1
|
Li FJ, Fu S, Ye H, Hu YH, Chen J, Privratsky JR, Yu W, Dong F, Reiter RJ, Dong M, Guo J, Ren J. Metallothionein Alleviates Glutathione Depletion-Induced Oxidative Cardiomyopathy through CISD1-Dependent Regulation of Ferroptosis in Murine Hearts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:912-926. [PMID: 38417695 DOI: 10.1016/j.ajpath.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, ferroptosis-suppressing CDGSH iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3β phosphorylation with elevated p53, myosin heavy chain-β isozyme, IκB phosphorylation, and solute carrier family 7 member 11 (SLC7A11) as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.
Collapse
Affiliation(s)
- Feng-Juan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shouzhi Fu
- Department of ICU/Emergency, Wuhan Third Hospital, Wuhan University, Wuhan, China
| | - Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Burns and Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, China
| | - Yi-Han Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jamie R Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Jun Ren
- National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Timson RC, Khan A, Uygur B, Saad M, Yeh HW, DelGaudio NL, Weber R, Alwaseem H, Gao J, Yang C, Birsoy K. Development of a mouse model expressing a bifunctional glutathione-synthesizing enzyme to study glutathione limitation in vivo. J Biol Chem 2024; 300:105645. [PMID: 38218225 PMCID: PMC10869265 DOI: 10.1016/j.jbc.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.
Collapse
Affiliation(s)
- Rebecca C Timson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Beste Uygur
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Marwa Saad
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, New York, USA
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Nicole L DelGaudio
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Ross Weber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, New York, USA
| | - Jing Gao
- The CRISPR & Genome Editing Center, The Rockefeller University, New York, New York, USA
| | - Chingwen Yang
- The CRISPR & Genome Editing Center, The Rockefeller University, New York, New York, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
3
|
Timson RC, Khan A, Uygur B, Saad M, Yeh HW, DelGaudio N, Weber R, Alwaseem H, Gao J, Yang C, Birsoy K. A mouse model to study glutathione limitation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574722. [PMID: 38260639 PMCID: PMC10802487 DOI: 10.1101/2024.01.08.574722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are linked to many diseases, including cancer and neurodegenerative disorders, determining the function of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus Thermophilus (GshF). GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes revealed metabolic liabilities under compartmentalized GSH depletion. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the role of GSH availability in physiology and disease.
Collapse
|
4
|
Zhang C, Liu Z, Wang F, Zhang B, Zhang X, Guo P, Li T, Tai S, Zhang C. Nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy based on NADPH depletion. Drug Deliv 2023; 30:2162160. [PMID: 36579634 PMCID: PMC9809347 DOI: 10.1080/10717544.2022.2162160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor leading cancer-associated high mortality worldwide. Unfortunately, the most commonly used drug therapeutics not only lack of target ability and efficiency, but also exhibit severe systemic toxicity to normal tissues. Thus, effective and targeted nanodrug of HCC therapy is emerging as a more important issue. Here, we design and develop the novel nanomicelles, namely Mannose-polyethylene glycol 600-Nitroimidazole (Man-NIT). This micelle compound with high purity comprise two parts, which can self-assemble into nanoscale micelle. The outer shell is selected mannose as hydrophilic moiety, while the inner core is nitroimidazole as hydrophobic moiety. In the cell experiment, Man-NIT was more cellular uptake by HCCLM3 cells due to the mannose modification. Mannose as a kind of glucose transporter 1 (GLUT1) substrate, can specifically recognize and bind to over-expressed GLUT1 on carcinoma cytomembrane. The nitroimidazole moiety of Man-NIT was reduced by the over-expressed nitroreductase with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as the cofactor, resulting in transient deletion of NADPH and glutathione (GSH). The increase of reactive oxygen species (ROS) in HCCLM3 cells disturbed the balance of redox, and finally caused the death of tumor cells. Additional in vivo experiment was conducted using twenty-four male BALB/c nude mice to build the tumor model. The results showed that nanomicelles were accumulated in the liver of mice. The tumor size and pathological features were obviously improved after nanomicelles treatment. It indicates that namomicelles have a tumor inhibition effect, especially Man-NIT, which may be a potential nanodrug of chemotherapeutics for HCC therapy.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zehui Liu
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Bin Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xirui Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Peiwen Guo
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Tianwei Li
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China,CONTACT Sheng Tai
| | - Changmei Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China,Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China,Changmei Zhang Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| |
Collapse
|
5
|
Zhao W, Jing X, Wang T, Zhang F. Glutamine Deprivation Synergizes the Anticancer Effects of Cold Atmospheric Plasma on Esophageal Cancer Cells. Molecules 2023; 28:molecules28031461. [PMID: 36771124 PMCID: PMC9919221 DOI: 10.3390/molecules28031461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer is a highly aggressive malignancy with a low response to standard anti-cancer therapies. There is an unmet need to develop new therapeutic strategies to improve the clinical outcomes of current treatments. Cold atmospheric plasma (CAP) is a promising approach for cancer treatment, and has displayed anticancer efficacy in multiple preclinical models. Recent studies have shown that the efficacy of CAP is positively correlated with intracellular reactive oxygen species (ROS) levels. This suggests that aggressively increasing intracellular ROS levels has the potential to further improve CAP-mediated anticancer efficacy. Glutamine plays an important role in cellular ROS scavenging after being converted to glutathione (GSH, a well-described antioxidant) under physiological conditions, so reducing intracellular glutamine levels seems to be a promising strategy. To test this hypothesis, we treated esophageal cancer cells with CAP while controlling the supply of glutamine. The results showed that glutamine did affect the anticancer effect of CAP, and the combination of CAP stimulation and glutamine deprivation significantly inhibited the proliferation of esophageal cancer cells compared to the control group (p < 0.05). Furthermore, flow cytometric analysis documented a significant increase in more than 10% in apoptosis and necrosis of esophageal cancer cells after this synergistic treatment compared to the control group (p < 0.05). Thus, these results provide the first direct evidence that the biological function of CAP can be modulated by glutamine levels and that combined CAP stimulation and glutamine deprivation represent a promising strategy for the future treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Wang
- College of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China
- Telethon Kids Institute, Perth, WA 6872, Australia
- School of Medicine, University of Western Australia, Perth, WA 6872, Australia
- Correspondence: (T.W.); (F.Z.)
| | - Fengqiu Zhang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.W.); (F.Z.)
| |
Collapse
|
6
|
YILDIZ H. Effects of glutathione on mitochondrial DNA and antioxidant enzyme activities in Drosophila melanogaster. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1084592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The free radical theory in aging assumes that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. The intake of nutritional antioxidants can prevent this damage by neutralizing reactive oxygen derivatives. Glutathione (GSH; en-L-Glutamyl-L-cysteinyl glycine) is the lowest molecular weight thiol in the cells and as a cofactor of many enzymes and a potent antioxidant plays an important role in maintaining normal cell functions by destroying toxic oxygen radicals. In this study, the effects of GSH on SOD, GST and catalase enzymes and mtDNA damage were investigated at various time intervals by giving reduced glutathione to Drosophila. It was observed that 3-week GSH administration did not have a statistically significant effect on SOD and GST activities whereas GSH application decreased the catalase enzyme activities significantly. Although the decrease in antioxidant capacity with age was observed in SOD and catalase enzymes, such a situation was not observed in GST enzyme activities. There was no statistically significant difference between the control and GSH groups in mtDNA copy number values, while in the GSH group, oxidative mtDNA damage was high. These results may be due to the prooxidant effect of GSH at the dose used in this study.
