, and V and elastin in the aging process of the human larynx. STUDY DESIGN Cadaver study. SETTING Universidade Estadual Paulista, Botucatu Medical School, São Paulo State University (UNESP), Brazil. SUBJECTS AND METHODS Thirty vocal folds were obtained at autopsy from 10 adult men (aged 30 to 50 years) and 20 geriatric men (10 aged 60 to 75 years and 10 aged >75 years). Mid membranous vocal fold slides were subjected to immunohistochemical reactions. Digital imaging software (ImageJ) was used to quantify the increase in brownish staining of the lamina propria structures of vocal folds, from superficial to deep layers. RESULTS There was an increase of collagen I and III immunoexpression in the elderly larynges, in both layers. Collagens IV and V were immunoexpressed in the vessels endothelium of the lamina propria and in the basement membrane. The immunoexpression of elastin decreased in the elderly larynges, in both lamina propria layers of the vocal folds. CONCLUSION A clear increase of collagens I and III and a decrease of elastic fibers were observed in the lamina propria of vocal folds. The concentration of collagens IV and V was the same across age groups. These findings suggest that as men age, the density of the extracellular matrix increases, brought about by an increase in collagen, while the loss of elastin results in decreased viscoelasticity.
Collapse
Affiliation(s)
- Anete Branco
- Ophthalmology, Otorhinolaryngology, Head and Neck Surgery Department, Botucatu Medical School, UNESP-Univ Estadual Paulista, São Paulo, Brazil
| | | | - Tatiana Maria Gonçalves
- Ophthalmology, Otorhinolaryngology, Head and Neck Surgery Department, Botucatu Medical School, UNESP-Univ Estadual Paulista, São Paulo, Brazil
| | - Regina Helena Garcia Martins
- Ophthalmology, Otorhinolaryngology, Head and Neck Surgery Department, Botucatu Medical School, UNESP-Univ Estadual Paulista, São Paulo, Brazil
| |
Collapse
|
34
|
Kosinski AM, Sivasankar MP, Panitch A. Varying RGD concentration and cell phenotype alters the expression of extracellular matrix genes in vocal fold fibroblasts. J Biomed Mater Res A 2015; 103:3094-100. [PMID: 25778824 DOI: 10.1002/jbm.a.35456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/01/2015] [Accepted: 03/12/2015] [Indexed: 01/17/2023]
Abstract
The impact of RGD integrin binding-peptide concentration and cell phenotype on directing extracellular matrix (ECM) gene expression in vocal fold fibroblasts is little understood. Less is known about cell response to RGD concentration on a biomaterial when fibroblasts are in a scar-like environment compared to a healthy environment. We investigated the effects of varying RGD integrin-binding peptide surface concentration on ECM gene expression of elastin, collagen type 3 alpha 1, decorin, fibronectin, hyaluronan synthase 2, and collagen type 1 alpha 2 in scarred and unscarred immortalized human vocal fold fibroblasts (I-HVFFs). Phenotype and RGD concentration affected ECM gene expression. Phenotype change from healthy to myofibroblast-like resulted in ECM gene up-regulation for all genes tested, except for decorin. Systematically altering RGD concentration affected the expression of elastin and collagen type 3 alpha 1 in a myofibroblast phenotype. Specifically greater up-regulation in gene expression was observed with higher RGD concentrations. This research demonstrates that controlling RGD concentration may influence ECM gene expression levels in fibroblasts. Such knowledge is critical in developing the next generation of bioactive materials that, when implanted into sites of tissue damage and scarring, will direct cells to regenerate healthy tissues with normal ECM ratios and morphologies.
