1
|
Yan Q, Wang Q. Exploring the Characters of Non-Coding RNAs in Spermatogenesis and Male Infertility. Int J Mol Sci 2025; 26:1128. [PMID: 39940895 PMCID: PMC11817410 DOI: 10.3390/ijms26031128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Infertility is a widespread clinical problem that affects human reproduction and species persistence worldwide. Around 40-70% of cases are due to male reproductive defects. Functional spermatogenesis (sperm production through several coordinated events) is at the heart of male fertility. Non-coding RNAs (ncRNAs) are the primary regulators of gene expression, controlling extensive critical cellular processes, for example proliferation, differentiation, apoptosis, and reproduction. Due to advancements in high-throughput sequencing tools, many studies have revealed that ncRNAs are widely expressed in germ cells, meiosis, spermatogenesis, sperm fertility, early post-fertilization development, and male infertility. The present review examines the biology and function of ncRNAs, including microRNAs, circular RNAs, and long ncRNAs, in spermatogenesis, their correlation with infertility, and their potential as biomarkers for sperm quality and fertility. The function of ncRNA in Sertoli cells (SCs) and Leydig cells (LCs) is also outlined throughout this study, because spermatogenesis requires testicular somatic cells to be involved in testicular development and male fertility. Meanwhile, the future development of ncRNAs for the clinical treatment of male infertility is also anticipated and discussed.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
2
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
3
|
Yeung-Luk BH, Narayanan GA, Ghosh B, Wally A, Lee E, Mokaya M, Wankhade E, Zhang R, Lee B, Park B, Resnick J, Jedlicka A, Dziedzic A, Ramanathan M, Biswal S, Pekosz A, Sidhaye VK. SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human respiratory epithelial cells mediated by expression of spike protein. mBio 2023; 14:e0082023. [PMID: 37504520 PMCID: PMC10470579 DOI: 10.1128/mbio.00820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/10/2023] [Indexed: 07/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SCV2), which has resulted in higher morbidity and mortality rate than other respiratory viral infections, such as Influenza A virus (IAV) infection. Investigating the molecular mechanisms of SCV2-host infection vs IAV is vital in exploring antiviral drug targets against SCV2. We assessed differential gene expression in human nasal cells upon SCV2 or IAV infection using RNA sequencing. Compared to IAV, we observed alterations in both metabolic and cytoskeletal pathways suggestive of epithelial remodeling in the SCV2-infected cells, reminiscent of pathways activated as a response to chronic injury. We found that spike protein interaction with the epithelium was sufficient to instigate these epithelial responses using a SCV2 spike pseudovirus. Specifically, we found downregulation of the mitochondrial markers SIRT3 and TOMM22. Moreover, SCV2 spike infection increased extracellular acidification and decreased oxygen consumption rate in the epithelium. In addition, we observed cytoskeletal rearrangements with a reduction in the actin-severing protein cofilin-1 and an increase in polymerized actin, indicating epithelial cytoskeletal rearrangements. This study revealed distinct epithelial responses to SCV2 infection, with early mitochondrial dysfunction in the host cells and evidence of cytoskeletal remodeling that could contribute to the worsened outcome in COVID-19 patients compared to IAV patients. These changes in cell structure and energetics could contribute to cellular resilience early during infection, allowing for prolonged cell survival and potentially paving the way for more chronic symptoms. IMPORTANCE COVID-19 has caused a global pandemic affecting millions of people worldwide, resulting in a higher mortality rate and concerns of more persistent symptoms compared to influenza A. To study this, we compare lung epithelial responses to both viruses. Interestingly, we found that in response to SARS-CoV-2 infection, the cellular energetics changed and there were cell structural rearrangements. These changes in cell structure could lead to prolonged epithelial cell survival, even in the face of not working well, potentially contributing to the development of chronic symptoms. In summary, these findings represent strategies utilized by the cell to survive the infection but result in a fundamental shift in the epithelial phenotype, with potential long-term consequences, which could set the stage for the development of chronic lung disease or long COVID-19.
Collapse
Affiliation(s)
- Bonnie H. Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ara Wally
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Esther Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michelle Mokaya
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Esha Wankhade
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rachel Zhang
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brianna Lee
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging, National Institute of Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jessica Resnick
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Outpatient Center, Baltimore, Maryland, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Real FM, Lao-Pérez M, Burgos M, Mundlos S, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:231-244. [PMID: 35535962 DOI: 10.1002/jez.b.23142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-β signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.
Collapse
Affiliation(s)
- Francisca M Real
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Lab. 127, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
5
|
Liu H, Zeng X, Ma Y, Chen X, Losiewicz MD, Du X, Tian Z, Zhang S, Shi L, Zhang H, Yang F. Long-term exposure to low concentrations of MC-LR induces blood-testis barrier damage through the RhoA/ROCK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113454. [PMID: 35367887 DOI: 10.1016/j.ecoenv.2022.113454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an emerging water pollutant, produced by cyanobacteria, has an acute testicular toxicity. However, little is known about the chronic toxic effects of MC-LR exposure on the testis at environmental concentrations and the underlying molecular mechanisms. In this study, C57BL/6 J mice were exposed to different low concentrations of MC-LR for 6, 9 and 12 months. The results showed that MC-LR could cause testis structure loss, cell abscission and blood-testis barrier (BTB) damage. Long-term exposure of MC-LR also activated RhoA/ROCK pathway, which was accompanied by the rearrangement of α-Tubulin. Furthermore, MC-LR reduced the levels of the adherens junction proteins (N-cadherin and β-catenin) and the tight junction proteins (ZO-1 and Occludin) in a dose- and time-dependent way, causing BTB damage. MC-LR also reduced the expressions of Occludin, ZO-1, β-catenin, and N-cadherin in TM4 cells, accompanied by a disruption of cytoskeletal proteins. More importantly, the RhoA inhibitor Rhosin ameliorated these MC-LR-induced changes. Together, these new findings suggest that long-term exposure to MC-LR induces BTB damage through RhoA/ROCK activation: involvement of tight junction and adherens junction changes and cytoskeleton disruption. This study highlights a new mechanism for MC-LR-induced BTB disruption and provides new insights into the cause and treatment of BTB disruption.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
6
|
Wang L, Bu T, Wu X, Gao S, Li X, De Jesus AB, Wong CKC, Chen H, Chung NPY, Sun F, Cheng CY. Cell-Cell Interaction-Mediated Signaling in the Testis Induces Reproductive Dysfunction—Lesson from the Toxicant/Pharmaceutical Models. Cells 2022; 11:cells11040591. [PMID: 35203242 PMCID: PMC8869896 DOI: 10.3390/cells11040591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence has shown that cell-cell interactions between testicular cells, in particular at the Sertoli cell-cell and Sertoli-germ cell interface, are crucial to support spermatogenesis. The unique ultrastructures that support cell-cell interactions in the testis are the basal ES (ectoplasmic specialization) and the apical ES. The basal ES is found between adjacent Sertoli cells near the basement membrane that also constitute the blood-testis barrier (BTB). The apical ES is restrictively expressed at the Sertoli-spermatid contact site in the apical (adluminal) compartment of the seminiferous epithelium. These ultrastructures are present in both rodent and human testes, but the majority of studies found in the literature were done in rodent testes. As such, our discussion herein, unless otherwise specified, is focused on studies in testes of adult rats. Studies have shown that the testicular cell-cell interactions crucial to support spermatogenesis are mediated through distinctive signaling proteins and pathways, most notably involving FAK, Akt1/2 and Cdc42 GTPase. Thus, manipulation of some of these signaling proteins, such as FAK, through the use of phosphomimetic mutants for overexpression in Sertoli cell epithelium in vitro or in the testis in vivo, making FAK either constitutively active or inactive, we can modify the outcome of spermatogenesis. For instance, using the toxicant-induced Sertoli cell or testis injury in rats as study models, we can either block or rescue toxicant-induced infertility through overexpression of p-FAK-Y397 or p-FAK-Y407 (and their mutants), including the use of specific activator(s) of the involved signaling proteins against pAkt1/2. These findings thus illustrate that a potential therapeutic approach can be developed to manage toxicant-induced male reproductive dysfunction. In this review, we critically evaluate these recent findings, highlighting the direction for future investigations by bringing the laboratory-based research through a translation path to clinical investigations.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xinyao Li
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | | | - Chris K. C. Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China;
| | - Hao Chen
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Nancy P. Y. Chung
- Department of Genetic Medicine, Cornell Medical College, New York, NY 10065, USA;
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Correspondence: (F.S.); (C.Y.C.)