Collapse
|
7
|
Characterization of the action of the lipid oxidation product 4-hydroxyhexenal on Lactiplantibacillus plantarum, the dominant bacterium in dry-cured fish. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Li C, Wu X, Zheng C, Xu S, Liu Y, Qin J, Fan X, Ye Y, Fei W. Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 2022; 10:7671-7693. [PMID: 36043505 DOI: 10.1039/d2tb01350a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presently, the biggest hurdle to cancer therapy is the inevitable emergence of drug resistance. Since conventional therapeutic schedules fall short of the expectations in curbing drug resistance, the development of novel drug resistance management strategies is critical. Extensive research over the last decade has revealed that the process of ferroptosis is correlated with cancer resistance; moreover, it has been demonstrated that ferroptosis inducers reverse drug resistance. To elucidate the development and promote the clinical transformation of ferroptosis strategies in cancer therapy, we first analyzed the roles of key ferroptosis-regulating molecules in the progression of drug resistance in-depth and then reviewed the design of ferroptosis-inducing strategies based on nanotechnology for overcoming drug resistance, including glutathione depletion, reactive oxygen species generation, iron donation, lipid peroxidation aggregation, and multiple-drug resistance-associated tumor cell destruction. Finally, the prospects and challenges of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance were evaluated. This review aimed to provide a comprehensive understanding for researchers to develop ferroptosis-inducing nanoplatforms that can overcome drug resistance.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaoyu Fan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
9
|
Yılmaz C, Othman Pirdawid A, Fidan Babat C, Konuş M, Çetin D, Kıvrak A, Algso MAS, Arslan Ş, Mutlu D, Otur Ç, Kurt Kızıldoğan A. A Thiophene Derivative, 2‐Bromo‐5‐(2‐(methylthio)phenyl)thiophene, Has Effective Anticancer Potential with Other Biological Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202200784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Can Yılmaz
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Ahmed Othman Pirdawid
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Ceylan Fidan Babat
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Metin Konuş
- Department of Molecular Biology and Genetics Facuty of Arts and Science Hitit University 19030 Çorum Turkey
| | - Doğan Çetin
- Department of Molecular Biology and Genetics Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Arif Kıvrak
- Department of Chemistry Facuty of Arts and Sciences Osmangazi University 26040 Eskişehir Turkey
| | - Muheb A. S. Algso
- Department of Chemistry Faculty of Science Van Yuzuncu Yil University 65080 Van Turkey
| | - Şevki Arslan
- Department of Biology Faculty of Arts and Science Pamukkale University 20160 Denizli Turkey
| | - Doğukan Mutlu
- Department of Biology Faculty of Arts and Science Pamukkale University 20160 Denizli Turkey
| | - Çiğdem Otur
- Department of Agricultural Biotechnology Faculty of Agriculture Ondokuz Mayıs University 55270 Samsun Turkey
| | - Aslıhan Kurt Kızıldoğan
- Department of Agricultural Biotechnology Faculty of Agriculture Ondokuz Mayıs University 55270 Samsun Turkey
| |
Collapse
|
10
|
He R, Chen W, Chen H, Zhong Q, Zhang H, Zhang M, Chen W. Antibacterial mechanism of linalool against L. monocytogenes, a metabolomic study. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zhao X, Abulikemu A, Lv S, Qi Y, Duan J, Zhang J, Chen R, Guo C, Li Y, Sun Z. Oxidative stress- and mitochondrial dysfunction-mediated cytotoxicity by silica nanoparticle in lung epithelial cells from metabolomic perspective. CHEMOSPHERE 2021; 275:129969. [PMID: 33662726 DOI: 10.1016/j.chemosphere.2021.129969] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Quantities of researches have demonstrated silica nanoparticles (SiNPs) exposure inevitably induced damage to respiratory system, nonetheless, knowledge of its toxicological behavior and metabolic interactions with the cellular machinery that determines the potentially deleterious outcomes are limited and poorly elucidated. Here, the metabolic responses of lung bronchial epithelial cells (BEAS-2B) under SiNPs exposure were investigated using ultra performance liquid chromatography-mass spectrum (UPLC-MS)-based metabolomics research. Results revealed that even with low cytotoxicity, SiNPs disturbed global metabolism. Five metabolic pathways were significantly perturbed, in particular, oxidative stress- and mitochondrial dysfunction-related GSH metabolism and pantothenate and coenzyme A (CoA) biosynthesis, where the identified metabolites glutathione (GSH), glycine, beta-alanine, cysteine, cysteinyl-glycine and pantothenic acid were included. In support of the metabolomics profiling, SiNPs caused abnormality in mitochondrial structure and mitochondrial dysfunction, as evidenced by the inhibition of cellular respiration and ATP production. Moreover, SiNPs triggered oxidative stress as confirmed by the dose-dependent ROS generation, down-regulated nuclear factor erythroid 2-related factor 2 (NRF2) signaling, together with GSH depletion in SiNPs-treated BEAS-2B cells. Oxidative DNA damage and cell membrane dis-integrity were also detected in response to SiNPs exposure, which was correspondingly in agreed with the elevated 8-hydroxyguanosine (8-OHdG) and decreased phospholipids screened through metabolic analysis. Thereby, we successfully used the metabolomics approaches to manifest SiNPs-elicited toxicity through oxidative stress, mitochondrial dysfunction, DNA damage and rupture of membrane integrity in BEAS-2B cells. Overall, our study provided novel insights into the mechanism underlying SiNPs-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
12
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
13
|
Chen L, Chao Y, Cheng P, Li N, Zheng H, Yang Y. UPLC-QTOF/MS-Based Metabolomics Reveals the Protective Mechanism of Hydrogen on Mice with Ischemic Stroke. Neurochem Res 2019; 44:1950-1963. [PMID: 31236794 DOI: 10.1007/s11064-019-02829-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/11/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
As a reductive gas, hydrogen plays an antioxidant role by selectively scavenging oxygen free radicals. It has been reported that hydrogen has protective effects against nerve damage caused by ischemia-reperfusion in stroke, but the specific mechanism is still unclear. Therefore, this study aims to investigate the protective effects of hydrogen on stroke-induced ischemia-reperfusion injury and its detailed mechanism. Two weeks after the inhalation of high concentrations (66.7%) of hydrogen, middle cerebral artery occlusion (MCAO) was induced in mice using the thread occlusion technique to establish an animal model of the focal cerebral ischemia-reperfusion. Then, a metabolomics analysis of mouse cerebral cortex tissues was first performed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) to study the metabolic changes and protective mechanisms of hydrogen on stroke ischemia-reperfusion injury. According to the metabolomic profiling of cortex tissues, 29 different endogenous metabolites were screened, including palmitoyl-L-carnitine, citric acid, glutathione, taurine, acetyl-L-carnitine, N-acetylaspartylglutamic acid (NAAG), L-aspartic acid, lysophosphatidylcholine (LysoPC) and lysophosphatidylethanolamine (LysoPE). Through pathway analysis, the metabolic pathways were concentrate on the glutathione pathway and the taurine pathway, mitochondrial energy metabolism and phospholipid metabolism that related to the oxidative stress process. This result reveals that hydrogen may protect against ischemic stroke by reducing oxidative stress during ischemia-reperfusion, thereby protecting nerve cells from reactive oxygen species(ROS).
Collapse
Affiliation(s)
- Lilin Chen
- College of Basic Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yufan Chao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Pengchao Cheng
- College of Basic Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Na Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Hongnan Zheng
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Yajuan Yang
- Department of Nursing, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
14
|
Alassaf M, Daykin EC, Mathiaparanam J, Wolman MA. Pregnancy-associated plasma protein-aa supports hair cell survival by regulating mitochondrial function. eLife 2019; 8:47061. [PMID: 31205004 PMCID: PMC6594750 DOI: 10.7554/elife.47061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
To support cell survival, mitochondria must balance energy production with oxidative stress. Inner ear hair cells are particularly vulnerable to oxidative stress; thus require tight mitochondrial regulation. We identified a novel molecular regulator of the hair cells’ mitochondria and survival: Pregnancy-associated plasma protein-aa (Pappaa). Hair cells in zebrafish pappaa mutants exhibit mitochondrial defects, including elevated mitochondrial calcium, transmembrane potential, and reactive oxygen species (ROS) production and reduced antioxidant expression. In pappaa mutants, hair cell death is enhanced by stimulation of mitochondrial calcium or ROS production and suppressed by a mitochondrial ROS scavenger. As a secreted metalloprotease, Pappaa stimulates extracellular insulin-like growth factor 1 (IGF1) bioavailability. We found that the pappaa mutants’ enhanced hair cell loss can be suppressed by stimulation of IGF1 availability and that Pappaa-IGF1 signaling acts post-developmentally to support hair cell survival. These results reveal Pappaa as an extracellular regulator of hair cell survival and essential mitochondrial function.