Collapse
Affiliation(s)
- Aaron M Kosinski
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana, 47907
| | - M Preeti Sivasankar
- Speech, Language, and Hearing Sciences, Purdue University, 500 Oval Drive, West Lafayette, Indiana, 47907
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana, 47907
| |
Collapse
|
35
|
Kosinski AM, Pothen JM, Panitch A, Sivasankar MP. Dexamethasone Controlled Release on TGF-β1 Treated Vocal Fold Fibroblasts. Ann Otol Rhinol Laryngol 2015; 124:572-8. [PMID: 25667215 DOI: 10.1177/0003489415570933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Corticosteroids may be beneficial in treating vocal fold scarring. Current drug delivery methods do not permit controlled corticosteroid release. Here we investigate the effects of poly-lactic-co-glycolic acid (PLGA) microparticles loaded with the corticosteroid dexamethasone in reducing collagen synthesis and inflammation in vocal fold fibroblasts treated with and without TGF-β1. STUDY DESIGN Experimental, in vitro study. METHODS PLGA microparticles of differing molecular weight and terminating moieties were synthesized using a hydrogel template method. The release of dexamethasone was characterized from these microparticles over 4 days. Based on the release studies, ester-terminated low molecular weight PLGA microparticles were loaded with dexamethasone and applied to TGF-β1 treated vocal fold fibroblasts for 4 days. Quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assays (ELISAs) were used to assess the effects of released dexamethasone on collagen synthesis and inflammatory mediators. RESULTS COL3A1 and COL1A2 were significantly down-regulated after exposure to ester-terminated low molecular weight PLGA microparticles loaded with dexamethasone. The loaded microparticles also reduced interleukin-6 synthesis. CONCLUSION These data show promise in using a PLGA microparticle-based delivery system to control dexamethasone release over 4 days. Our findings lay the groundwork for developing more effective treatments for vocal fold scarring.
Collapse
Affiliation(s)
- Aaron M Kosinski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jewel M Pothen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - M Preeti Sivasankar
- Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
36
|
Hughes LA, Gaston J, McAlindon K, Woodhouse KA, Thibeault SL. Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating. Acta Biomater 2015; 13:111-20. [PMID: 25462850 DOI: 10.1016/j.actbio.2014.10.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022]
Abstract
Vocal fold lamina propria extracellular matrix (ECM) is highly aligned and when injured, becomes disorganized with loss of the tissue's critical biomechanical properties. This study examines the effects of electrospun fiber scaffold architecture and elastin-like polypeptide (ELP4) coating on human vocal fold fibroblast (HVFF) behavior for applications toward tissue engineering the vocal fold lamina propria. Electrospun Tecoflex™ scaffolds were made with aligned and unaligned fibers, and were characterized using scanning electron microscopy and uniaxial tensile testing. ELP4 was successfully adsorbed onto the scaffolds; HVFFs were seeded and their viability, proliferation, morphology and gene expression were characterized. Aligned and unaligned scaffolds had initial elastic moduli of ∼14 MPa, ∼5 MPa and ∼0.3 MPa, ∼0.6 MPa in the preferred and cross-preferred directions, respectively. Scaffold topography had an effect on the orientation of the cells, with HVFFs seeded on aligned scaffolds having a significantly different (p<0.001) angle of orientation than HVFFs cultured on unaligned scaffolds. This same effect and significant difference (p<0.001) was seen on aligned and unaligned scaffolds coated with ELP4. Scaffold alignment and ELP4 coating impacted ECM gene expression. ELP4 coating, and aligned scaffolds upregulated elastin synthesis when tested on day 7 without a concomitant upregulation of collagen III synthesis. Collectively, results indicate that aligned electrospun scaffolds and ELP4 coating are promising candidates in the development of biodegradeable vocal fold lamina propria constructs.