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (F.S.); (C.Y.C.)
| |
Collapse
|
7
|
Park J, Kim SW, Cho MC. The Role of LIM Kinase in the Male Urogenital System. Cells 2021; 11:cells11010078. [PMID: 35011645 PMCID: PMC8750897 DOI: 10.3390/cells11010078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
The LIM kinases (LIMK1 and LIMK2), known as downstream effectors, and the Rho-associated protein kinase (ROCK), a regulator of actin dynamics, have effects on a diverse set of cellular functions. The LIM kinases are involved in the function of the male urogenital system by smooth muscle contraction via phosphorylation of cofilin and subsequent actin cytoskeleton reorganization. Although LIMK1 and LIMK2 share sequence similarities as serine protein kinases, different tissue distribution patterns and distinct localization during cell cycle progression suggest other biological functions for each kinase. During meiosis and mitosis, the LIMK1/2–cofilin signaling facilitates the orchestrated chromatin remodeling between gametogenesis and the actin cytoskeleton. A splicing variant of the LIMK2 transcript was expressed only in the testis. Moreover, positive signals with LIMK2-specific antibodies were detected mainly in the nucleus of the differentiated stages of germ cells, such as spermatocytes and early round spermatids. LIMK2 plays a vital role in proper spermatogenesis, such as meiotic processes of spermatogenesis after puberty. On the other hand, the literature evidence revealed that a reduction in LIMK1 expression enhanced the inhibitory effects of a ROCK inhibitor on the smooth muscle contraction of the human prostate. LIMK1 may have a role in urethral obstruction and bladder outlet obstruction in men with benign prostatic hyperplasia. Moreover, LIMK1 expression was reduced in urethral stricture. The reduced LIMK1 expression caused the impaired proliferation and migration of urethral fibroblasts. In addition, the activated LIMK2–cofilin pathway contributes to cavernosal fibrosis after cavernosal nerve injury. Recent evidence demonstrated that short-term inhibition of LIMK2 from the immediate post-injury period prevented cavernosal fibrosis and improved erectile function in a rat model of cavernosal nerve injury. Furthermore, chronic inhibition of the LIMK2–cofilin pathway significantly restrained the cavernosal veno-occlusive dysfunction, the primary pathophysiologic mechanism of post-prostatectomy erectile dysfunction through suppressing fibrosis in the corpus cavernosum. In conclusion, the LIM kinases–cofilin pathway appears to play a role in the function of the male urogenital system through actin cytoskeleton reorganization and contributes to the pathogenesis of several urogenital diseases. Therefore, LIM kinases may be a potential treatment target in urogenital disorder.
Collapse
Affiliation(s)
- Juhyun Park
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Soo Woong Kim
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Min Chul Cho
- Department of Urology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Korea
- Correspondence:
| |
Collapse
|
8
|
Mo C, Li W, Jia K, Liu W, Yi M. Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish. Int J Mol Sci 2021; 22:11962. [PMID: 34769390 PMCID: PMC8584686 DOI: 10.3390/ijms222111962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 expression. However, knockdown of cdc42se1 could not significantly rescue PGC migration in maternal miR-202 mutant (MmiR-202) embryos, indicating that there are other target genes of miR-202-5p required for the regulation of PGC migration. Herein, we revealed the transcriptional profiles of wild type and MmiR-202 PGCs and obtained 129 differentially expressed genes (DEGs), of which 42 DEGs were enriched cell migration-related signaling pathways. From these DEGs, we identified two novel miR-202-5p target genes prdm12b and rab10. Furthermore, we found that disruption of rab10 expression led to significantly migratory defects of PGC by overexpression of rab10 siRNA, or WT, inactive as well as active forms of rab10 mRNA, and WT rab10 overexpression mediated migratory defects could be partially but significantly rescued by overexpression of miR-202-5p, demonstrating that rab10 is an important factor involved miR-202-5p mediated regulation of PGC migration. Taken together, the present results provide significant information for understanding the molecular mechanism by which miR-202-5p regulates PGC migration in zebrafish.
Collapse
Affiliation(s)
- Chengyu Mo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (C.M.); (W.L.); (K.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| |
Collapse
|
9
|
Alberto-Silva C, Franzin CS, Gilio JM, Bonfim RS, Querobino SM. Toxicological effects of bioactive peptide fractions obtained from Bothrops jararaca snake venom on the structure and function of mouse seminiferous epithelium. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200007. [PMID: 32636877 PMCID: PMC7315626 DOI: 10.1590/1678-9199-jvatitd-2020-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Pathogenesis of Bothrops envenomations is complex and despite numerous studies on the effects of this snake venom on various biological systems, relatively little is known about such effects on the male reproductive system. In the present study, the toxicological outcomes of the low molecular weight fraction (LMWF) of B. jararaca snake venom - containing a range of bioactive peptides - were investigated on the dynamics and structure of the seminiferous epithelium and 15P-1 Sertoli cells viability. Methods: LMWF (5 µg/dose per testis) venom was administered in male Swiss mice by intratesticular (i.t.) injection. Seven days after this procedure, the testes were collected for morphological and morphometric evaluation, distribution of claudin-1 in the seminiferous epithelium by immunohistochemical analyses of testes, and the nitric oxide (NO) levels were evaluated in the total extract of the testis protein. In addition, the toxicological effects of LMWF and crude venom (CV) were analyzed on the 15P-1 Sertoli cell culture. Results: LMWF induced changes in the structure and function of the seminiferous epithelium without altering claudin-1 distribution. LMWF effects were characterized especially by lost cells in the adluminal compartment of epithelium (spermatocytes in pachytene, preleptotene spermatocytes, zygotene spermatocytes, and round spermatid) and different stages of the seminiferous epithelium cycle. LMWF also increased the NO levels in the total extract of the testis protein and was not cytotoxic in concentrations and time tested in the present study. However, CV showed cytotoxicity at 10 μg/mL from 6 to 48 h of treatment. Conclusions: The major finding of the present study was that the LMWF inhibited spermatozoa production; principally in the spermiogenesis stage without altering claudin-1 distribution in the basal compartment. Moreover, NO increased by LMWF induce open of complexes junctions and release the germ cells of the adluminal compartment to the seminiferous tubule.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Celline Sampaio Franzin
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Joyce Meire Gilio
- Department of Biophysics, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Rodrigo Simão Bonfim
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Samyr Machado Querobino
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo, SP, Brazil.,Center for Health and Biological Sciences, Minas Gerais State University (UEMG), Passos, MG, Brazil
| |
Collapse
|
10
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
11
|
Liu Y, Fan J, Yan Y, Dang X, Zhao R, Xu Y, Ding Z. JMY expression by Sertoli cells contributes to mediating spermatogenesis in mice. FEBS J 2020; 287:5478-5497. [PMID: 32279424 DOI: 10.1111/febs.15328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Sertoli cells are crucial for spermatogenesis in the seminiferous epithelium because their actin cytoskeleton supports vesicular transport, cell junction formation, protein anchoring, and spermiation. Here, we show that a junction-mediating and actin-regulatory protein (JMY) affects the blood-tissue barrier (BTB) function through remodeling of the Sertoli cell junctional integrity and it also contributes to controlling endocytic vesicle trafficking. These functions are critical for the maintenance of sperm fertility since loss of Sertoli cell-specific Jmy function induced male subfertility in mice. Specifically, these mice have (a) impaired BTB integrity and spermatid adhesion in the seminiferous tubules; (b) high incidence of sperm structural deformity; and (c) reduced sperm count and poor sperm motility. Moreover, the cytoskeletal integrity was compromised along with endocytic vesicular trafficking. These effects impaired junctional protein recycling and reduced Sertoli cell BTB junctional integrity. In addition, JMY interaction with actin-binding protein candidates α-actinin1 and sorbin and SH3 domain containing protein 2 was related to JMY activity, and in turn, actin cytoskeletal organization. In summary, JMY affects the control of spermatogenesis through the regulation of actin filament organization and endocytic vesicle trafficking in Sertoli cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jiaying Fan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China.,Center for Experimental Medical Science Education, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Yan
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Xuening Dang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Ran Zhao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yimei Xu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
12
|
Abstract
ncRNAs are involved in numerous biological processes by regulating gene expression and cell stability. Studies have shown that ncRNAs also contribute to spermatogenesis. Leydig cells (LCs) and Sertoli cells (SCs) are somatic cells of the testis that support spermatogenesis and are vital to male fertility. In this review, we summarized the findings from studies on ncRNAs in SCs and LCs. In SCs, ncRNAs play key roles in phagocytosis, immunoprotection and development of SCs. In LCs, ncRNAs are involved in steroidogenesis, in particular production of testosterone as well as development of LCs. Here, we discuss the possible target genes and functions of ncRNAs in both types of cells. These ncRNAs regulate the expression of target genes or mRNA coding sequence regions, resulting in a chain reaction that influences cell function. In addition, microRNAs, lncRNAs, piRNA-like RNAs (pilRNAs) and natural antisense transcripts (NATs) are discussed in this review. In summary, we suggest that these ncRNAs might act in coordination to control spermatogenesis and maintain the environmental homeostasis of the testis.