Collapse
Affiliation(s)
- Mroj Alassaf
- Department of Integrative Biology, University of Wisconsin, Madison, United States.,Neuroscience Training Program, University of Wisconsin, Madison, United States
| | - Emily C Daykin
- Department of Integrative Biology, University of Wisconsin, Madison, United States
| | - Jaffna Mathiaparanam
- Department of Integrative Biology, University of Wisconsin, Madison, United States
| | - Marc A Wolman
- Department of Integrative Biology, University of Wisconsin, Madison, United States
| |
Collapse
|
15
|
Scirè A, Cianfruglia L, Minnelli C, Bartolini D, Torquato P, Principato G, Galli F, Armeni T. Glutathione compartmentalization and its role in glutathionylation and other regulatory processes of cellular pathways. Biofactors 2019; 45:152-168. [PMID: 30561781 DOI: 10.1002/biof.1476] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Glutathione is considered the major non-protein low molecular weight modulator of redox processes and the most important thiol reducing agent of the cell. The biosynthesis of glutathione occurs in the cytosol from its constituent amino acids, but this tripeptide is also present in the most important cellular districts, such as mitochondria, nucleus, and endoplasmic reticulum, thus playing a central role in several metabolic pathways and cytoprotection mechanisms. Indeed, glutathione is involved in the modulation of various cellular processes and, not by chance, it is a ubiquitous determinant for redox signaling, xenobiotic detoxification, and regulation of cell cycle and death programs. The balance between its concentration and redox state is due to a complex series of interactions between biosynthesis, utilization, degradation, and transport. All these factors are of great importance to understand the significance of cellular redox balance and its relationship with physiological responses and pathological conditions. The purpose of this review is to give an overview on glutathione cellular compartmentalization. Information on its subcellular distribution provides a deeper understanding of glutathione-dependent processes and reflects the importance of compartmentalization in the regulation of specific cellular pathways. © 2018 BioFactors, 45(2):152-168, 2019.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Minnelli
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Desirée Bartolini
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pierangelo Torquato
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Galli
- Clinical Biochemistry and Human Nutrition Labs, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
16
|
Choi WY, Kang DH, Lee HY. Enhancement of Neuroprotective Effects of Spirulina maxima by a Low-temperature Extraction Process with Ultrasonic Pretreatment. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Corso CR, Acco A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit Rev Oncol Hematol 2018; 128:43-57. [DOI: 10.1016/j.critrevonc.2018.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
|
18
|
Enhancement of Neuroprotective Effects of Spirulina platensis Extract from a High-Pressure Homogenization Process. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Docrat TF, Nagiah S, Krishnan A, Naidoo DB, Chuturgoon AA. Atorvastatin induces MicroRNA-145 expression in HEPG2 cells via regulation of the PI3K/AKT signalling pathway. Chem Biol Interact 2018; 287:32-40. [PMID: 29630879 DOI: 10.1016/j.cbi.2018.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
The use of statins as a potential cancer drug has been investigated; however the molecular mechanisms involved in their anti-oxidant, anti-proliferative and anti-cancer effects remain elusive. In our study, we investigated the involvement of downstream mevalonate products that mediate the anti-oxidant and anti-proliferative effects of Atorvastatin (Ato), and its effect on microRNA-145 expression in HepG2 hepatocellular carcinoma cells. An amorphous soluble form of Ato was prepared and found to be cytotoxic in vitro [IC50 (1.2 mM); 48 h]. Atorvastatin induced a dose-dependent increase in cell mortality with a concomitant depletion of intracellular ATP levels (p = 0.005); significantly increased extracellular nitrite levels (p = 0.001) and decreased lipid peroxidation (p = 0.0097) despite a decrease in GSH. The intrinsic apoptotic pathway was activated via increased caspase -9 (p < 0.0001) and -3/7 (p = 0.0003) activities. Increased protein expression of pGSK3-(α/β) (p = 0.0338), p53 (p = 0.0032), Mdm2 (p < 0.0001), with significantly diminished levels of PI3K (p = 0.0013), pAKT (p = 0.0035), and Akt (p = 0.0077), indicated that Ato-mediated cell death occurred via inhibition of the PI3K/Akt pathway. Additionally, the expression of PI3K (p = 0.0001) and c-myc (p = 0.0127) were also downregulated, whilst and miRNA-145 (p = 0.0156) was upregulated. In conclusion our data strongly indicates a plausible mechanism involved in the cytotoxic effects of Ato and is the first study to show that Ato modulates miR-145 expression in hepatocytes. ≤ .
Collapse
Affiliation(s)
- Taskeen Fathima Docrat
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anand Krishnan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Dhaneshree B Naidoo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
20
|
Park SS, Lee DM, Lim JH, Lee D, Park SJ, Kim HM, Sohn S, Yoon G, Eom YW, Jeong SY, Choi EK, Choi KS. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis 2018; 39:458-470. [DOI: 10.1093/carcin/bgy003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Seok Soon Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Min Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
- Genomic Instability Center, Ajou University School of Medicine, Suwon, Korea
| | - Jun Hee Lim
- Genomic Instability Center, Ajou University School of Medicine, Suwon, Korea
| | - Dongjoo Lee
- Department of Pharmacy, Ajou University, Suwon, Korea
| | - Sang Jun Park
- Department of Energy Systems Research, Ajou University, Suwon, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon, Korea
| | | | - Gyesoon Yoon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
| | - Young Woo Eom
- Cell therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Sciences, Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Center for Advancing Cancer Therapeutics, Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou Graduate School, Suwon, Korea
- Genomic Instability Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
21
|
Mechanism of Protein Carbonylation in Glutathione-Depleted Rat Brain Slices. Neurochem Res 2017; 43:609-618. [PMID: 29264677 DOI: 10.1007/s11064-017-2456-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/27/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
This study was conducted to further our understanding about the link between lipid peroxidation and protein carbonylation in rat brain slices incubated with the glutathione (GSH)-depletor diethyl maleate. Using this in vitro system of oxidative stress, we found that there is a significant lag between the appearance of carbonylated proteins and GSH depletion, which seems to be due to the removal of oxidized species early on in the incubation by the mitochondrial Lon protease. Upon acute GSH depletion, protein carbonyls accumulated mostly in mitochondria and to a lesser degree in other subcellular fractions that also contain high levels of polyunsaturated lipids. This result is consistent with our previous findings suggesting that lipid hydroperoxides mediate the oxidation of proteins in this system. However, these lipid hydroperoxides are not produced by oxidation of free arachidonic acid or other polyunsaturated free fatty acids by lipooxygenases or cyclooxygenases. Finally, γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde were identified by HPLC as the carbonyl-containing amino acid residues, indicating that proteins are carbonylated by metal ion-catalyzed oxidation of lysine, arginine and proline residues. The present findings are important in the context of neurological disorders that exhibit increased lipid peroxidation and protein carbonylation, such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.