Collapse
Affiliation(s)
- Lindsay A Hughes
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Joel Gaston
- Department of Surgery and Biomedical Engineering, University of Wisconsin-Madison, 5118 WIMR, 1111 Highland Ave, Madison, WI 53705, USA
| | - Katherine McAlindon
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Kimberly A Woodhouse
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Susan L Thibeault
- Departments of Surgery, Biomedical Engineering and Communication Sciences and Disorders, University of Wisconsin-Madison, 5107 WIMR, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
37
|
Choi JS, Lee S, Kim DY, Kim YM, Kim MS, Lim JY. Functional remodeling after vocal fold injury by small intestinal submucosa gel containing hepatocyte growth factor. Biomaterials 2014; 40:98-106. [PMID: 25433606 DOI: 10.1016/j.biomaterials.2014.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/30/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
A biomaterial derived from porcine small intestinal submucosa (SIS) was used in smart drug delivery and tissue remodeling. SIS suspensions were easily formulated by simple mixing with the drug of choice and formed an in situ gel upon injection into tissues, enabling them to act as protein drug depots. This study was conducted to determine whether functional remodeling of an injured vocal fold (VF) could be achieved by hepatocyte growth factor (HGF)-containing SIS in situ-forming gel after VF injury in a rabbit model. To accomplish this, we loaded HGF in SIS suspensions and observed a gradual, sustained release of HGF for at least 21 days in vitro. Evaluation of the in vivo efficacy demonstrated that the HGF and HGF-loaded SIS treated VFs showed improved mucosal healing when compared with the PBS-injected VFs. Histopathological evaluations revealed that treatment with the HGF/SIS group alone successfully ameliorated the deposition of type I collagen and increased synthesis of hyaluronic acids relative to the PBS group at three months post-injury. Functional analyses showed that the HGF/SIS group prevented deterioration of mucosal vibration and induced significant improvement in the mean viscoelastic modulus, but that other groups failed to achieve functional rescue of VF biomechanics. Additionally, the VF oscillation in the HGF/SIS group was superior to that in the HGF group. The results of this study suggest that SIS in situ gel has the potential for use as an HGF delivery carrier for enhancement of wound healing and improvement of functional remodeling following VF injury.
Collapse
Affiliation(s)
- Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Republic of Korea; Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Songyi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Republic of Korea; Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Da Yeon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Republic of Korea; Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Republic of Korea; Translational Research Center, Inha University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
38
|
Zerdoum AB, Tong Z, Bachman B, Jia X. Construction and characterization of a novel vocal fold bioreactor. J Vis Exp 2014:e51594. [PMID: 25145349 DOI: 10.3791/51594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.
Collapse
Affiliation(s)
| | - Zhixiang Tong
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware
| | - Brendan Bachman
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware
| | - Xinqiao Jia
- Biomedical Engineering Program, University of Delaware; Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware;
| |
Collapse
|
39
|
Mau T, Du M, Xu CC. A rabbit vocal fold laser scarring model for testing lamina propria tissue-engineering therapies. Laryngoscope 2014; 124:2321-6. [PMID: 24715695 DOI: 10.1002/lary.24707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/24/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS To develop a vocal fold scarring model using an ablative laser in the rabbit as a platform for testing bioengineered therapies for missing or damaged lamina propria. STUDY DESIGN Prospective controlled animal study. METHODS An optimal laser energy level was first determined by assessing the depths of vocal fold injury created by a Holmium:YAG laser at various energy levels on fresh cadaveric rabbit larynges. The selected energy level was then used to create controlled unilateral injuries in vocal folds of New Zealand white rabbits, with the contralateral folds serving as uninjured controls. After 4 weeks, the larynges were harvested and subjected to excised-larynx phonation with high-speed imaging and immunohistochemical staining for collagen types I and III, elastin, and hyaluronic acid (HA) with quantitative histological analysis. RESULTS A total of 1.8 joules produced full-thickness injury of the lamina propria without extensive muscle injury. After 4 weeks, the injured vocal folds vibrated with reduced amplitude (P = 0.036) in excised-larynx phonation compared to normal vocal folds. The injured vocal folds contained a higher relative density of collagen type I (P = 0.004), higher elastin (P = 0.022), and lower HA (P = 0.030) compared to normal controls. Collagen type III was unchanged. CONCLUSIONS With its potential for higher precision of injury, this laser vocal fold scarring model may serve as an alternative to scarring produced by cold instruments for studying the effects of vocal fold lamina propria bioengineered therapies.