Collapse
|
13
|
Liang Y, Li X, Wu Y, Ke Z, Liu Z, Chen S, Wei Y, Zheng Q, Xue X, Xu N. LIMK1 depletion enhances fasudil‐dependent inhibition of urethral fibroblast proliferation and migration. J Cell Biochem 2019; 120:12977-12988. [PMID: 30861189 DOI: 10.1002/jcb.28569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ying‐Chun Liang
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Xiao‐Dong Li
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Yu‐Peng Wu
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Zhi‐Bin Ke
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Zhang‐Qi Liu
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Shao‐Hao Chen
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Yong Wei
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Qing‐Shui Zheng
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Xue‐Yi Xue
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Ning Xu
- Departments of Urology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| |
Collapse
|
14
|
Gautam M, Bhattacharya I, Rai U, Majumdar SS. Hormone induced differential transcriptome analysis of Sertoli cells during postnatal maturation of rat testes. PLoS One 2018; 13:e0191201. [PMID: 29342173 PMCID: PMC5771609 DOI: 10.1371/journal.pone.0191201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/30/2017] [Indexed: 11/18/2022] Open
Abstract
Sertoli cells (Sc) are unique somatic cells of testis that are the target of both FSH and testosterone (T) and regulate spermatogenesis. Although Sc of neonatal rat testes are exposed to high levels of FSH and T, robust differentiation of spermatogonial cells becomes conspicuous only after 11-days of postnatal age. We have demonstrated earlier that a developmental switch in terms of hormonal responsiveness occurs in rat Sc at around 12 days of postnatal age during the rapid transition of spermatogonia A to B. Therefore, such “functional maturation” of Sc, during pubertal development becomes prerequisite for the onset of spermatogenesis. However, a conspicuous difference in robust hormone (both T and FSH) induced gene expression during the different phases of Sc maturation restricts our understanding about molecular events necessary for the spermatogenic onset and maintenance. Here, using microarray technology, we for the first time have compared the differential transcriptional profile of Sc isolated and cultured from immature (5 days old), maturing (12 days old) and mature (60 days old) rat testes. Our data revealed that immature Sc express genes involved in cellular growth, metabolism, chemokines, cell division, MAPK and Wnt pathways, while mature Sc are more specialized expressing genes involved in glucose metabolism, phagocytosis, insulin signaling and cytoskeleton structuring. Taken together, this differential transcriptome data provide an important resource to reveal the molecular network of Sc maturation which is necessary to govern male germ cell differentiation, hence, will improve our current understanding of the etiology of some forms of idiopathic male infertility.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
- National Institute of Animal Biotechnology, Hyderabad, India
- * E-mail:
| |
Collapse
|
15
|
Wu S, Li Y, Chen S, Liang S, Ren X, Guo W, Sun Q, Yang X. Effect of dietary Astragalus Polysaccharide supplements on testicular piRNA expression profiles of breeding cocks. Int J Biol Macromol 2017; 103:957-964. [DOI: 10.1016/j.ijbiomac.2017.05.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023]
|
16
|
Gu H, Wu W, Yuan B, Tang Q, Guo D, Chen Y, Xia Y, Hu L, Chen D, Sha J, Wang X. Genistein up-regulates miR-20a to disrupt spermatogenesis via targeting Limk1. Oncotarget 2017; 8:58728-58737. [PMID: 28938591 PMCID: PMC5601687 DOI: 10.18632/oncotarget.17637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/16/2017] [Indexed: 11/25/2022] Open
Abstract
Genistein (GEN) is one of the isoflavones that has effect on male reproduction. However, the underlying mechanism remains unknown. miRNAs are a type of small non-coding RNAs that play important roles in spermatogenesis. We measured the GEN levels and miR-17-92 cluster expression in infertile subjects and found that miR-17-92 might be involved in GEN induced abnormal spermatogenesis. To clarify, we fed adult ICR mice with different doses of GEN (0, 0.5, 5, 50 and 250 mg/kg/day) for 35 days to study the underlying mechanism. We found that sperm average path velocity, straight-line velocity and eurvilinear velocity of the mice orally with GEN at 5mg/kg/day were significantly decreased, the expression levels of miR-17 and miR-20a in mice testis were higher in corresponding group. We also found miR-20a was the only miRNA that differentially expressed both in human and mice. By applying bioinformatics methods, Limk1 was predicted to be the target gene of miR-20a that is involved in spermatogenesis. Limk1 were significantly decreased in the corresponding group. Dual-luciferase report assay also proved that miR-20a could directly target Limk1. These results implied that Limk1 might be the target gene of miR-20a that is involved in GEN induced abnormal spermatogenesis.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Central Laboratory, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223002, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Beilei Yuan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Dan Guo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiu Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingqing Hu
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Daozhen Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
17
|
Abstract
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - Michelle W M Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
18
|
Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression. Toxicol Appl Pharmacol 2016; 310:32-40. [DOI: 10.1016/j.taap.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/29/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023]
|
19
|
Gao Y, Xiao X, Lui WY, Lee WM, Mruk D, Cheng CY. Cell polarity proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:62-70. [PMID: 27292315 DOI: 10.1016/j.semcdb.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/09/2023]
Abstract
When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in particular the BTB during the epithelial cycle of spermatogenesis.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States; Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States.
| |
Collapse
|
20
|
Wang W, Townes-Anderson E. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury. Invest Ophthalmol Vis Sci 2016; 56:7847-58. [PMID: 26658506 DOI: 10.1167/iovs.15-17278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. METHODS Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. RESULTS Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. CONCLUSIONS Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury.