Collapse
|
22
|
Hatem E, El Banna N, Huang ME. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxid Redox Signal 2017; 27:1217-1234. [PMID: 28537430 DOI: 10.1089/ars.2017.7134] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Glutathione is the most abundant antioxidant molecule in living organisms and has multiple functions. Intracellular glutathione homeostasis, through its synthesis, consumption, and degradation, is an intricately balanced process. Glutathione levels are often high in tumor cells before treatment, and there is a strong correlation between elevated levels of intracellular glutathione/sustained glutathione-mediated redox activity and resistance to pro-oxidant anticancer therapy. Recent Advances: Ample evidence demonstrates that glutathione and glutathione-based systems are particularly relevant in cancer initiation, progression, and the development of anticancer drug resistance. CRITICAL ISSUES This review highlights the multifaceted roles of glutathione and glutathione-based systems in carcinogenesis, anticancer drug resistance, and clinical applications. FUTURE DIRECTIONS The evidence summarized here underscores the important role played by glutathione and the glutathione-based systems in carcinogenesis and anticancer drug resistance. Future studies should address mechanistic questions regarding the distinct roles of glutathione in different stages of cancer development and cancer cell death. It will be important to study how metabolic alterations in cancer cells can influence glutathione homeostasis. Sensitive approaches to monitor glutathione dynamics in subcellular compartments will be an indispensible step. Therapeutic perspectives should focus on mechanism-based rational drug combinations that are directed against multiple redox targets using effective, specific, and clinically safe inhibitors. This new strategy is expected to produce a synergistic effect, prevent drug resistance, and diminish doses of single drugs. Antioxid. Redox Signal. 27, 1217-1234.
Collapse
Affiliation(s)
- Elie Hatem
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Nadine El Banna
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| | - Meng-Er Huang
- 1 CNRS UMR3348, Institut Curie, PSL Research University , Orsay, France .,2 CNRS UMR3348, Université Paris Sud, Université Paris-Saclay , Orsay, France
| |
Collapse
|
23
|
Pan Y, Wang N, Xia P, Wang E, Guo Q, Ye Z. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway. Exp Neurol 2017; 300:149-166. [PMID: 29129468 DOI: 10.1016/j.expneurol.2017.10.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Although the neuroprotective effects of Rac1 inhibition have been reported in various cerebral ischemic models, the molecular mechanisms of action have not yet been fully elucidated. In this study, we investigated whether the inhibition of Rac1 provided neuroprotection in a diabetic rat model of focal cerebral ischemia and hyperglycemia-exposed PC-12 cells. Intracerebroventricular administration of lentivirus expressing the Rac1 small hairpin RNA (shRNA) and specific Rac1 inhibitor NSC23766 not only decreased the infarct volumes and improved neurologic deficits with a correlated significant activation of mitochondrial DNA specific proteins, such as OGG1 and POLG, but also elevated Bcl-2 S70 phosphorylation in mitochondria. Furthermore, the levels of p-PI3K, p-Akt and p-mTOR increased, while 8-OHdG, ROS production and Bcl-2/Rac1 complex formation in mitochondria reduced in both Rac1-shRNA- and NSC23766-treated rats. Moreover, to confirm our in vivo observations, inhibition of Rac1 activity by NSC23766 suppressed the interactions between Bcl-2 and Rac1 in the mitochondria of PC-12 cells cultured in high glucose conditions and protected PC-12 cells from high glucose-induced neurotoxicity. More importantly, these beneficial effects of Rac1 inhibition were abolished by PI3K inhibitor LY294002. In contrast to NSC23766 treatment, LY294002 had little effect on the decrement of p-PTEN level. Taken together, these findings revealed novel neuroprotective roles of Rac1 inhibition against cerebral ischemic reperfusion injury in vivo and high glucose-induced neurotoxicity in PC-12 cells in vitro, by reducing Bcl-2/Rac1 complex formation in mitochondria through the activation of PI3K/Akt/mTOR survival pathway.
Collapse
Affiliation(s)
- Yundan Pan
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Na Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Pingping Xia
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - E Wang
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Qulian Guo
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Affiliated Xiangya Hospital of Central South University, Changsha 410078, Hunan Province, China.
| |
Collapse
|
24
|
Diaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamoni N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol 2017; 23:2841-2853. [PMID: 28522903 PMCID: PMC5413780 DOI: 10.3748/wjg.v23.i16.2841] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
The disequilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their elimination by protective mechanisms leads to oxidative stress. Mitochondria are the main source of ROS as by-products of electron transport chain. Most of the time the intestine responds adequately against the oxidative stress, but with aging or under conditions that exacerbate the ROS and/or RNS production, the defenses are not enough and contribute to developing intestinal pathologies. The endogenous antioxidant defense system in gut includes glutathione (GSH) and GSH-dependent enzymes as major components. When the ROS and/or RNS production is exacerbated, oxidative stress occurs and the intestinal Ca2+ absorption is inhibited. GSH depleting drugs such as DL-buthionine-S,R-sulfoximine, menadione and sodium deoxycholate inhibit the Ca2+ transport from lumen to blood by alteration in the protein expression and/or activity of molecules involved in the Ca2+ transcellular and paracellular pathways through mechanisms of oxidative stress, apoptosis and/or autophagy. Quercetin, melatonin, lithocholic and ursodeoxycholic acids block the effect of those drugs in experimental animals by their antioxidant, anti-apoptotic and/or anti-autophagic properties. Therefore, they may become drugs of choice for treatment of deteriorated intestinal Ca2+ absorption under oxidant conditions such as aging, diabetes, gut inflammation and other intestinal disorders.
Collapse
|
25
|
Salimi A, Motallebi A, Ayatollahi M, Seydi E, Mohseni AR, Nazemi M, Pourahmad J. Selective toxicity of persian gulf sea cucumber holothuria parva on human chronic lymphocytic leukemia b lymphocytes by direct mitochondrial targeting. ENVIRONMENTAL TOXICOLOGY 2017; 32:1158-1169. [PMID: 27404045 DOI: 10.1002/tox.22312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Natural products isolated from marine environment are well known for their pharmacodynamic potential in diversity of disease treatments such as cancer or inflammatory conditions. Sea cucumbers are one of the marine animals of the phylum Echinoderm. Many studies have shown that the sea cucumber contains antioxidants and anti-cancer compounds. Chronic lymphocytic leukemia (CLL) is a disease characterized by the relentless accumulation of CD5+ B lymphocytes. CLL is the most common leukemia in adults, about 25-30% of all leukemias. In this study B lymphocytes and their mitochondria (cancerous and non-cancerous) were obtained from peripheral blood of human subjects and B lymphocyte cytotoxicity assay, and caspase 3 activation along with mitochondrial upstream events of apoptosis signaling including reactive oxygen species (ROS) production, collapse of mitochondrial membrane potential (MMP) and mitochondrial swelling were determined following the addition of Holothuria parva extract to both cancerous and non-cancerous B lymphocytes and their mitochondria. Our in vitro finding showed that mitochondrial ROS formation, MMP collapse, and mitochondrial swelling and cytochrome c release were significantly (P < 0.05) increased after addition of different concentrations of H. parva only in cancerous BUT NOT normal non-cancerous mitochondria. Consistently, different concentrations of H. parva significantly (P < 0.05) increased cytotoxicity and caspase 3 activation only in cancerous BUT NOT normal non-cancerous B lymphocytes. These results showed that H. parva methanolic extract has a selective mitochondria mediated apoptotic effect on chronic lymphocytic leukemia B lymphocytes hence may be promising in the future anticancer drug development for treatment of CLL. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1158-1169, 2017.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Abbasali Motallebi