Collapse
Affiliation(s)
- Ted Mau
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | | | | |
Collapse
|
40
|
Choi JW, Park JK, Chang JW, Kim DY, Kim MS, Shin YS, Kim CH. Small intestine submucosa and mesenchymal stem cells composite gel for scarless vocal fold regeneration. Biomaterials 2014; 35:4911-8. [DOI: 10.1016/j.biomaterials.2014.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/03/2014] [Indexed: 12/09/2022]
|
41
|
Li L, Kiick KL. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels. Front Chem 2014; 2:21. [PMID: 24809044 PMCID: PMC4009447 DOI: 10.3389/fchem.2014.00021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/07/2014] [Indexed: 11/13/2022] Open
Abstract
The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young's modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (<15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware Newark, DE, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware Newark, DE, USA ; Biomedical Engineering, University of Delaware Newark, DE, USA ; Delaware Biotechnology Institute Newark, DE, USA
| |
Collapse
|
42
|
Tong Z, Zerdoum AB, Duncan RL, Jia X. Dynamic vibration cooperates with connective tissue growth factor to modulate stem cell behaviors. Tissue Eng Part A 2014; 20:1922-34. [PMID: 24456068 DOI: 10.1089/ten.tea.2013.0496] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vocal fold disorders affect 3-9% of the U.S. population. Tissue engineering offers an alternative strategy for vocal fold repair. Successful engineering of vocal fold tissues requires a strategic combination of therapeutic cells, biomimetic scaffolds, and physiologically relevant mechanical and biochemical factors. Specifically, we aim to create a vocal fold-like microenvironment to coax stem cells to adopt the phenotype of vocal fold fibroblasts (VFFs). Herein, high frequency vibratory stimulations and soluble connective tissue growth factor (CTGF) were sequentially introduced to mesenchymal stem cells (MSCs) cultured on a poly(ɛ-caprolactone) (PCL)-derived microfibrous scaffold for a total of 6 days. The initial 3-day vibratory culture resulted in an increased production of hyaluronic acids (HA), tenascin-C (TNC), decorin (DCN), and matrix metalloproteinase-1 (MMP1). The subsequent 3-day CTGF treatment further enhanced the cellular production of TNC and DCN, whereas CTGF treatment alone without the vibratory preconditioning significantly promoted the synthesis of collagen I (Col 1) and sulfated glycosaminoglycans (sGAGs). The highest level of MMP1, TNC, Col III, and DCN production was found for cells being exposed to the combined vibration and CTGF treatment. Noteworthy, the vibration and CTGF elicited a differential stimulatory effect on elastin (ELN), HA synthase 1 (HAS1), and fibroblast-specific protein-1 (FSP-1). The mitogenic activity of CTGF was only elicited in naïve cells without the vibratory preconditioning. The combined treatment had profound, but opposite effects on mitogen-activated protein kinase (MAPK) pathways, Erk1/2 and p38, and the Erk1/2 pathway was critical for the observed mechano-biochemical responses. Collectively, vibratory stresses and CTGF signals cooperatively coaxed MSCs toward a VFF-like phenotype and accelerated the synthesis and remodeling of vocal fold matrices.
Collapse
Affiliation(s)
- Zhixiang Tong
- 1 Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware , Newark, Delaware
| | | | | | | |
Collapse
|
43
|
Klein TAL, Gaziano JE, Ridley MB. Vocal fold paralysis secondary to phonotrauma. J Voice 2013; 28:129.e9-129.e11. [PMID: 24291443 DOI: 10.1016/j.jvoice.2013.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/26/2013] [Indexed: 10/25/2022]
Abstract
A unique case of acute onset vocal fold paralysis secondary to phonotrauma is presented. The cause was forceful vocalization by a drill instructor on a firearm range. Imaging studies revealed extensive intralaryngeal and retropharyngeal hemorrhage. Laryngoscopy showed a complete left vocal fold paralysis. Relative voice rest was recommended, and the patient regained normal vocal fold mobility and function after approximately 12 weeks.