Collapse
|
21
|
Wang D, Naydenov NG, Feygin A, Baranwal S, Kuemmerle JF, Ivanov AI. Actin-Depolymerizing Factor and Cofilin-1 Have Unique and Overlapping Functions in Regulating Intestinal Epithelial Junctions and Mucosal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:844-58. [PMID: 26878213 DOI: 10.1016/j.ajpath.2015.11.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/28/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is a crucial regulator of the intestinal mucosal barrier, controlling the assembly and function of epithelial adherens and tight junctions (AJs and TJs). Junction-associated actin filaments are dynamic structures that undergo constant turnover. Members of the actin-depolymerizing factor (ADF) and cofilin protein family play key roles in actin dynamics by mediating filament severing and polymerization. We examined the roles of ADF and cofilin-1 in regulating the structure and functions of AJs and TJs in the intestinal epithelium. Knockdown of either ADF or cofilin-1 by RNA interference increased the paracellular permeability of human colonic epithelial cell monolayers to small ions. Additionally, cofilin-1, but not ADF, depletion increased epithelial permeability to large molecules. Loss of either ADF or cofilin-1 did not affect the steady-state morphology of AJs and TJs but attenuated de novo junctional assembly. The observed defects in AJ and TJ formation were accompanied by delayed assembly of the perijunctional filamentous actin belt. A total loss of ADF expression in mice did not result in a defective mucosal barrier or in spontaneous gut inflammation. However, ADF-null mice demonstrated increased intestinal permeability and exaggerated inflammation during dextran sodium sulfate-induced colitis. Our findings demonstrate novel roles for ADF and cofilin-1 in regulating the remodeling and permeability of epithelial junctions, as well as the role of ADF in limiting the severity of intestinal inflammation.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Somesh Baranwal
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
22
|
Vega FM, Thomas M, Reymond N, Ridley AJ. The Rho GTPase RhoB regulates cadherin expression and epithelial cell-cell interaction. Cell Commun Signal 2015; 13:6. [PMID: 25630770 PMCID: PMC4334914 DOI: 10.1186/s12964-015-0085-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Rho GTPase RhoB has been proposed to be a tumor suppressor in cancer and is downregulated in various tumors including prostate. RhoB has different effects on cell migration depending on the cell type and conditions, but the molecular basis for this variability is unclear. RhoB regulates trafficking of membrane receptors and integrins. We have previously shown that RhoB depletion alters focal adhesion dynamics and reduces surface levels of β1 integrin in PC3 prostate cancer cells, correlating with increased migration speed. RESULTS Here we show that RhoB depletion reduces cell-cell adhesion and downregulates E-cadherin levels as well as increasing internalized E-cadherin in DU145 prostate cancer cells. This is accompanied by increased migration speed. RhoB localizes to cell-cell junctions together with E-cadherin in DU145 cells. RhoB depletion also reduces N-cadherin levels in PC3 cells, which do not express E-cadherin. CONCLUSIONS These results indicate that RhoB alters migration of cells with cell-cell adhesions by regulating cadherin levels. We propose that the relative contribution of integrins and cadherins to cell migration underlies the variable involvement for RhoB in this process and that the downregulation of RhoB in some epithelial cancers could contribute to the weakening of epithelial cell-cell junction during tumor progression.
Collapse
Affiliation(s)
- Francisco M Vega
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
- Current address: Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Edificio IBiS, E-14013, Seville, Spain.
| | - Mairian Thomas
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| | - Nicolas Reymond
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
23
|
Guan Y, Liang G, Hawken PAR, Meachem SJ, Malecki IA, Ham S, Stewart T, Guan LL, Martin GB. Nutrition affects Sertoli cell function but not Sertoli cell numbers in sexually mature male sheep. Reprod Fertil Dev 2014; 28:RD14368. [PMID: 25515817 DOI: 10.1071/rd14368] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 01/18/2023] Open
Abstract
We tested whether the reversible effects of nutrition on spermatogenesis in sexually mature sheep were mediated by Sertoli cells. Rams were fed with diets designed to achieve a 10% increase (High), no change (Maintenance) or a 10% decrease (Low) in body mass after 65 days. At the end of treatment, testes were lighter in the Low than the High group (PP<0.05) in the expression of seven Sertoli cell-specific genes. Under-nutrition appeared to reverse cellular differentiation leading to disruption of tight-junction morphology. In conclusion, in sexually mature sheep, reversible reductions in testis mass and spermatogenesis caused by under-nutrition were associated with impairment of basic aspects of Sertoli cell function but not with changes in the number of Sertoli cells.
Collapse
|
24
|
Cheng CY, Mruk DD. Actin binding proteins and spermiogenesis: Some unexpected findings. SPERMATOGENESIS 2014; 1:99-104. [PMID: 22319657 DOI: 10.4161/spmg.1.2.16913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/05/2011] [Accepted: 06/07/2011] [Indexed: 12/18/2022]
Abstract
Drebrin E, an actin-binding protein lacking intrinsic activity in the regulation of actin dynamics (e.g., polymerization, capping, nucleation, branching, cross-linking, bundling and severing), is known to recruit actin regulatory proteins to a specific cellular site. Herein, we critically evaluate recent findings in the field which illustrate that drebrin E works together with two other actin-binding proteins, namely Arp3 (actin-related protein 3, a component of the Arp2/3 complex that simultaneously controls actin nucleation for polymerization and branching of actin filaments) and Eps8 (epidermal growth factor receptor pathway substrate 8 that controls capping of the barbed ends of actin filaments, as well as actin filament bundling) to regulate the homeostasis of F-actin filament bundles at the ectoplasmic specialization (ES), a testis-specific atypical adherens junction (AJ) in the seminiferous epithelium. This is mediated by the strict temporal and spatial expression of these three actin-binding proteins at the apical and basal ES at the Sertoli cell-spermatid (step 8-19) and Sertoli-Sertoli cell interface, respectively, during the seminiferous epithelial cycle of spermatogenesis. In this Commentary, we put forth a possible model by which drebrin E may be acting as a platform upon which proteins (e.g., Arp3) that are needed to alter the conformation of actin filament bundles at the ES can be recruited to the site, thus facilitating changes in cell shape and cell position in the epithelium during spermiogenesis and spermiation. In short, drebrin E may be acting as a "logistic" distribution center to manage different regulatory proteins at the apical ES, thereby regulating the dynamics of actin filament bundles and modulating the plasticity of the apical ES. This would allow adhesion to be altered continuously throughout the epithelial cycle to accommodate spermatid movement in the seminiferous epithelium during spermiogenesis and spermiation. We also describe a hypothetical model, upon which functional studies can be designed in the future.
Collapse
Affiliation(s)
- C Yan Cheng
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | |
Collapse
|
25
|
Paul C, Robaire B. Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases. PLoS One 2013; 8:e84354. [PMID: 24391944 PMCID: PMC3877286 DOI: 10.1371/journal.pone.0084354] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/14/2013] [Indexed: 11/21/2022] Open
Abstract
With increasing age comes many changes in the testis, including germ cell loss. Cell junctions in the testis tether both seminiferous epithelial and germ cells together and assist in the formation of the blood-testis barrier (BTB), which limits transport of biomolecules, ions and electrolytes from the basal to the adluminal compartment and protects post-meiotic germ cells. We hypothesize that as male rats age the proteins involved in forming the junctions decrease and that this alters the ability of the BTB to protect the germ cells. Pachytene spermatocytes were isolated from Brown Norway rat testes at 4 (young) and 18 (aged) months of age using STA-PUT velocity sedimentation technique. RNA was extracted and gene expression was assessed using Affymetrix rat 230 2.0 whole rat genome microarrays. Microarray data were confirmed by q-RT-PCR and protein expression by Western blotting. Of the genes that were significantly decreased by at least 1.5 fold, 70 were involved in cell adhesion; of these, at least 20 are known to be specifically involved in junction dynamics within the seminiferous epithelium. The mRNA and protein levels of Jam2, Ocln, cdh2 (N-cadherin), ctnna (α-catenin), and cldn11 (involved in adherens junctions), among others, were decreased by approximately 50% in aged spermatocytes. In addition, the GTPases Rac1 and cdc42, involved in the recruitment of cadherins to the adherens junctions, were similarly decreased. It is therefore not surprising that with lower expression of these proteins that the BTB becomes diminished with age. We saw, using a FITC tracer, a gradual collapse of the BTB between 18 and 24 months. This provides the opportunity for harmful substances and immune cells to cross the BTB and cause the disruption of spermatogenesis that is observed with increasing age.