- Ministry of Jihad-e-Agriculture, Research and Education and Extension Organization (AREEO) and Iranian Fisheries Research Organization, Tehran, Iran
| | - Maryam Ayatollahi
- Department of Pharmacology and Toxicology Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Pharmacology and Toxicology Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Mohseni
- Department of Laboratory Sciences Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Nazemi
- Education and Extension Organization (AREEO), Iranian Fisheries Research Institute, Persian Gulf and Oman Sea Ecological Research Agricultural Research, Bandar Abbas, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Kitt JP, Bryce DA, Minteer SD, Harris JM. Raman Spectroscopy Reveals Selective Interactions of Cytochrome c with Cardiolipin That Correlate with Membrane Permeability. J Am Chem Soc 2017; 139:3851-3860. [PMID: 28221789 DOI: 10.1021/jacs.7b00238] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Permeabilization of the outer mitochondrial membrane is an integral step in apoptosis. The resulting release of pro-apoptotic signaling proteins leads to cell destruction through activation of the cysteine-aspartic protease (caspase) cascade. However, the mechanism of outer mitochondrial membrane (OMM) permeabilization remains unclear. It was recently shown that cytochrome c can induce pore formation in cardiolipin-containing phospholipid membranes, leading to large dextran and protein permeability. In this work, the interaction of cytochrome c with cardiolipin-containing phospholipid vesicles, serving as models of the OMM, is investigated to probe cytochrome c-induced permeability. Lipid vesicles having either a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixed-DPPC/cardiolipin membrane and containing a membrane-impermeable Raman tracer 3-nitrobenzenesulfonate (3-NBS) were optically trapped, translated into a solution containing cytochrome c, and monitored for 3-NBS leakage. Cytochrome-correlated leakage was observed only in cardiolipin-containing vesicles. Structural changes observed in the Raman spectra during permeabilization indicated acyl chain disordering along with decreased intensity of the cardiolipin cis-double-bond stretching modes. When the vesicle-associated cytochrome c Raman spectrum is compared with a spectrum in buffer, heme-resonance bands are absent, indicating loss of Met-80 coordination. To verify selective interactions of cytochrome c with cardiolipin, these experiments were repeated where the DPPC acyl chains were deuterated (D62-DPPC), allowing spectral resolution of the DPPC acyl chain response from that of cardiolipin. Interestingly, D62-DPPC acyl chains were unaffected by cytochrome c accumulation, while cardiolipin showed major changes in acyl chain structure. These results suggest that cytochrome-induced permeabilization proceeds through selective interaction of cytochrome c with cardiolipin, resulting in protein unfolding, where the unfolded form interacts with cardiolipin acyl chains within the bilayer to induce permeability.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - David A Bryce
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
27
|
Liqustri lucidi Fructus inhibits hepatic injury and functions as an antioxidant by activation of AMP-activated protein kinase in vivo and in vitro. Chem Biol Interact 2017; 262:57-68. [DOI: 10.1016/j.cbi.2016.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022]
|
28
|
Janke V, von Neuhoff N, Schlegelberger B, Leyhausen G, Geurtsen W. TEGDMA Causes Apoptosis in Primary Human Gingival Fibroblasts. J Dent Res 2016; 82:814-8. [PMID: 14514762 DOI: 10.1177/154405910308201010] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous in vivo studies have revealed that resins may generate a persistent inflammation of oral tissues and cell death as well. Apoptosis is an important regulated process that results in rapid cell death. This study tested the hypothesis that the comonomer triethyleneglycol-dimethacrylate (TEGDMA) causes apoptosis. The effects of TEGDMA on proliferation and apoptosis in primary oral fibroblasts were analyzed by light microscopy and flow cytometry (FACS; Annexin V-assay). TEGDMA at 5 and 7.5 mM inhibited proliferation after 24 hrs. No increased frequency of apoptosis or necrosis was observed with 1 mM or 2.5 mM TEGDMA after 24 hrs. Apoptosis and Annexin V-positive cells were observed with 5 mM and 7.5 mM TEGDMA by light microscopy after 24 hrs. A dramatic increase in apoptotic cells was detected by FACS after 24 hrs with 7.5 mM TEGDMA. Thus, TEGDMA was cytotoxic and “apoptotic” in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- V Janke
- Department of Conservative Dentistry & Periodontology, Medical University Hannover, Germany
| | | | | | | | | |
Collapse
|
29
|
Matsunaga D, Sreekumar PG, Ishikawa K, Terasaki H, Barron E, Cohen P, Kannan R, Hinton DR. Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced Apoptosis by Upregulation of Mitochondrial Glutathione. PLoS One 2016; 11:e0165150. [PMID: 27783653 PMCID: PMC5081188 DOI: 10.1371/journal.pone.0165150] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/09/2016] [Indexed: 01/31/2023] Open
Abstract
Humanin (HN) is a small mitochondrial-encoded peptide with neuroprotective properties. We have recently shown protection of retinal pigmented epithelium (RPE) cells by HN in oxidative stress; however, the effect of HN on endoplasmic reticulum (ER) stress has not been evaluated in any cell type. Our aim here was to study the effect of HN on ER stress-induced apoptosis in RPE cells with a specific focus on ER-mitochondrial cross-talk. Dose dependent effects of ER stressors (tunicamycin (TM), brefeldin A, and thapsigargin) were studied after 12 hr of treatment in confluent primary human RPE cells with or without 12 hr of HN pretreatment (1-20 μg/mL). All three ER stressors induced RPE cell apoptosis in a dose dependent manner. HN pretreatment significantly decreased the number of apoptotic cells with all three ER stressors in a dose dependent manner. HN pretreatment similarly protected U-251 glioma cells from TM-induced apoptosis in a dose dependent manner. HN pretreatment significantly attenuated activation of caspase 3 and ER stress-specific caspase 4 induced by TM. TM treatment increased mitochondrial superoxide production, and HN co-treatment resulted in a decrease in mitochondrial superoxide compared to TM treatment alone. We further showed that depleted mitochondrial glutathione (GSH) levels induced by TM were restored with HN co-treatment. No significant changes were found for the expression of several antioxidant enzymes between TM and TM plus HN groups except for the expression of glutamylcysteine ligase catalytic subunit (GCLC), the rate limiting enzyme required for GSH biosynthesis, which is upregulated with TM and TM+HN treatment. These results demonstrate that ER stress promotes mitochondrial alterations in RPE that lead to apoptosis. We further show that HN has a protective effect against ER stress-induced apoptosis by restoring mitochondrial GSH. Thus, HN should be further evaluated for its therapeutic potential in disorders linked to ER stress.
Collapse
Affiliation(s)
- Douglas Matsunaga
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Parameswaran G. Sreekumar
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Keijiro Ishikawa
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Hiroto Terasaki
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Ernesto Barron
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, United States of America
| | - David R. Hinton
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
30
|
Yee YH, Chong SJF, Pervaiz S. The anti-oxidant and pro-oxidant dichotomy of Bcl-2. Biol Chem 2016; 397:585-93. [DOI: 10.1515/hsz-2016-0127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Across a wide spectrum of cellular redox status, there emerges a dichotomy of responses in terms of cell survival/proliferation and cell death. Of note, there is emerging evidence that the anti-apoptotic protein, Bcl-2, in addition to its conventional activity of titrating the pro-apoptotic effects of proteins such as Bax and Bak at the mitochondria, also impacts cell fate decisions via modulating cellular redox metabolism. In this regard, both pro- and anti-oxidant effects of Bcl-2 overexpression have been described under different conditions and cellular contexts. In this short review, we attempt to analyze existing observations and present a probable explanation for the seemingly conflicting redox regulating activity of Bcl-2 from the standpoint of its pro-survival function. The consequential effect(s) of the dual redox functions of Bcl-2 are also discussed, particularly from the viewpoint of developing novel therapeutic strategies against cancers rendered refractory due to the aberrant expression of Bcl-2.