Collapse
Affiliation(s)
- Travis A L Klein
- Department of Otolaryngology-Head and Neck Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Joy E Gaziano
- Joy McCann Culverhouse Center for Esophageal and Swallowing Disorders, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Marion B Ridley
- Department of Otolaryngology-Head and Neck Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida.
| |
Collapse
|
44
|
Rodriguez MA, López-López MT, Durán JD, Alaminos M, Campos A, Rodriguez IA. Cryopreservation of an artificial human oral mucosa stroma. A viability and rheological study. Cryobiology 2013; 67:355-62. [DOI: 10.1016/j.cryobiol.2013.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
|
45
|
Peng H, Ming L, Yang R, Liu Y, Liang Y, Zhao Y, Jin Y, Deng Z. The use of laryngeal mucosa mesenchymal stem cells for the repair the vocal fold injury. Biomaterials 2013; 34:9026-35. [PMID: 23978518 DOI: 10.1016/j.biomaterials.2013.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
Abstract
Stem cell transplantation is a kind of attractive and new approach that complements traditional restorative or surgical techniques for the regeneration of injured or pathologically damaged laryngeal tissues. However, the best cell delivery strategy remains to be identified. The objective of this study was to establish a new strategy to the healing of injured vocal fold, using laryngeal mucosa mesenchymal stem cells differentiating into myofibroblasts or fibroblasts and improving the reconstruction microenvironment in the vocal fold injury as a new alternative as seed cells for laryngeal tissue engineering. After isolation and expansion, cells were identified as adherent mesenchymal cells with substantial proliferation potential in vitro, and were also characterized by flow cytometry. The differentiation potential of mesenchymal cells was maintained during proliferation as confirmed by culturing for adipogenesis, osteogenesis and chondrocyte. When LM-MSC was transplanted into the injured vocal fold, it has the potent differentiated into myofibroblasts and fibroblasts, which could regulate extracellular matrix, block collagen and the fibronectin rapid increased, inhibit the rapidly decrease of elastic fiber and HA, decrease the microenvironment inflammatory reaction, and prevent the formation of vocal fold scar.
Collapse
Affiliation(s)
- Han Peng
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bartlett RS, Hoffman HT, Dailey SH, Bock JM, Klemuk SA, Askeland RW, Ahlrichs-Hanson JS, Heaford AC, Thibeault SL. Restructuring the vocal fold lamina propria with endoscopic microdissection. Laryngoscope 2013; 123:2780-6. [PMID: 23959803 DOI: 10.1002/lary.24146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/12/2013] [Accepted: 03/18/2013] [Indexed: 11/11/2022]
Abstract
OBJECTIVES/HYPOTHESIS The purposes of this preclinical study were to investigate histologic and rheologic outcomes of Microendoscopy of Reinke's space (MERS)-guided minithyrotomy and to assess its instrumentation. STUDY DESIGN Human cadaveric and in vivo animal study. METHODS Three human cadaveric larynges were treated with MERS-guided placement of Radiesse VoiceGel and immediately evaluated histologically for biomaterial location. In the second part of this investigation, two scarred porcine larynges were treated with MERS-guided placement of HyStem-VF and rheologically evaluated 6 weeks later. Student t tests determined differences in viscoelastic properties of treated/untreated vocal folds. Sialendoscopes and microendoscopes were subjectively compared for their visualization capacity. RESULTS MERS imaged the subepithelial area and vocal ligament, guiding both tissue dissection and biomaterial positioning. Sialendoscopes provided adequate visualization and feature incorporated working channels. Enhanced image clarity was created in a gas-filled rather than saline-filled environment, per rater judgment. Histological analysis revealed desirable biomaterial positioning with MERS. Per rheological analysis, viscoelastic properties of the MERS-treated porcine vocal folds compared to uninjured vocal folds 6 weeks following treatment did not statistically differ. CONCLUSIONS MERS-guided laryngoplasty using sialendoscopes yielded satisfactory biomaterial positioning in the short-term and normalized rheologic tissue properties in the long-term, contributing to proof of concept for MERS in the treatment of scarring. Strengths of MERS include direct, real-time visualization of Reinke's space and an ability to manipulate surgical instruments parallel to the vocal fold edge while maintaining an intact epithelium. Future work will explore the clinical utility of MERS for addressing scarring, sulcus vocalis, and other intracordal processes.