Collapse
Affiliation(s)
- Catriona Paul
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Canada
- * E-mail:
| |
Collapse
|
26
|
Mizuno K, Kojima Y, Kamisawa H, Moritoki Y, Nishio H, Kohri K, Hayashi Y. Gene expression profile during testicular development in patients with SRY-negative 46,XX testicular disorder of sex development. Urology 2013; 82:1453.e1-7. [PMID: 24149105 DOI: 10.1016/j.urology.2013.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To elucidate alternative pathways in testicular development, we attempted to clarify the genetic characteristics of SRY-negative XX testes. MATERIALS AND METHODS We previously reported 5 cases of SRY-negative 46,XX testicular disorders of sex development and demonstrated that coordinated expression of genes such as SOX9, SOX3, and DAX1 was associated with testicular development. We performed a case-control study between the aforementioned boy with 46,XX testicular disorders of sex development and an age-matched patient with hydrocele testis (46,XY). During their consecutive surgeries, testicular biopsy specimens were obtained. Genes with differential expression compared with XY testis were identified using polymerase chain reaction (PCR)-based subtractive hybridization and sequencing. For validation of differential gene expression, real-time RT-PCR was performed using gene-specific primers. The distribution of candidate proteins in the testicular tissue was clarified by immunohistochemistry in human and rodent specimens. Moreover, in vitro inhibitory assays were performed. RESULTS We identified 13 upregulated and 7 downregulated genes in XX testis. Among the candidate genes, we focused on ROCK1 (Rho-associated, coiled-coil protein kinase 1) in the upregulated gene group, because high expression in XX testis was validated by real-time RT-PCR. ROCK1 protein was detected in germ cells, Leydig cells, and Sertoli cells by immunohistochemistry. Moreover, the addition of specific ROCK1 inhibitor to Sertoli cells decreased SOX9 gene expression. CONCLUSION On the basis of in vitro inhibitory assay, it is suggested that ROCK1 phosphorylates and activates SOX9 in Sertoli cells. Testes formation might be initiated by an alternative signaling pathway attributed to ROCK1, not SRY, activation in XX testes.
Collapse
Affiliation(s)
- Kentaro Mizuno
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Su W, Mruk DD, Cheng CY. Regulation of actin dynamics and protein trafficking during spermatogenesis--insights into a complex process. Crit Rev Biochem Mol Biol 2013; 48:153-72. [PMID: 23339542 DOI: 10.3109/10409238.2012.758084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the mammalian testis, extensive restructuring takes place across the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface during the epithelial cycle of spermatogenesis, which is important to facilitate changes in the cell shape and morphology of developing germ cells. However, precise communications also take place at the cell junctions to coordinate the discrete events pertinent to spermatogenesis, namely spermatogonial renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation. It is obvious that these cellular events are intimately related to the underlying actin-based cytoskeleton which is being used by different cell junctions for their attachment. However, little is known on the biology and regulation of this cytoskeleton, in particular its possible involvement in endocytic vesicle-mediated trafficking during spermatogenesis, which in turn affects cell adhesive function and communication at the cell-cell interface. Studies in other epithelia in recent years have shed insightful information on the intimate involvement of actin dynamics and protein trafficking in regulating cell adhesion and communications. The goal of this critical review is to provide an updated assessment of the latest findings in the field on how these complex processes are being regulated during spermatogenesis. We also provide a working model based on the latest findings in the field including our laboratory to provide our thoughts on an apparent complicated subject, which also serves as the framework for investigators in the field. It is obvious that this model will be rapidly updated when more data are available in future years.
Collapse
Affiliation(s)
- Wenhui Su
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | |
Collapse
|
28
|
Polarity protein complex Scribble/Lgl/Dlg and epithelial cell barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:149-70. [PMID: 23397623 DOI: 10.1007/978-1-4614-4711-5_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Scribble polarity complex or module is one of the three polarity modules that regulate cell polarity in multiple epithelia including blood-tissue barriers. This protein complex is composed of Scribble, Lethal giant larvae (Lgl) and Discs large (Dlg), which are well conserved across species from fruitflies and worms to mammals. Originally identified in Drosophila and C. elegans where the Scribble complex was found to work with the Par-based and Crumbs-based polarity modules to regulate apicobasal polarity and asymmetry in cells and tissues during embryogenesis, their mammalian homologs have all been identified in recent years. Components of the Scribble complex are known to regulate multiple cellular functions besides cell polarity, which include cell proliferation, assembly and maintenance of adherens junction (AJ) and tight junction (TJ), and they are also tumor suppressors. Herein, we provide an update on the Scribble polarity complex and how this protein complex modulates cell adhesion with some emphasis on its role in Sertoli cell blood-testis barrier (BTB) function. It should be noted that this is a rapidly developing field, in particular the role of this protein module in blood-tissue barriers, and this short chapter attempts to provide the information necessary for investigators studying reproductive biology and blood-tissue barriers to design future studies. We also include results of recent studies from flies and worms since this information will be helpful in planning experiments for future functional studies in the testis to understand how Scribble-based proteins regulate BTB dynamics and spermatogenesis.
Collapse
|
29
|
Mok KW, Lie PP, Mruk DD, Mannu J, Mathur PP, Silvestrini B, Cheng CY. The apical ectoplasmic specialization-blood-testis barrier functional axis is a novel target for male contraception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 763:334-355. [PMID: 23397633 PMCID: PMC4108212 DOI: 10.1007/978-1-4614-4711-5_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-testis barrier (BTB), similar to other blood-tissue barriers, such as the blood-brain barrier and the blood-retinal barrier, is used to protect the corresponding organ from harmful substances (e.g., xenobiotics) including drugs and foreign compounds. More importantly, the BTB allows postmeiotic spermatid development to take place in an immune privileged site at the adluminal (or apical) compartment to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. The BTB, however, also poses an obstacle in developing nonhormonal-based male contraceptives by sequestering drugs (e.g., adjudin) that exert their effects on germ cells in the adluminal compartment. The effects of these drugs include disruption of germ cell cycle progression and development, apoptosis, cell adhesion, metabolism and others. Recent studies have demonstrated that there is a functional axis that operates locally in the seminiferous epithelium to co-ordinate different cellular events across the Sertoli cell epithelium, such as spermiation and BTB restructuring during the seminiferous epithelial cycle of spermatogenesis. Components of this functional axis, such as the apical ectoplasmic specialization (apical ES, a testis-specific atypical anchoring junction type) and the BTB, in particular their constituent protein complexes, such as alpha6beta1-integrin and occludin at the apical ES and the BTB, respectively, can be the target of male contraception. In this chapter, we highlight recent advances regarding the likely mechanism of action of adjudin in this functional axis with emphasis on the use of molecular modeling technique to facilitate the design of better compounds in male contraceptive development.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Pearl P.Y. Lie
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Dolores D. Mruk
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - Jayakanthan Mannu
- Center for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Premendu P. Mathur
- Center for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | | | - C. Yan Cheng
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
30
|
Evidence for involvement of ROCK signaling in bradykinin-induced increase in murine blood–tumor barrier permeability. J Neurooncol 2011; 106:291-301. [DOI: 10.1007/s11060-011-0685-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 08/03/2011] [Indexed: 01/23/2023]
|
31
|
György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68:2667-88. [PMID: 21560073 PMCID: PMC3142546 DOI: 10.1007/s00018-011-0689-3] [Citation(s) in RCA: 1614] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/30/2011] [Accepted: 04/12/2011] [Indexed: 02/06/2023]
Abstract
Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy.
Collapse
Affiliation(s)
- Bence György
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Nagyvárad tér, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mok KW, Mruk DD, Lie PPY, Lui WY, Cheng CY. Adjudin, a potential male contraceptive, exerts its effects locally in the seminiferous epithelium of mammalian testes. Reproduction 2011; 141:571-80. [PMID: 21307270 DOI: 10.1530/rep-10-0464] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adjudin is a derivative of 1H-indazole-3-carboxylic acid that was shown to have potent anti-spermatogenic activity in rats, rabbits, and dogs. It exerts its effects most notably locally in the apical compartment of the seminiferous epithelium, behind the blood-testis barrier, by disrupting adhesion of germ cells, most notably spermatids to the Sertoli cells, thereby inducing release of immature spermatids from the epithelium that leads to infertility. After adjudin is metabolized, the remaining spermatogonial stem cells and spermatogonia repopulate the seminiferous epithelium gradually via spermatogonial self-renewal and differentiation, to be followed by meiosis and spermiogenesis, and thus fertility rebounds. Recent studies in rats have demonstrated unequivocally that the primary and initial cellular target of adjudin in the testis is the apical ectoplasmic specialization, a testis-specific anchoring junction type restricted to the interface between Sertoli cells and elongating spermatids (from step 8 to 19 spermatids). In this review, we highlight some of the recent advances and obstacles regarding the possible use of adjudin as a male contraceptive.