Collapse
|
31
|
Tagscherer KE, Fassl A, Sinkovic T, Richter J, Schecher S, Macher-Goeppinger S, Roth W. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int 2016; 16:42. [PMID: 27293381 PMCID: PMC4901463 DOI: 10.1186/s12935-016-0321-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Deregulation of miRNA-210 is a common event in several types of cancer. However, increased expression levels in the cancer tissue have been associated with both poor and good prognosis of patients. Similarly, the function of miR-210 with regard to cell growth and apoptosis is still controversial. Methods Overexpression of miR-210 was performed in HCT116, SW480 and SW707 colorectal cancer (CRC) cell lines. Functional effects of a modulated miR-210 expression were analyzed with regard to proliferation, clonogenicity, cell cycle distribution, reactive oxygen species (ROS) generation, and apoptosis. Furthermore, quantitative real time (RT)-PCR and immunoblot analyses were performed to investigate signaling pathways affected by miR-210. Results We show that in CRC cells miR-210 inhibits clonogenicity and proliferation which was accompanied by an accumulation of cells in the G2/M phase of the cell cycle. Additionally, overexpression of miR-210 results in an increase of ROS generation. Moreover, miR-210 mediated the induction of apoptosis which was associated with an upregulation of pro-apoptotic Bim expression and enhanced processing of Caspase 2. Importantly, inhibition of ROS generation rescued cells from miR-210-induced apoptosis. Conclusions Taken together, miR-210 induces apoptosis in CRC cells via a ROS-dependent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0321-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrin E Tagscherer
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Anne Fassl
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 USA ; Department of Genetics, Harvard Medical School, Boston, MA 02215 USA
| | - Tabea Sinkovic
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jutta Richter
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sabrina Schecher
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Macher-Goeppinger
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Wilfried Roth
- Molecular Tumor-Pathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ; Institute of Pathology, University of Heidelberg, 69120 Heidelberg, Germany ; Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
32
|
Modification of the in vitro uptake mechanism and antioxidant levels in HaCaT cells and resultant changes to toxicity and oxidative stress of G4 and G6 poly(amidoamine) dendrimer nanoparticles. Anal Bioanal Chem 2016; 408:5295-307. [DOI: 10.1007/s00216-016-9623-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/01/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
33
|
Wu X, Cao Y, Zhang J, Lei M, Deng X, Zahid KR, Liu Y, Liu K, Yang J, Xiong G, Yao H, Qi C. Determination of glutathione in apoptotic SMMC-7221 cells induced by xylitol selenite using capillary electrophoresis. Biotechnol Lett 2016; 38:761-6. [PMID: 26892224 DOI: 10.1007/s10529-016-2056-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine the glutathione (GSH) content in a human hepatoma cell line (SMMC-7221) treated with xylitol/selenite, providing a part of an investigation of its anti-cancer mechanisms. RESULTS The nuclei of SMMC-7221 cells were stained with Hoechst 33258 in an apoptosis assay, and their morphology subsequently changed from circular to crescent shape. The calibration curve (r(2) = 0.992) was established, and GSH content markedly decreased after treated with 0.5 and 1 mg xylitol/selenite l(-1) for 12, 36 and 60 h (12 h: from 95.57 ± 19.57 to 29.09 ± 7.74 and 24.27 ± 11.15; 36 h: from 70.73 ± 11.35 to 19.54 ± 6.39 and 9.35 ± 6.69; 60 h: from 72.63 ± 16.94 to 7.432 ± 3.84 and 0). The depletion rate of GSH was more related to the concentration of xylitol/selenite than the treatment time (from 69.95 ± 1.87 to 100 % vs. 0.22 ± 0.2 to 100 %). CONCLUSIONS Xylitol/selenite is a promising anti-cancer drug to induce apoptosis in SMMC-7221 cells. It may regulate the apoptosis through the co-action of multiple mechanisms related to GSH depletion.
Collapse
Affiliation(s)
- Xue Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Jian Zhang
- Shijiazhuang Maternal and Child Health Ultrasonography Department, Shijiazhuang, 050011, People's Republic of China
| | - Ming Lei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Xiaojie Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Kashif Rafiq Zahid
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Jihong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Guomei Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Hanchao Yao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, China Central Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
34
|
Betzen C, Plotnicki K, Fathalizadeh F, Pappan K, Fleming T, Bielaszewska M, Karch H, Tönshoff B, Rafat N. Shiga Toxin 2a-Induced Endothelial Injury in Hemolytic Uremic Syndrome: A Metabolomic Analysis. J Infect Dis 2015; 213:1031-40. [PMID: 26582960 DOI: 10.1093/infdis/jiv540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Endothelial dysfunction plays a pivotal role in the pathogenesis of postenteropathic hemolytic uremic syndrome (HUS), most commonly caused by Shiga toxin (Stx)-producing strains of Escherichia coli. METHODS To identify new treatment targets, we performed a metabolomic high-throughput screening to analyze the effect of Stx2a, the major Stx type associated with HUS, on human renal glomerular endothelial cells (HRGEC) and umbilical vein endothelial cells (HUVEC). Cells were treated either with sensitizing tumor necrosis factor α (TNF-α) or Stx2a, a sequence of both or remained untreated. RESULTS We identified 341 metabolites by combined liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. Both cell lines exhibited distinct metabolic reaction profiles but shared elevated levels of free fatty acids. Stx2a predominantly altered the nicotinamide adenine dinucleotide (NAD) cofactor pathway and the inflammation-modulating eicosanoid pathway, which are associated with lipid metabolism. In HRGEC, Stx2a strongly diminished NAD derivatives, leading to depletion of the energy substrate acetyl coenzyme A and the antioxidant glutathione. HUVEC responded to TNF-α and Stx2a by increasing production of the counteracting eicosanoids prostaglandin I2, E1, E2, and A2, while in HRGEC only more prostaglandin I2 was detected. CONCLUSIONS We conclude that disruption of energy metabolism and depletion of glutathione contributes to Stx-induced injury of the renal endothelium and that the inflammatory response to Stx is highly cell-type specific.
Collapse
Affiliation(s)
- Christian Betzen
- Department of Pediatrics I, University Children's Hospital Heidelberg Division of Functional Genome Analysis, German Cancer Research Center
| | - Kathrin Plotnicki
- Department of Pediatrics I, University Children's Hospital Heidelberg
| | | | | | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg
| | | | - Helge Karch
- Institute for Hygiene, University of Münster, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg
| | - Neysan Rafat
- Department of Pediatrics I, University Children's Hospital Heidelberg
| |
Collapse
|
35
|
Abstract
The phenomenon of multidrug resistance (MDR) in cancer is associated with the overexpression of the ATP-binding cassette (ABC) transporter proteins, including multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein. MRP1 plays an active role in protecting cells by its ability to efflux a vast array of drugs to sub-lethal levels. There has been much effort in elucidating the mechanisms of action, structure and substrates and substrate binding sites of MRP1 in the last decade. In this review, we detail our current understanding of MRP1, its clinical relevance and highlight the current environment in the search for MRP1 inhibitors. We also look at the capacity for the rapid intercellular transfer of MRP1 phenotype from spontaneously shed membrane vesicles known as microparticles and discuss the clinical and therapeutic significance of this in the context of cancer MDR.
Collapse
Affiliation(s)
- Jamie F Lu
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| | - Deep Pokharel
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| | - Mary Bebawy
- a Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway , NSW , Australia
| |
Collapse
|
36
|
Eftekhari A, Azarmi Y, Parvizpur A, Eghbal MA. Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes. Xenobiotica 2015; 46:369-78. [PMID: 26364812 DOI: 10.3109/00498254.2015.1078522] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Olanzapine (OLZ) is a widely used atypical antipsychotic agent for the treatment of schizophrenia and other disorders. Serious hepatotoxicity and elevated liver enzymes have been reported in patients receiving OLZ. However, the cellular and molecular mechanisms of the OLZ hepatotoxicity are unknown. 2. In this study, the cytotoxic effect of OLZ on freshly isolated rat hepatocytes was assessed. Our results showed that the cytotoxicity of OLZ in hepatocytes is mediated by overproduction of reactive oxygen species (ROS), mitochondrial potential collapse, lysosomal membrane leakiness, GSH depletion and lipid peroxidation preceding cell lysis. All the aforementioned OLZ-induced cellular events were significantly (p < 0.05) prevented by ROS scavengers, antioxidants, endocytosis inhibitors and adenosine triphosphate generators. Also, the present results demonstrated that CYP450 is involved in OLZ-induced oxidative stress and cytotoxicity mechanism. 3. It is concluded that OLZ hepatotoxicity is associated with both mitochondrial/lysosomal involvement following the initiation of oxidative stress in hepatocytes.