Collapse
Affiliation(s)
- Rebecca S Bartlett
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim YM, Yi T, Choi JS, Lee S, Jang YH, Kim CH, Song SU, Lim JY. Bone marrow-derived clonal mesenchymal stem cells as a source of cell therapy for promoting vocal fold wound healing. Ann Otol Rhinol Laryngol 2013; 122:121-30. [PMID: 23534127 DOI: 10.1177/000348941312200208] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES We investigated whether mouse bone marrow-derived clonal mesenchymal stem cells (BM-cMSCs) could promote vocal fold (VF) wound healing by using a xenograft animal model. METHODS Homogeneous BM-cMSCs isolated by a subfractionation culturing method from the bone marrow aspirates of green fluorescent protein transgenic mice were injected into the VFs of rabbits immediately after direct mechanical injury. Macroscopic, biomechanical (rheometric), histologic, immunohistochemical, and transcriptional evaluations were performed on the scarred VFs 1 to 3 months after injury. Engraftment of the implanted BM-cMSCs was determined by detection of green fluorescent protein cells in the recipient VF by confocal microscopy. RESULTS The BM-cMSC-treated VFs showed improved morphological properties and viscoelasticity as compared to control VFs injected with phosphate-buffered saline solution. Histologic and immunohistochemical evaluations showed less excessive collagen deposition and increased density of glycosaminoglycans in the BM-cMSC-treated VFs as compared to the control VFs at 3 months after injury (p = 0.003 and p = 0.037, respectively). BM-cMSC transplantation led to a significant attenuation of fibronectin (p = 0.036) and transforming growth factor beta1 (p = 0.042) messenger RNA expression at 1 month after injury. Green fluorescent protein-expressing BM-cMSCs engrafted in recipient VFs were found at 1 month after implantation. CONCLUSIONS BM-cMSCs appeared to survive in the injured xenogeneic VFs after transplantation for up to 1 month and favorably enhanced the wound healing of VFs after injury. We conclude that BM-cMSCs are a possible source of cell therapy for vocal fold regeneration.
Collapse
Affiliation(s)
- Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, the Clinical Research Center,Inha University School of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tong Z, Duncan RL, Jia X. Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds. Tissue Eng Part A 2013; 19:1862-78. [PMID: 23516973 DOI: 10.1089/ten.tea.2012.0694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We are interested in the in vitro engineering of artificial vocal fold tissues via the strategic combination of multipotent mesenchymal stem cells (MSCs), physiologically relevant mechanical stimulations, and biomimetic artificial matrices. We have constructed a vocal fold bioreactor that is capable of imposing vibratory stimulations on the cultured cells at human phonation frequencies. Separately, fibrous poly (ɛ-caprolactone) (PCL) scaffolds emulating the ligamentous structure of the vocal fold were prepared by electrospinning, were incorporated in the vocal fold bioreactor, and were driven into a wave-like motion in an axisymmetrical fashion by the oscillating air. MSC-laden PCL scaffolds were subjected to vibrations at 200 Hz with a normal center displacement of ∼40 μm for a total of 7 days. A continuous (CT) or a 1 h-on-1 h-off (OF) regime with a total dynamic culture time of 12 h per day was applied. The dynamic loading did not cause any physiological trauma to the cells. Immunohistotochemical staining revealed the reinforcement of the actin filament and the enhancement of α5β1 integrin expression under selected dynamic culture conditions. Cellular expression of essential vocal fold extracellular matrix components, such as elastin, hyaluronic acid, and matrix metalloproteinase-1, was significantly elevated as compared with the static controls, and the OF regime is more conducive to matrix production than the CT vibration mode. Analyses of genes of typical fibroblast hallmarks (tenascin-C, collagen III, and procollagen I) as well as markers for MSC differentiation into nonfibroblastic lineages confirmed MSCs' adaptation of fibroblastic behaviors. Overall, the high-frequency vibratory stimulation, when combined with a synthetic fibrous scaffold, serves as a potent modulator of MSC functions. The novel bioreactor system presented here, as a versatile, yet well-controlled model, offers an in vitro platform for understanding vibration-induced mechanotransduction and for engineering of functional vocal fold tissues.