Collapse
Affiliation(s)
- Ka-Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
33
|
c-Yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes. Int J Biochem Cell Biol 2011; 43:651-65. [PMID: 21256972 DOI: 10.1016/j.biocel.2011.01.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/23/2022]
Abstract
During spermatogenesis, extensive junction restructuring takes place at the blood-testis barrier (BTB) and the Sertoli cell-spermatid interface known as the apical ectoplasmic specialization (apical ES, a testis-specific adherens junction) in the seminiferous epithelium. However, the mechanism(s) that regulates these critical events in the testis remains unknown. Based on the current concept in the field, changes in the phosphorylation status of integral membrane proteins at these sites can induce alterations in protein endocytosis and recycling, causing junction restructuring. Herein, c-Yes, a non-receptor protein tyrosine kinase, was found to express abundantly at the BTB and apical ES stage-specifically, coinciding with junction restructuring events at these sites during the seminiferous epithelial cycle of spermatogenesis. c-Yes also structurally associated with adhesion proteins at the BTB (e.g., occludin and N-cadherin) and the apical ES (e.g., β1-integrin, laminins β3 and γ3), possibly to regulate phosphorylation status of proteins at these sites. SU6656, a selective c-Yes inhibitor, was shown to perturb the Sertoli cell tight junction-permeability barrier in vitro, which is mediated by changes in the distribution of occludin and N-cadherin at the cell-cell interface, moving from cell surface to cytosol, thereby destabilizing the tight junction-barrier. However, this disruptive effect of SU6656 on the barrier was blocked by testosterone. Furthermore, c-Yes is crucial to maintain the actin filament network in Sertoli cells since a blockade of c-Yes by SU6656 induced actin filament disorganization. In summary, c-Yes regulates BTB and apical ES integrity by maintaining proper distribution of integral membrane proteins and actin filament organization at these sites.
Collapse
|
34
|
O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG. Spermiation: The process of sperm release. SPERMATOGENESIS 2011; 1:14-35. [PMID: 21866274 DOI: 10.4161/spmg.1.1.14525] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 02/06/2023]
Abstract
Spermiation is the process by which mature spermatids are released from Sertoli cells into the seminiferous tubule lumen prior to their passage to the epididymis. It takes place over several days at the apical edge of the seminiferous epithelium, and involves several discrete steps including remodelling of the spermatid head and cytoplasm, removal of specialized adhesion structures and the final disengagement of the spermatid from the Sertoli cell. Spermiation is accomplished by the co-ordinated interactions of various structures, cellular processes and adhesion complexes which make up the "spermiation machinery". This review addresses the morphological, ultrastructural and functional aspects of mammalian spermiation. The molecular composition of the spermiation machinery, its dynamic changes and regulatory factors are examined. The causes of spermiation failure and their impact on sperm morphology and function are assessed in an effort to understand how this process may contribute to sperm count suppression during contraception and to phenotypes of male infertility.
Collapse
Affiliation(s)
- Liza O'Donnell
- Prince Henry's Institute of Medical Research; Clayton, VIC Australia
| | | | | | | | | |
Collapse
|
35
|
Kopera IA, Bilinska B, Cheng CY, Mruk DD. Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc Lond B Biol Sci 2010; 365:1593-605. [PMID: 20403872 DOI: 10.1098/rstb.2009.0251] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spermatogenesis is a process that involves an array of cellular and biochemical events, collectively culminating in the formation of haploid spermatids from diploid precursor cells known as spermatogonia. As germ cells differentiate from spermatogonia into elongated spermatids, they also progressively migrate across the entire length of the seminiferous epithelium until they reach the luminal edge in anticipation of spermiation at late stage VIII of spermatogenesis. At the same time, these germ cells must maintain stable attachment with Sertoli cells via testis-unique intermediate filament- (i.e. desmosome-like junctions) and actin- (i.e. ectoplasmic specializations, ESs) based cell junctions to prevent sloughing of immature germ cells from the seminiferous epithelium, which may result in infertility. In essence, both desmosome-like junctions and basal ESs are known to coexist between Sertoli cells at the level of the blood-testis barrier where they cofunction with the well-studied tight junction in maintaining the immunological barrier. However, the type of anchoring device that is present between Sertoli and germ cells depends on the developmental stage of the germ cell, i.e. desmosome-like junctions are present between Sertoli and germ cells up to, but not including, step 8 spermatids after which this junction type is replaced by the apical ES. While little is known about the biology of the desmosome-like junction in the testis, we have a relatively good understanding of the molecular architecture and the regulation of the ES. Here, we discuss recent findings relating to these two junction types in the testis, highlighting prospective areas that should be investigated in future studies.
Collapse
Affiliation(s)
- Ilona A Kopera
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
36
|
Lie PPY, Mruk DD, Lee WM, Cheng CY. Cytoskeletal dynamics and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1581-92. [PMID: 20403871 DOI: 10.1098/rstb.2009.0261] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Different cellular events occur during spermatogenesis, and these include (i) mitosis for self-renewal of spermatogonia, (ii) differentiation of type A spermatogonia into type B and commitment of type B spermatogonia to develop into preleptotene primary spermatocytes, (iii) transit of preleptotene/leptotene spermatocytes across the blood-testis barrier in coordination with germ cell cycle progression and meiosis, (iv) spermiogenesis and spermiation. These events also associate with extensive changes in cell shape and size, and germ cell movement. The cytoskeleton, which comprises actin, microtubules and intermediate filaments, is believed to function in these cellular events. However, few studies have been conducted by investigators in the past decades to unfold the role of the cytoskeleton during spermatogenesis. This review summarizes recent advances in the field relating to cytoskeletal dynamics in the testis, and highlights areas of research that require additional emphasis so that new approaches for male contraception, as well as therapeutic approaches to alleviate environmental toxicant-induced reproductive dysfunction in men, can possibly be developed.
Collapse
Affiliation(s)
- Pearl P Y Lie
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
37
|
Adjudin-mediated Sertoli-germ cell junction disassembly affects Sertoli cell barrier function in vitro and in vivo. Int J Biochem Cell Biol 2010; 42:1864-75. [PMID: 20713173 DOI: 10.1016/j.biocel.2010.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/29/2010] [Accepted: 08/10/2010] [Indexed: 12/13/2022]
Abstract
Adjudin, an analogue of lonidamine, affects adhesion between Sertoli and most germ cells, resulting in reversible infertility in rats, rabbits and dogs. Previous studies have described the apical ectoplasmic specialization, a hybrid-type of Sertoli cell-elongating/elongated spermatid adhesive junction, as a key target of adjudin. In this study, we ask if the function of the blood-testis barrier which is constituted by co-existing tight junctions, desmosome-gap junctions and basal ectoplasmic specializations can be maintained when the seminiferous epithelium is under assault by adjudin. We report herein that administration of a single oral dose of adjudin to adult rats increased the levels of several tight junction and basal ectoplasmic specialization proteins during germ cell loss from the seminiferous epithelium. These findings were corroborated by a functional in vitro experiment when Sertoli cells were cultured on Matrigel™-coated bicameral units in the presence of adjudin and transepithelial electrical resistance was quantified across the epithelium. Indeed, the Sertoli cell permeability barrier was shown to become tighter after adjudin treatment as evidenced by an increase in transepithelial electrical resistance. Equally important, the blood-testis barrier in adjudin-treated rats was shown to be intact 2 weeks post-treatment when its integrity was monitored following vascular administration of inulin-fluorescein isothiocyanate which failed to permeate past the barrier and enter into the adluminal compartment. These results illustrate that a unique mechanism exists to maintain blood-testis barrier integrity at all costs, irrespective of the presence of germ cells in the seminiferous epithelium of the testis.