Collapse
Affiliation(s)
- Aziz Eftekhari
- a Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and.,d Students' Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Yadollah Azarmi
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Alireza Parvizpur
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Mohammad Ali Eghbal
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| |
Collapse
|
37
|
Hung CH, Chan SH, Chu PM, Tsai KL. Docetaxel Facilitates Endothelial Dysfunction through Oxidative Stress via Modulation of Protein Kinase C Beta: The Protective Effects of Sotrastaurin. Toxicol Sci 2015; 145:59-67. [PMID: 25634538 DOI: 10.1093/toxsci/kfv017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Docetaxel (DTX), a taxane drug, has widely been used as an anticancer or antiangiogenesis drug. However, DTX caused side effects, such as vessel damage and phlebitis, which may reduce its clinical therapeutic efficacy. The molecular mechanisms of DTX that cause endothelial dysfunction remain unclear. The aim of this study as to validate the probable mechanisms of DTX-induced endothelial dysfunction in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with DTX (2.5, 5, and 10nM) for 24 h to induce endothelial dysfunction. Stimulation with DTX reduced cell viability in a concentration- and time-dependent manner. DTX upregulated caspase-3 activity and TUNEL-positive cells. DTX treatment also increased PKCβ phosphorylation levels and NADPH oxidase activity, which resulted in ROS formation. However, all of these findings were reversed by PKCβ inhibition and NADPH oxidase repression. Finally, we demonstrated that sotrastaurin (AEB-071), a new PKCβ inhibitor, mitigated DTX-induced oxidative injury in endothelial cells. Our findings from this study provide a probable molecular mechanism of DTX-induced oxidative injury in endothelial cells and a new clinical and therapeutic approach for preventing DTX-mediated vessel injury.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Hung Chan
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ming Chu
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kun-Ling Tsai
- *Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Thatipamula S, Al Rahim M, Zhang J, Hossain MA. Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia. Neurobiol Dis 2014; 75:15-30. [PMID: 25554688 DOI: 10.1016/j.nbd.2014.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I-IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24-48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 days). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax [6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4-24 weeks) examined; indicating a long-term neuroprotective efficacy of NP1 gene deletion. Collectively, our results demonstrate a novel mechanism of neuronal death and predict that inhibition of NP1 expression is a promising strategy to prevent hypoxic-ischemic injury in immature brain.
Collapse
Affiliation(s)
| | - Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Gottipolu RR, Davuljigari CB. Perinatal exposure to lead: reduction in alterations of brain mitochondrial antioxidant system with calcium supplement. Biol Trace Elem Res 2014; 162:270-7. [PMID: 25161091 DOI: 10.1007/s12011-014-0112-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Lead (Pb) is a potent neurotoxicant that causes several neurochemical and behavioral alterations. Previous studies showed that the gestational and lactational exposure to Pb reduces the cholinergic and aminergic systems, and behavior of rats. The present study was designed to examine the protective effects of calcium supplementation against Pb-induced oxidative stress in cerebellum and hippocampus of brain at postnatal day (PND) 21, PND 28, PND 35, and PND 60. Pregnant rats were exposed to 0.2 % Pb (Pb acetate in drinking water) from gestational day 6 (GD 6) and pups were exposed through maternal milk till weaning (PND 21). We found that the activity of serum ceruloplasmin oxidase (Cp), mitochondrial manganese superoxide dismutase (Mn-SOD), copper zinc superoxide dismutase (Cu/Zn-SOD), glutathione peroxidase (GPx), catalase (CAT), and xanthine oxidase (XO) enzyme activities were decreased, whereas the malondialdehyde (MDA) levels increased in the cerebellum and hippocampus of Pb-exposed rats. These changes were more prominent at PND 35 and greater in hippocampus compared to cerebellum. Among the enzyme activities, Mn-SOD and Cu/Zn-SOD showed maximum decrease compared to GPx, CAT, XO, and Cp. Furthermore, 0.02 % calcium supplementation together with 0.2 % Pb significantly reversed the Pb-induced alterations in the enzyme activities, and MDA levels. In conclusion, these data suggest that early life exposure to Pb induce alterations in the mitochondrial antioxidant system of brain regions which remain for long even after Pb exposure has stopped. Calcium supplementation may potentially be beneficial in treating Pb toxicity in the developing rat brain.
Collapse
Affiliation(s)
- Rajarami Reddy Gottipolu
- Division of Neuroscience, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India, 517 502
| | | |
Collapse
|
40
|
Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1. Apoptosis 2014; 19:117-34. [PMID: 24146141 DOI: 10.1007/s10495-013-0900-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Glutathione (GSH) depletion is an important hallmark of apoptosis. We previously demonstrated that GSH depletion, by its efflux, regulates apoptosis by modulation of executioner caspase activity. However, both the molecular identity of the GSH transporter(s) involved and the signaling cascades regulating GSH loss remain obscure. We sought to determine the role of multidrug resistance protein 1 (MRP1) in GSH depletion and its regulatory role on extrinsic and intrinsic pathways of apoptosis. In human lymphoma cells, GSH depletion was stimulated rather than inhibited by pharmacological blockage of MRP1 with MK571. GSH loss was dependent on initiator caspases 8 and 9 activity. Genetic knock-down (>60 %) of MRP1 by stable transfection with short hairpin small interfering RNA significantly reduced MRP1 protein levels, which correlated directly with the loss of MRP1-mediated anion transport. However, GSH depletion and apoptosis induced by both extrinsic and intrinsic pathways were not affected by MRP1 knock-down. Interestingly, stimulation of GSH loss by MK571 also enhanced the initiator phase of apoptosis by stimulating initiator caspase 8 and 9 activity and pro-apoptotic BCL-2 interacting domain cleavage. Our results clearly show that caspase-dependent GSH loss and apoptosis are not mediated by MRP1 proteins and that GSH depletion stimulates the initiation phase of apoptosis in lymphoid cells.
Collapse
|
41
|
Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5:151. [PMID: 25024695 PMCID: PMC4079069 DOI: 10.3389/fphar.2014.00151] [Citation(s) in RCA: 386] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease, and Alzheimer’s disease.
Collapse
Affiliation(s)
- Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC) Barcelona, Spain ; Liver Unit, Hospital Clínic, Centre Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Barcelona, Spain ; Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
42
|
Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 2014; 19 Pt A:39-48. [PMID: 24954615 DOI: 10.1016/j.mito.2014.06.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Mitochondria are the major intracellular source of reactive oxygen species (ROS). While excessive mitochondrial ROS (mitoROS) production induces cell injury and death, there is accumulating evidence that non-toxic low levels of mitoROS could serve as important signaling molecules. Therefore, maintenance of mitoROS at physiological levels is crucial for cell homeostasis as well as for survival and proliferation. This review describes the various mechanisms that keep mitoROS in check, with particular focus on the role of the onco-protein Bcl-2 in redox regulation. In addition to its canonical anti-apoptotic activity, Bcl-2 has been implicated in mitoROS regulation by its effect on mitochondrial complex IV activity, facilitating the mitochondrial incorporation of GSH and interaction with the small GTPase-Rac1 at the mitochondria. We also discuss some of the plausible mechanism(s) which allows Bcl-2 to sense and respond to the fluctuations in mitoROS.