Collapse
Affiliation(s)
- Zhixiang Tong
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
49
|
Froelich K, Setiawan LE, Technau A, Ramos Tirado M, Hackenberg S, Hagen R, Staudenmaier R, Kleinsasser NH. Influence of Different Growth Factors on Chondrogenic Differentiation of Adipose-Derived Stem Cells in Polyurethane-Fibrin Composites. Int J Artif Organs 2012. [DOI: 10.1177/039139881203501203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction Chondrogenic differentiation of adipose-derived stem cells (ASCs) has proven to be feasible. To compensate for laryngeal palsy or cartilage defects after surgery or trauma using tissue engineering, a formable and stable scaffold material is mandatory. Methods ASCs were seeded in fibrin-polyurethane scaffolds and cultured in chondrogenic differentiation medium adding the growth factors TGF-□1, TGF-□3, and BMP-2 for up to 35 days. Results Histological examination showed acid glycosaminoglycans in the extracellular matrix in all groups. Immunofluorescence presented positive staining for collagen II, aggrecan, and SOX-9 in the TGF-□1–, TGF-□3–, and BMP-2-group. With Real-time PCR analyses, chondrogenic differentiation became apparent by the expression of the specific genes COL2A1 (collagen II), AGC 1 (aggrecan), and SOX-9, whereas collagen II expression was low in all groups compared to bone marrow-derived stem cells (BMSC) due to reduced chondrogenic ability. Conclusions These findings demonstrate the general ability of ASCs to differentiate into matrix-producing chondrocytes in fibrin-polyurethane scaffolds. However, further experiments are necessary to enhance this chondrogenic potential of ASCs seeded in fibrin-polyurethane scaffolds in order to produce a suitable regeneration method for treating cartilage defects or an implantable medialization material for vocal cord palsy.
Collapse
Affiliation(s)
- Katrin Froelich
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Lydia E. Setiawan
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Antje Technau
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Mario Ramos Tirado
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Rainer Staudenmaier
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical University Munich - Germany
| | - Norbert H. Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| |
Collapse
|
50
|
Gugatschka M, Ohno S, Saxena A, Hirano S. Regenerative medicine of the larynx. Where are we today? A review. J Voice 2012; 26:670.e7-13. [PMID: 22795981 DOI: 10.1016/j.jvoice.2012.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/20/2012] [Indexed: 12/14/2022]
Abstract
Tissue engineering is a multidimensional process combining cells, scaffold matrices, and chemical signals to produce a structure similar to a target tissue. These techniques have opened a completely new field in diagnosis and therapy in numerous fields, including that of laryngology. Laryngeal tissue engineering has emerged in the last decade, although clinical applications are rare. The reasons therefore are numerous including ethical reasons, as well as the extremely complex anatomical structure of the vocal fold. The search for new treatment options has also enlarged our knowledge about the microphysiology and micropathophysiology of the vocal fold. To date, only specific growth factors are in clinical use for treatment of vocal fold atrophy. Big advances have been made in creating state-of-the-art scaffolds with various techniques including biomaterials as well as fully synthetic polymers. These scaffolds are supposed to provide an optimal environment for residual or implanted cells. Several in vitro settings showed practicability of these scaffolds, also in studying effects of growth factors. Cell therapy is a powerful tool in regenerative medicine but bears the uncertainty of possible malignant transformation. The aim of this review was to give a comprehensive overview about current knowledge in the field of laryngeal tissue engineering and regenerative medicine, including restoration of both vocal folds and laryngeal cartilage, and furthermore to elucidate further trends in this fascinating field.
Collapse
Affiliation(s)
- Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital Graz, Medical University Graz, Graz, Austria.
| | | | | | | |
Collapse
|