Collapse
|
38
|
Rato L, Socorro S, Cavaco JEB, Oliveira PF. Tubular Fluid Secretion in the Seminiferous Epithelium: Ion Transporters and Aquaporins in Sertoli Cells. J Membr Biol 2010; 236:215-24. [DOI: 10.1007/s00232-010-9294-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 07/20/2010] [Indexed: 01/01/2023]
|
39
|
Abstract
Spermiation--the release of mature spermatozoa from Sertoli cells into the seminiferous tubule lumen--occurs by the disruption of an anchoring device known as the apical ectoplasmic specialization (apical ES). At the same time, the blood-testis barrier (BTB) undergoes extensive restructuring to facilitate the transit of preleptotene spermatocytes. While these two cellular events take place at opposite ends of the Sertoli cell epithelium, the events are in fact tightly coordinated, as any disruption in either process will lead to infertility. A local regulatory axis exists between the apical ES and the BTB in which biologically active laminin fragments produced at the apical ES by the action of matrix metalloproteinase 2 can regulate BTB restructuring directly or indirectly via the hemidesmosome. Equally important, polarity proteins play a crucial part in coordinating cellular events within this apical ES-BTB-hemidesmosome axis. Additionally, testosterone and cytokines work in concert to facilitate BTB restructuring, which enables the transit of spermatocytes while maintaining immunological barrier function. Herein, we will discuss this important autocrine-based cellular axis that parallels the hormonal-based hypothalamic-pituitary-testicular axis that regulates spermatogenesis. This local regulatory axis is the emerging target for male contraception.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
40
|
Connolly EC, Van Doorslaer K, Rogler LE, Rogler CE. Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Mol Cancer Res 2010; 8:691-700. [PMID: 20460403 DOI: 10.1158/1541-7786.mcr-09-0465] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis is a multistep process that involves the deregulation of oncogenes and tumor suppressors beyond changes required for primary tumor formation. RHOB is known to have tumor suppressor activity, and its knockdown is associated with more aggressive tumors as well as changes in cell shape, migration, and adhesion. This study shows that oncogenic microRNA, miR-21, represses RHOB expression by directly targeting the 3' untranslated region. Loss of miR-21 is associated with an elevation of RHOB in hepatocellular carcinoma cell lines Huh-7 and HepG2 and in the metastatic breast cancer cell line MDA-MB-231. Using in vitro models of distinct stages of metastasis, we showed that loss of miR-21 also causes a reduction in migration, invasion, and cell elongation. The reduction in migration and cell elongation can be mimicked by overexpression of RHOB. Furthermore, changes in miR-21 expression lead to alterations in matrix metalloproteinase-9 activity. Therefore, we conclude that miR-21 promotes multiple components of the metastatic phenotype in vitro by regulating several important tumor suppressors, including RHOB.
Collapse
Affiliation(s)
- Erin C Connolly
- Marion Bessin Liver Research Center, Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
41
|
Cheng CY, Mruk DD. New frontiers in nonhormonal male contraception. Contraception 2010; 82:476-82. [PMID: 20933122 DOI: 10.1016/j.contraception.2010.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 12/11/2022]
Abstract
The world's population is nearing 6.8 billion, and we are in need of a male contraceptive that is safe, effective, reversible and affordable. Hormonal approaches, which employ different formulations of testosterone administered in combination with other hormones, have shown considerable promise in clinical trials, and they are currently at the forefront of research and development. However, the long-term effects of using hormones throughout a male's reproductive life for contraception are unknown, and it may take decades before this information becomes available. Because of this, many investigators are aiming to bring a nonhormonal male contraceptive to the consumer market. Indeed, there are several distinct but feasible avenues in which fertility can be regulated without affecting the hypothalamus-pituitary-testis axis. In this review, we discuss several approaches for fertility control involving the testis that one day may lead to the development of a nonhormonal male contraceptive.
Collapse
Affiliation(s)
- C Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
42
|
Wang H, Chen XX, Wang LR, Mao YD, Zhou ZM, Sha JH. AF-2364 is a prospective spermicide candidate. Asian J Androl 2010; 12:322-35. [PMID: 20418891 DOI: 10.1038/aja.2010.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractInhibition of sperm motility has recently become a promising target for male contraceptive development. AF-2364, an analogue of Lonidamine (LND), had a contraceptive effect when orally administered to adult Sprague-Dawley rats. LND can also target mitochondria to inhibit oxygen consumption and block energy metabolism in tumour cells. However, there are no reports of the effects of AF-2364 on human sperm function. Herein we describe the action of AF-2364 on human sperm in vitro, as well as the mechanisms involved. AF-2364 specifically blocked human sperm motility in vitro. Further experiments revealed that AF-2364 can target sperm mitochondrial permeability transition (MPT) pores to induce the loss of sperm mitochondrial membrane potential (DeltaPsim) and decrease ATP generation; however, no significant changes in the cytoskeletal network or the human sperm proteome were detected after exposure to AF-2364. Incubation of AF-2364 with other human or mouse cell lines indicated that the spermicidal effect at the lower concentration was specific. In summary, the spermicidal effect of AF-2364 involves direct action on sperm MPT pores, and this compound should be further investigated as a new spermicide candidate.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | |
Collapse
|
43
|
Shi Z, Zhang H, Ding L, Feng Y, Wang J, Dai J. Proteomic analysis for testis of rats chronically exposed to perfluorododecanoic acid. Toxicol Lett 2010; 192:179-88. [DOI: 10.1016/j.toxlet.2009.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 01/01/2023]
|
44
|
Wong EWP, Cheng CY. Polarity proteins and cell-cell interactions in the testis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:309-53. [PMID: 19815182 DOI: 10.1016/s1937-6448(09)78007-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In mammalian testes, extensive junction restructuring takes place in the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface to facilitate the different cellular events of spermatogenesis, such as mitosis, meiosis, spermiogenesis, and spermiation. Recent studies in the field have shown that Rho GTPases and polarity proteins play significant roles in the events of cell-cell interactions. Furthermore, Rho GTPases, such as Cdc42, are working in concert with polarity proteins in regulating cell polarization and cell adhesion at both the blood-testis barrier (BTB) and apical ectoplasmic specialization (apical ES) in the testis of adult rats. In this chapter, we briefly summarize recent findings on the latest status of research and development regarding Cdc42 and polarity proteins and how they affect cell-cell interactions in the testis and other epithelia. More importantly, we provide a new model in which how Cdc42 and components of the polarity protein complexes work in concert with laminin fragments, cytokines, and testosterone to regulate the events of cell-cell interactions in the seminiferous epithelium via a local autocrine-based regulatory loop known as the apical ES-BTB-basement membrane axis. This new functional axis coordinates various cellular events during different stages of the seminiferous epithelium cycle of spermatogenesis.
Collapse
Affiliation(s)
- Elissa W P Wong
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | |
Collapse
|
45
|
Adly MA, Hussein MRA. Immunohistological profile of the Ras homologous B protein (RhoB) in human testes showing normal spermatogenesis, spermatogenic arrest and Sertoli cell only syndrome. Pathol Oncol Res 2009; 16:427-33. [PMID: 19997872 DOI: 10.1007/s12253-009-9232-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
Ras homologous B protein (RhoB) belongs to the Ras homologous subfamily which consists of low molecular weight (21 kDa) GTP-binding proteins. Rho proteins are regulatory molecules associated with various kinases and as such they mediate changes in cell shape, contractility, motility and gene expression. To date, no data are available about the expression pattern of RhoB protein in the human testis showing normal and abnormal spermatogenesis. The present study addresses these issues. Human testicular biopsy specimens were obtained from patients suffering from post-testicular infertility (testis showing normal spermatogenesis, 10 cases) and testicular infertility (testis showing Sertoli cell only syndrome and spermatogenic arrest, 10 patients each). The expression of RhoB was examined using in situ immunofluorescent staining methods. In testes showing normal spermatogenesis, RhoB had a strong expression in the seminiferous epithelium (cytoplasm of Sertoli-cells, spermatogonia and spermatocytes) and in the interstitium (Leydig cells). RhoB expression was weak in the myofibroblasts and absent in the spermatids and sperms. In the testes showing abnormal spermatogenesis, RhoB expression was moderate in the seminiferous epithelium (cytoplasm of Sertoli cells, spermatogonia and spermatocytes) and was completely absent in the Leydig cells, myofibroblasts, spermatids and sperms. To the best of our knowledge, this study provides the first morphological indication that RhoB protein is expressed in human testis and its expression undergoes testicular infertility associated changes. These findings suggest the involvement of RhoB in the process of spermatogenesis in human and their possible therapeutic ramifications in testicular infertility are open for further investigations.