Collapse
|
43
|
The Glutathione System: A New Drug Target in Neuroimmune Disorders. Mol Neurobiol 2014; 50:1059-84. [DOI: 10.1007/s12035-014-8705-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023]
|
44
|
Gopal PK, Paul M, Paul S. Curcumin Induces Caspase Mediated Apoptosis in JURKAT Cells by Disrupting the Redox Balance. Asian Pac J Cancer Prev 2014; 15:93-100. [DOI: 10.7314/apjcp.2014.15.1.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Robert SM, Ogunrinu-Babarinde T, Holt KT, Sontheimer H. Role of glutamate transporters in redox homeostasis of the brain. Neurochem Int 2014; 73:181-91. [PMID: 24418113 DOI: 10.1016/j.neuint.2014.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022]
Abstract
Redox homeostasis is especially important in the brain where high oxygen consumption produces an abundance of harmful oxidative by-products. Glutathione (GSH) is a tripeptide non-protein thiol. It is the central nervous system's most abundant antioxidant and the master controller of brain redox homeostasis. The glutamate transporters, System xc(-) (SXC) and the Excitatory Amino Acid Transporters (EAAT), play important, synergistic roles in the synthesis of GSH. In glial cells, SXC mediates the uptake of cystine, which after intracellular reduction to cysteine, reacts with glutamate during the rate-limiting step of GSH synthesis. EAAT3 mediates direct cysteine uptake for neuronal GSH synthesis. SXC and EAAT work in concert in glial cells to provide two intracellular substrates for GSH synthesis, cystine and glutamate. Their cyclical basal function also prevents a buildup of extracellular glutamate, which SXC releases extracellularly in exchange for cystine uptake. Maintaining extracellular glutamate homeostasis is critical to prevent neuronal toxicity, as well as glutamate-mediated SXC inhibition, which could lead to a depletion of intracellular GSH and loss of cellular redox control. Many neurological diseases show evidence of GSH dysfunction, and increased GSH has been widely associated with chemotherapy and radiotherapy resistance of gliomas. We present evidence suggesting that gliomas expressing elevated levels of SXC are more reliant on GSH for growth and survival. They have an increased inherent radiation resistance, however, inhibition of SXC can increase tumor sensitivity at low radiation doses. GSH depletion through SXC inhibition may be a viable mechanism to enhance current glioma treatment strategies and make tumors more sensitive to radiation and chemotherapy protocols.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| | - Toyin Ogunrinu-Babarinde
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Kenneth T Holt
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Wu YL, Wang D, Peng XE, Chen YL, Zheng DL, Chen WN, Lin X. Epigenetic silencing of NAD(P)H:quinone oxidoreductase 1 by hepatitis B virus X protein increases mitochondrial injury and cellular susceptibility to oxidative stress in hepatoma cells. Free Radic Biol Med 2013; 65:632-644. [PMID: 23920313 DOI: 10.1016/j.freeradbiomed.2013.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a phase II enzyme that participates in the detoxification of dopamine-derived quinone molecules and reactive oxygen species. Our prior work using a proteomic approach found that NQO1 protein levels were significantly decreased in stable hepatitis B virus (HBV)-producing hepatoma cells relative to the empty-vector-transfected controls. However, the mechanism and biological significance of the NQO1 suppression remain elusive. In this study we demonstrate that HBV X protein (HBx) induces epigenetic silencing of NQO1 in hepatoma cells through promoter hypermethylation via recruitment of DNA methyltransferase DNMT3A to the promoter region of the NQO1 gene. In HBV-related hepatocellular carcinoma (HCC) specimens, HBx expression was correlated negatively to NQO1 transcripts but positively to NQO1 promoter hypermethylation. Downregulation of NQO1 by HBx reduced intracellular glutathione levels, impaired mitochondrial function, and increased susceptibility of hepatoma cells to oxidative stress-induced cell injury. These results suggest a novel mechanism for HBV-mediated pathogenesis of chronic liver diseases, including HCC.
Collapse
Affiliation(s)
- Yun-Li Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Dong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Xian-E Peng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Yan-Ling Chen
- Department of Hepatobiliary and Pancreatic Surgery, Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Da-Li Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
47
|
Skindersoe ME, Kjaerulff S. Comparison of three thiol probes for determination of apoptosis-related changes in cellular redox status. Cytometry A 2013; 85:179-87. [DOI: 10.1002/cyto.a.22410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 09/17/2013] [Accepted: 10/15/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Mette E. Skindersoe
- Department of Microbiology and Infection Control, Statens Serum Institute; Artillerivej 5 DK-2300 Copenhagen S Denmark
| | - Soeren Kjaerulff
- Research and Development; ChemoMetec A/S; Gydevang 43 DK-3450 Alleroed Denmark
| |
Collapse
|
48
|
Madathil MM, Khdour OM, Jaruvangsanti J, Hecht SM. A structurally simplified analogue of geldanamycin exhibits neuroprotective activity. ACS Med Chem Lett 2013; 4:953-7. [PMID: 24900591 DOI: 10.1021/ml400207m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 11/30/2022] Open
Abstract
The syntheses of a structurally simplified geldanamycin analogue 2 and two related compounds are described. Compound 2 conferred cytoprotection and quenched ROS and lipid peroxidation in a dose-dependent manner in Friedreich's ataxia (FRDA) lymphocytes at low micromolar concentrations. It also prevented ROS-induced damage of cellular lipid membranes and maintained the mitochondrial membrane potential of FRDA lymphocytes. In addition, 2 did not inhibit Hsp90 when tested at micromolar concentrations, exhibited no cytotoxicity, and afforded neuroprotection to differentiated SH-SY5Y cells under conditions of Aβ-induced cell toxicity.
Collapse
Affiliation(s)
- Manikandadas M. Madathil
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| | - Omar M. Khdour
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| | - Jennifer Jaruvangsanti
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| | - Sidney M. Hecht
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| |
Collapse
|
49
|
Siddiqui MA, Ahmad J, Farshori NN, Saquib Q, Jahan S, Kashyap MP, Ahamed M, Musarrat J, Al-Khedhairy AA. Rotenone-induced oxidative stress and apoptosis in human liver HepG2 cells. Mol Cell Biochem 2013; 384:59-69. [PMID: 23963993 DOI: 10.1007/s11010-013-1781-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023]
Abstract
Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5-250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.
Collapse
Affiliation(s)
- M A Siddiqui
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakagawa Y, Suzuki T, Nakajima K, Inomata A, Ogata A, Nakae D. Effects of N-acetyl-L-cysteine on target sites of hydroxylated fullerene-induced cytotoxicity in isolated rat hepatocytes. Arch Toxicol 2013; 88:115-26. [PMID: 23877122 DOI: 10.1007/s00204-013-1096-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
Abstract
The effects of N-acetyl-L-cysteine (NAC) on cytotoxicity caused by a hydroxylated fullerene [C60(OH)24], which is known a nanomaterial and/or a water-soluble fullerene derivative, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to C60(OH)24 at a concentration of 0.1 mM caused time (0-3 h)-dependent cell death accompanied by the formation of cell blebs, loss of cellular ATP, and reduced glutathione (GSH) and protein thiol levels, as well as the accumulation of glutathione disulfide and malondialdehyde (MDA), indicating lipid peroxidation. Despite this, C60(OH)24-induced cytotoxicity was effectively prevented by NAC pretreatment ranging in concentrations from 1 to 5 mM. Further, the loss of mitochondrial membrane potential (MMP) and generation of oxygen radical species in hepatocytes incubated with C60(OH)24 were inhibited by pretreatment with NAC, which caused increases in cellular and/or mitochondrial levels of GSH, accompanied by increased levels of cysteine via enzymatic deacetylation of NAC. On the other hand, severe depletion of cellular GSH levels caused by diethyl maleate at a concentration of 1.25 mM led to the enhancement of C60(OH)24-induced cell death accompanied by a rapid loss of ATP. Taken collectively, these results indicate that pretreatment with NAC ameliorates (a) mitochondrial dysfunction linked to the depletion of ATP, MMP, and mitochondrial GSH level and (b) induction of oxidative stress assessed by reactive oxygen species generation, losses of intracellular GSH and protein thiol levels, and MDA formation caused by C60(OH)24, suggesting that the onset of toxic effects is at least partially attributable to a thiol redox-state imbalance as well as mitochondrial dysfunction related to oxidative phosphorylation.
Collapse
Affiliation(s)
- Yoshio Nakagawa
- Division of Toxicology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan,
| | | | | | | | | | | |
Collapse
|