Collapse
Affiliation(s)
- Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | | |
Collapse
|
46
|
Wong EWP, Sun S, Li MWM, Lee WM, Cheng CY. 14-3-3 Protein regulates cell adhesion in the seminiferous epithelium of rat testes. Endocrinology 2009; 150:4713-23. [PMID: 19608648 PMCID: PMC2754685 DOI: 10.1210/en.2009-0427] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polarity proteins have been implicated in regulating and maintaining tight junction (TJ) and cell polarity in epithelia. Here we report 14-3-3theta, the homolog of Caenorhabditis elegans Par5 in mammalian cells, which is known to confer cell polarity at TJ, is found at the apical ectoplasmic specialization (ES), a testis-specific adherens junction type restricted to the Sertoli cell-elongating spermatid interface, in which TJ is absent. 14-3-3theta was shown to play a critical role in conferring cell adhesion at the apical ES. A loss of 14-3-3theta expression at the apical ES was detected in the seminiferous epithelium before spermiation. Involvement of 14-3-3theta in Sertoli cell adhesion was confirmed by its knockdown by RNA interference in Sertoli cells cultured in vitro with established TJ permeability barrier that mimicked the blood-testis barrier (BTB) in vivo. Mislocalization of N-cadherin and zonula occludens-1, but not alpha- and beta-catenins, was observed after 14-3-3theta knockdown in Sertoli cells, moving from the cell-cell interface to cytosol, indicating a disruption of cell adhesion. Studies by endocytosis assay illustrated that this loss of cell adhesion was mediated by an increase in the kinetics of endocytosis of N-cadherin and junctional adhesion molecule-A at the BTB, which may represent a general mechanism by which polarity proteins regulate cell adhesion. In summary, the testis is using 14-3-3theta to regulate cell adhesion at the apical ES to facilitate spermiation and at the BTB to facilitate the transit of preleptotene spermatocytes at stages VIII-IX of the epithelial cycle. 14-3-3theta may act as a molecular switch that coordinates these two cellular events in the seminiferous epithelium during spermatogenesis.
Collapse
Affiliation(s)
- Elissa W P Wong
- Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
47
|
Lee NPY, Wong EWP, Mruk DD, Cheng CY. Testicular cell junction: a novel target for male contraception. Curr Med Chem 2009; 16:906-15. [PMID: 19275601 DOI: 10.2174/092986709787549262] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Center for Biomedical Research, Population Council, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
48
|
Aivatiadou E, Ripolone M, Brunetti F, Berruti G. cAMP-Epac2-mediated activation of Rap1 in developing male germ cells: RA-RhoGAP as a possible direct down-stream effector. Mol Reprod Dev 2009; 76:407-16. [PMID: 18937323 DOI: 10.1002/mrd.20963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rap1 is a small GTPase that functions as a positional signal and organizer of cell architecture. Recently Rap1 is emerged to play a critical role during sperm differentiation since its inactivation in haploid cells leads to a premature release of spermatids from the supporting Sertoli cell resulting in male infertility. How Rap1 is activated in spermatogenic cells has not yet been determined. Our objective was to investigate on a possible cAMP-mediated activation of Rap1 employing a cAMP analogue selective to Epac, the Rap1 activator directly responsive to cAMP, for stimulating cultured testis germ cells. Here we provide biochemical, cellular and functional evidence that the Epac variant known as Epac2 is expressed as both a transcript and a protein and that it is able to promote Rap1 activation in the cultured cells. A time course immunofluorescence analysis carried out on stimulated cells revealed the translocation of endogenous Epac2, which is cytosolic, towards the site where Rap1 is located, i.e., the Golgi complex, thus documenting the effective Rap1-Epac2 protein interaction 'in vivo' leading to Rap1-GTP loading. A combination of biochemical and molecular techniques supported the immunofluorescence data. The search for the presence of a putative Rap1 downstream effector, described in differentiating somatic cells as a target of cAMP-Epac-activated Rap1, revealed the presence in spermatogenic cells of RA-RhoGAP, a Rap1-activated Rho GTPase-activating protein. Taken together, our results, obtained with endogenously expressed proteins, are consistent with a cAMP/Epac2/Rap1-mediated signaling that could exert its action, among others, through RA-RhoGAP to promote the progression of spermatogenesis.
Collapse
Affiliation(s)
- Evanthia Aivatiadou
- Laboratory of Cellular and Molecular Biology of Reproduction, Department of Biology, University of Milan, Italy
| | | | | | | |
Collapse
|
49
|
A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells. Neural Dev 2008; 3:27. [PMID: 18945340 PMCID: PMC2577655 DOI: 10.1186/1749-8104-3-27] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 10/22/2008] [Indexed: 11/27/2022] Open
Abstract
Background Neural crest progenitors arise as epithelial cells and then undergo a process of epithelial to mesenchymal transition that precedes the generation of cellular motility and subsequent migration. We aim at understanding the underlying molecular network. Along this line, possible roles of Rho GTPases that act as molecular switches to control a variety of signal transduction pathways remain virtually unexplored, as are putative interactions between Rho proteins and additional known components of this cascade. Results We investigated the role of Rho/Rock signaling in neural crest delamination. Active RhoA and RhoB are expressed in the membrane of epithelial progenitors and are downregulated upon delamination. In vivo loss-of-function of RhoA or RhoB or of overall Rho signaling by C3 transferase enhanced and/or triggered premature crest delamination yet had no effect on cell specification. Consistently, treatment of explanted neural primordia with membrane-permeable C3 or with the Rock inhibitor Y27632 both accelerated and enhanced crest emigration without affecting cell proliferation. These treatments altered neural crest morphology by reducing stress fibers, focal adhesions and downregulating membrane-bound N-cadherin. Reciprocally, activation of endogenous Rho by lysophosphatidic acid inhibited emigration while enhancing the above. Since delamination is triggered by BMP and requires G1/S transition, we examined their relationship with Rho. Blocking Rho/Rock function rescued crest emigration upon treatment with noggin or with the G1/S inhibitor mimosine. In the latter condition, cells emigrated while arrested at G1. Conversely, BMP4 was unable to rescue cell emigration when endogenous Rho activity was enhanced by lysophosphatidic acid. Conclusion Rho-GTPases, through Rock, act downstream of BMP and of G1/S transition to negatively regulate crest delamination by modifying cytoskeleton assembly and intercellular adhesion.
Collapse
|
50
|
Abstract
Despite significant advances in contraceptive options for women over the last 50 yr, world population continues to grow rapidly. Scientists and activists alike point to the devastating environmental impacts that population pressures have caused, including global warming from the developed world and hunger and disease in less developed areas. Moreover, almost half of all pregnancies are still unwanted or unplanned. Clearly, there is a need for expanded, reversible, contraceptive options. Multicultural surveys demonstrate the willingness of men to participate in contraception and their female partners to trust them to do so. Notwithstanding their paucity of options, male methods including vasectomy and condoms account for almost one third of contraceptive use in the United States and other countries. Recent international clinical research efforts have demonstrated high efficacy rates (90-95%) for hormonally based male contraceptives. Current barriers to expanded use include limited delivery methods and perceived regulatory obstacles, which stymie introduction to the marketplace. However, advances in oral and injectable androgen delivery are cause for optimism that these hurdles may be overcome. Nonhormonal methods, such as compounds that target sperm motility, are attractive in their theoretical promise of specificity for the reproductive tract. Gene and protein array technologies continue to identify potential targets for this approach. Such nonhormonal agents will likely reach clinical trials in the near future. Great strides have been made in understanding male reproductive physiology; the combined efforts of scientists, clinicians, industry and governmental funding agencies could make an effective, reversible, male contraceptive an option for family planning over the next decade.
Collapse
Affiliation(s)
- Stephanie T Page
- Center for Research in Reproduction and Contraception, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|